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Abstract 
Yu et al. (2012) considered a certain dependent right censorship model. We show that this model 
is equivalent to the independent right censorship model, extending a result with continuity re-
striction in Williams and Lagakos (1977). Then the asymptotic normality of the product limit es-
timator under the dependent right censorship model follows from the existing results in the lite-
rature under the independent right censorship model, and thus partially solves an open problem 
in the literature. 
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1. Introduction 
In this paper we study various dependent right censorship (RC) models and their relation to the independent RC 
model in the literature. The definitions of these RC models are given in Definition 1.  

Right censored data occur quite often in industrial experiments and medical research. A typical example in 
medical research is a follow-up study; a patient is enrolled and has a certain treatment within the study period. If 
the patient dies within the study period, we observe the exact survival time T; otherwise, we only know that the 
patient survives beyond the censoring time R. Thus the observable random vector is ( ),V δ , where  

{ }min ,V T R=  ( T R= ∧ ) and ( )T Rδ ≤= 1 , the indicator function of the event { }T R≤ . Let ( ) ( )1 1, , , ,n nV Vδ δ   

be i.i.d. copies of ( ),V δ . Let ( ) ( )( )TF t P T t= ≤  be the cumulative distribution function (cdf) of T and 
1T TS F= − . Denote FR, FV and ,T RF  the cdf’s of R, V and ( ),T R , respectively, and |R TF  the conditional cdf 
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of R given T and | |1R T R TS F= − . Let fT (fR or |R Tf ) be the density function of T (R or R T ) (with respect to 
(w.r.t.) some measure). The common right censorship model assumes T and R are independent ( T R⊥ ). Then 
the likelihood (function) for RC data is often defined as  

( ) ( )( ) ( )( )1
1

, ,i i
n

i i
i

F f V S V F
δ δ−

=

= = ∈∏                            (1) 

(see [1]), where   is a collection of all cdf’s if under the non-parametric set-up, or a parametric cdf family 
with a parameter, say θ ∈Θ  and Θ  is the parameter space, 1S F= −  and f is the density of F. Recall that 
the formal definition of the likelihood (function) for a sample =X x  is ( ) ( )fθ θΛ = Λ = X x , θ ∈Θ . More- 
over, if ( ) ( )2 c θΛ = Λx  θ∀ ∈Θ , where ( )c ⋅  does not depend on θ, and Λ2 is also called a likelihood. We 
shall call Λ the full likelihood and Λ2 a simplified one. Since our sample ( ) ( )( )1 1, , , ,n nV Vδ δ= x , 
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where 

( ) ( ) ( )
( )

( )
,

|

d ,
d , 0, ,T Rt r

R Tr t
T

F t r
Q t F r t t G r

S r
>

≥
= > = ∫∫                       (3) 

and the integrals are Lebesgure integrals. We say that a function ( )H ⋅  is non-informative about the function 
( )|TF θ⋅  with θ ∈Θ  if it is not assumed that H is a function of TF  or θ. We shall further clarify what “non- 

informative” means in the next example. 
Example 1.1. Consider 3 cases of right censoring:  
Case (1). T R⊥  with the parameter space ( ){ }, : ,T R T RF F F FΘ = ∈ ∈   (see Equation (1)).  
Case (2). T R⊥  with ( ){ }, : ,T R T R TF F F F FΘ = ∈ = .  
Case (3). 3R T= −  with parameters ( )i P T iθ = = , { }1,2,3,4,5i∈  ( )5

1 1ii θ
=

=∑ . FR is informative about  

FT in cases (2) and (3), as it is a function of FT in case (2) and a function of ( )1 2 3 4, , ,θ θ θ θ  in case (3). However, 
FR is non-informative (not informative) about FT in case (1), as FT and FR are both independent parameters.  

If T R⊥ , Λ in Equation (2) may be simplified as   as in Equation (1) due to the non-informative property 
by the well-known result as follows. 

Proposition 1.1. The full likelihood Λ  can be simplified as ( )F  (see Equation (1)) iff  

( ) ( ) ( ) 3 - .TQ and G given in Equation are non informative about F⋅ ⋅                (4) 

Example 1.1 (continued). In case (1), ( )F  is a likelihood function, as Equation (4) holds. In case (2), 
R TF F=  is informative about FT and condition Equation (4) fails.  

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )1 1

1 1 1
.i i i i

n n n

i i i i i
i i i

F f V S V S V F f V S V
δ δ δ δ− −

= = =

   Λ = + = +      ∏ ∏ ∏  

( )F  is not a likelihood, but can be viewed as a partial likelihood. The generalized maximum likelihood (GMLE)  

Ŝ  of ST based on ( )F  is still the PLE, i.e., ( )
( )

( )

: 
ˆ

1

i

ii V t

n iS t
n i

δ

≤

− =  − + 
∏ , where ( )iV  is the i-th order statis-

tic of jV ’s and ( )iδ  is the δj that is associated with ( )iV . The variance satisfies ( )( ) ( )21ˆVar
2
TS t

n S t
−

→  (if 

ST is continuous), while the GMLE based on Λ is ( ) ( )1

1
i

n
V tiS t

n >=
= ∑ 1  (as 2

V TS S=  and 
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( ) ( )1
n

T V iiF f V
=

Λ =∏ ) and ( )( ) ( )21
Var

4
TS t

n S t
−

→  by the delta method. Thus the PLE is not efficient. In case 

(3), ( )F  is not a likelihood function. The full likelihood is ( )( ) ( )( )11 3i in
T i T ii f V f V

δ δ−

=
 Λ = −  ∏  (as  

3 1
3 0

i i i i
i

i i i i

V V R if
T

V V R if
δ
δ

≤ − = =
=  − > = =

). If one treats ( )F  as a (partial) likelihood, then its GMLE of ST is the PLE 

Ŝ . Let ( ) 1
4Tf t = , { }1,2,4,5t∈ . Then ( ) ( )

1 0 1
. . 1 1 1 3 1ˆ 2 1 1 1 2

4 3 2 8 2
a s

TS S     → − − − = ≠ =     
     

, i.e., the PLE is 

not consistent at 2. The GMLE S  based on Λ is ( ) ( ) ( )1 . .
1

1 3 iin a s
i i TiS t V V S t

n
δδ −

=
 = − → → ∑ .  

Remark 1.1. Example 1.1 indicates that if Equation (4) is not valid then the MLE based on so-called “like-
lihood” ( )F  as in Equation (1) can be inconsistent, or can be less efficient than the MLE based on Λ due to 
loss of information on θ ∈Θ . However, it is difficult to verify Equation (4) in practical applications, thus 
people propose some sufficient conditions. A typical sufficient condition of Equation (4) is that T R⊥  and FR 
is non-informative about FT.  

Williams and Lagakos (W&L) [2] point out that T R⊥  is often un-realistic. They further propose a con-
stant-sum model (which allows T R⊥/ ) as follows.  

( ) ( ) ( )1 a.e. w.r.t. the measure induced by ,
TF Ta u B u Fµ+ =                     (5) 

where 

( ) ( ) ( ) ( )
( ) ( ]( )

1 , d , and

d d , , 0 .
t u

a u P T u B u B t

B u P V u u u T u

δ

δ
≤

= = = =

= ∈ − = ≥

∫                           (6) 

In the literature, there are many studies on the asymptotic properties of the PLE by weakening the assump-
tions in the independent RC model over the years (see, e.g., [3]-[10]). It is conceivable that the asymptotic prop-
erties of the PLE is difficult under the continuous constant-sum model in Equation (5). However, the next theo-
rem makes it trivial. 

W&L Theorem (Theorem 3.1 in [2]). W&L (1977)). Suppose that ( ),T R  is a continuous random vector. 
Then Equation (5) holds iff ∃  a random vector ( ),Z Y  such that (1) Z TF F= , YF B=  (see Equation (6)) 
and Z Y⊥ , where (2) Z T Y= ≤  if T R≤ , and (3) Y R Z= <  if R T< .  

By the W&L Theorem, one can easily make use of the existing results about the PLE under the assumption 
T R⊥  to establish asymptotic properties of the PLE under the continuous constant-sum model. Indeed, by (2) 
and (3) of the W&L Theorem,  

( ) ( )and .T R Z YV T R Z Y δ ≤ ≤= ∧ = ∧ = =1 1                            (7) 

Since Z Y⊥ , the PLE F̂  based on ( ) ( ), , , ,i i n nV Vδ δ  from ( ),V δ  (see Equation (7)) satisfies  
( ) ( )ˆsup 0t ZF t F tτ≤ − →  a.s., where ( ){ }sup : 1Vt F tτ = <  (see [10]). By the W&L Theorem, T ZF F=  and  

Equation (7) holds, so ( ) ( ) . .ˆsup 0a s
t TF t F tτ≤ − →  under the continuous RC model given in Equation (5), 

even if T R⊥/ . 
On the other hand, case (3) in Example 1.1 shows that the PLE can be inconsistent for t τ<  under a depen-

dent RC model. Hence the W&L Theorem is quite significant. Yu et al. [11] show that the PLE is consistent 
under the dependent RC model considered in [12]-[15], etc., which assumes A1 and A2 as follows. 

A1 
( ) ( )( ) ( )

| |, | |
d 0

R T R T T
Tt r F r t F r

F t
τ> =/

=∫  for all r, or equivalently, ( ) ( )| |R T R T TF r t F r τ=  a.e. in t (w.r.t. 
TFµ ) on 

the set ( ){ }: 0,Tx f x x r> > . 

Notice that ( )|R T TF r τ  is well defined if ( ) 0TP T τ= >  and undefined if ( ) 0TP T τ= = . We define 
( ) ( )| |R T T R T TF r F rτ τ= −  if ( ) 0TP T τ= = . Notice that A1 says that ( )|R TF r t  is constant in t r> , thus 
( )|R T TF r τ −  is well defined if ( ) 0TP T τ= = . 
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A2 ( )rcG ⋅  is non-informative about TF , with ( ) ( )|rc R T TG x F x τ= . 
Definition 1. If T R⊥  and FR is non-informative about FT, then we call the RC model the independent RC 

model. The dependent RC model considered in this paper assumes that A1 and A2 hold.  
Next example and Example 3.1 in Section 3 are examples that satisfies A1 but T R⊥/ . 
Example 1.2. ( )1 0 1P R T= = = , ( ) ( )( )| 1 0,1R Tf r r= ∈  and T has a binomial distribution ( ( )~ 1,T bin p ) 

with parameter ( )0,1p∈ . 
Yu et al. [11] show that A1 and A2 are the necessary and sufficient (N&S) condition of Equation (4) under 

the non-parametric set-up. Then we may ask the following questions: 
1) Are A1 and A2 the N&S condition of Equation (4) under the parametric set-up? 
2) What is the relation between the constant-sum model (5) and A1? 
3) Can the W&L Theorem be extended by eliminating the continuity restriction? 
We give answers to the 3 questions. In Section 2, we show that A1 and A2 are a sufficient condition for Equ-

ation (4) under both non-parametric set-up and non-parametric set-up (see Theorem 2.1). Our study suggests that 
the constant sum model (5) is a special case of A1. In Section 3, we extend the W&L Theorem to the case that 
A1 holds (rather than the case that Equation (5) holds), which allows ( ),T R  being discontinuous. As a conse-
quence, we establish the asymptotic normality of the PLE under the dependent RC model and under certain re-
gularity conditions, making use of the existing results in the literature about the PLE under the independent RC 
model. In Section 4, we show that under the parametric set-up, A1 and A2 are not a necessary condition of Equ-
ation (4). Section 5 is a concluding remark. Some detailed proofs are relegated to Appendix.  

2. The Relation between Equation (4), Equation (5) and A1 
We shall first show that A1 and A2 are a sufficient condition of Equation (4), extending a result in [11] under 
the non-parametric set-up. Then we shall show that if ( ),T R  is continuous, the constant sum model is the same 
as A1; otherwise, these two models are different. 

Theorem 2.1. Equation (4) holds if A1 and A2 hold. 
Proof. Since ( ) ( ) ( ) ( )| | |d 1 d 1 dR T R T R T Tr t r t r t

Q t F r t F r t F r τ
≥ < <

= = − = −∫ ∫ ∫ , it is non-informative about FT by 

A2. Moreover, by A1 ( )
( )

( )
( ) ( )
( )

( ) ( )
( ) ( ), | |: 

|

d , d dT R R T T R T T Tt t r t r t r
R T T

T T T

F t r f r t F t f r F t
G r f r

S r S r S r

τ
τ> > >= = = =∫ ∫ ∫∫ . Thus  

( )G ⋅  is non-informative about FT by A1 and A2, as |R Tf  and |R TF  are equivalent. Then Equation (4) holds.  
The next example and lemma help us to understand the constant-sum model (5). 
Example 2.1. Suppose ( )~ ,T bin n p , ( )0 1P R = =  and T R⊥ . Then A1 holds, but not the constant-sum 

model assumption (5), as Equation (6) yields ( ) ( )0 0 0 1a P T R T= = ≤ = = , and  
( ) ( ) ( )

0
0 d 0

u
B B u P R T p

≤
= = = < =∫ . Thus ( ) ( )0 0 1a B+ > , violating Equation (5). 

Lemma 2.1. ( ) ( )|R Ta u S u u= −  and ( ) ( )|R T tt u
B u F t>≤

= ∫ , if ( ),T R  is continuous, where  

( ) ( ]( )|d d ,R T tF t P R t t t T t> = ∈ − > .  
Theorem 2.2. If ( ),T R  is continuous, then A1 and Equation (5) are equivalent.  
The proofs of Lemma 2.1 and Theorem 2.2 are very technical but not difficult. For a better presentation, we 

relegate them to Appendix (see Section A.1 and Section A.2).  
Remark 2.1. Example 2.1 shows that A1 is not a special case of Equation (5) (or the constant-sum model). 

However, if ( ),T R  is continuous, A1 and the constant-sum model are equivalent. Thus the continuous con-
stant-sum model is a special case of A1. Since Yu et al. [11] show that under the non-parametric set-up, A1 and 
A2 are the N&S condition that Equation (4) holds, it is desirable to extend W&L Theorem to the model that as-
sumes A1 rather than the constant-sum model by eliminating the continuity assumption.  

3. Extension of the W&L Theorem 
In the next theorem, we extend the W&L Theorem from the continuous constant-sum model to A1. 

Theorem 3.1. A1 holds iff there exist extended random variables Z and Y such that 1) Z Y⊥  and  

( ) ( )YF B⋅ = ⋅ , where ( ) ( )|

1
R T TF r if rB r

if r
τ < ∞

= 
= ∞

, 2) T Z Y= ≤  if T R≤ , and 3) T Y R> =  if T R> . 
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In our theorem, there are two modifications to the W&L Theorem.  
1) Equation (5) with continuous ( ),T R  is replaced by A1 without continuity assumptions.  
2) The random vector is replaced by the extended random vector. 
In fact, W&L Theorem is not accurate as stated, unless a random variable is allowed to take “values” ±∞  

(see Examples 3.1 and 3.2 below). However, by the common definition of a random variable, it does not take 
values ±∞ . Thus the random variables in their theorem should be referred to the extended random variables. 

Example 3.1. Suppose that ( )
2 1

|
1 e 0 1 2,
2 0 1 2

r t

R T
t t if t t r

f r t
r if r t

− − < ≤ ≤
= 

< < ≤
 and T has a uniform distribution  

( )( )~ 0,1 2T U , then A1 holds and ( ),T R  is a continuous random vector, but T R⊥/ . By Theorem 2.2, it sa-
tisfies the constant-sum model. Consequently, the assumptions in the W&L Theorem are satisfied. In particular, 
R does not take the value ∞ . If the W&L Theorem were correct, according to their definition, there would be a 
random variable Y with a cdf ( )B ⋅  defined in Equation (6). However, ( ) 1 4 1B u = <  for 1 2u >  (the proof 
is given in Appendix (see Section A.3)). 

Thus ( )B ⋅  is not a proper cdf as claimed in the W&L Theorem. Y should be modified to be an extended  

random variable such that ( ) ( ) ( )0,
1 .
B r if r

P Y r
if r

∈ ∞
≤ = 

= ∞
 

Example 3.2. A random sample of complete data 1, , nT T  from T which has the exponential distribution 
( )~T Exp µ  can be viewed as a special case of the RC data. But |R Tf  is not even defined for a random varia-

ble R. However, if we consider extended random variables in A1, that is, R may take values ±∞ , then we can 
define R = ∞ . Since ( ) 1P R = ∞ = , R T⊥ . Thus Theorem 3.1 is trivially true in such case.  

Proof of Theorem 3.1. It suffice to show (⇒) part. Since ( )| |R T TF τ⋅  is a conditional distribution, ( )B r  
defines a “cdf” on ( ],−∞ ∞ . Denote ( ]2,Ω = −∞ ∞  and let   be the Borel σ-field on Ω. Without loss of ge-
nerality (WLOG), one can assume that ( ), , PΩ   is the probability space such that ( ) ( ),d ,T RA

P A F t r= ∫  
A∀ ∈ . Let W be the joint cdf defined by ( ) ( ) ( ), TW t y F t B y=  ( ),t y∀ ∈Ω . By the Kolmogorov consisten-

cy theorem, ( ),W ⋅ ⋅  induces a random vector ( ),Z Y  on Ω by ( )( ),Z Y ω ω=  ( ),t yω∀ = ∈Ω . Note that 
( )( ) ( )( ), ,P T R A P Z Y A∈ = ∈  ( ){ }, :A t r t r∀ ⊂ >  and A∈ . Verify that ( ) ( ) ( )Z T Yω ω ω= ≤  if 
( ) ( )T Rω ω≤ ; ( ) ( ) ( ) ( )T Z Y Rω ω ω ω= > =  if ( ) ( )T Rω ω> . Verify that Z Y⊥  as ( )YF B= ⋅ . Thus con- 

ditions (1), (2) and (3) hold.  
Remark 3.1. In the previous proof, let   be the support of ,T RF  and \A = Ω  . Then ( ),T R  may not be 

defined on A, but ( ),Z Y  may be defined on A. Thus it is necessary to create a new random variable Z.  
Corollary 3.1. If A1 holds then V T R Y Z= ∧ = ∧  and ( ) ( )T R Z Yδ ≤ ≤= =1 1 .  
The asymptotic properties of the PLE under the continuous constant-sum model are obtained by making use 

of the W&L Theorem and the existing results in the literature on the PLE under the continuous independent RC  

model. Denote { } ( )
{ }

* : if 0
: otherwise.V

t t P T R
D

t t
τ τ
τ

< = ≤ ==  ≤
 The consistency of the PLE under assumption A1 is es-  

tablished in the literature as follows. 
Theorem 3.2 (Yu et al. [11]). Under A1, ( ) ( )

*

. .ˆsup 0
V

a s
t D TF t F t∈ − → .  

Now by Theorem 3.1 and Corollary 3.1, we can construct another proof of the consistency of the PLE as fol-
lows. 

Corollary 3.2. Under A1, ( ) ( )
**

. .ˆsup 0
V

a s
t D TF t F t∈ − →  where  

{ } ( ) ( ) ( )
{ }**

: 1
: .

T T Y
V

t t if F F and F
D

t t otherwise
τ τ τ τ
τ

< > − − ==  ≤
 

Proof. Yu and Li [10] show that if T R⊥ , then ( ) ( ) . .ˆsup 0
V

a s
t D TF t F t∈ − → , where  

{ } ( ) ( ) ( )
{ }

: if and 1
: otherwise.

T T R
V

t t F F F
D

t t
τ τ τ τ
τ

< > − − ==  ≤
 Under A1, T R⊥  may not be true, but by Theorem 3.1,  

Z Y⊥ , V T R Z Y= ∧ = ∧ , ( ) ( )T R Z Yδ = ≤ = ≤1 1 . Thus the observation ( ),i iV δ ’s are i.i.d. from ( ),V δ , 
which can be viewed as being generated from ( ),T R , as well as ( ),Z Y . Thus replacing VD  and ( ),T RF F   
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by **V
D  and ( ),Z YF F , respectively, in the previous equation yields ( ) ( )

**

. .ˆsup 0
V

a s
t D ZF t F t∈ − → . Now  

since Z TF F= , the proof is done.  
Remark 3.2. Notice that the statements in Theorem 3.2 is slightly different from the statements in Corollary 

3.2. One is based on ( )* ,
V

D R , and the other is based on ( )** ,
V

D Y .  
The asymptotic normality of the PLE under A1 without continuity assumption has not been established in the 

literature. It can be done now by making use of Theorem 3.1 and the existing results in the literature on the PLE 
under the independent RC model. In particular, assuming T is continuous, Breslow and Crowley [3] and Gill [6] 
show that  

( ) ( )( ) ( )2ˆ 0, for ,D
Tn F t F t N tσ τ− → <                            (8) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0

1ˆ ˆlim , d , , .
t s

T T Tn
V T

nCov F t F s S t S s F x t s
S x S x

τ
∧

→∞
= <

−∫               (9) 

Without continuity assumptions, Gu and Zhang [16] and Yu and Li [17] among others established asymptotic 
normality of the GMLE under the double censorship (DC) model. Since the independent RC model is a special  

case of the DC model, their results imply that (8) and (9) also hold if 
( ) ( ) ( )
0,

1 d Rt
R

S t
S tτ∈ −

−
< ∞∫ 

 0∀ > , and if  

either ( ) 0P T τ> =  or ( ) 0P V τ= > . The next result follows from Theorem 3.1 and Corollary 3.1, which 
partially solves the open problem in [11] about the asymptotic normality of the PLE under the dependent RC 
model. 

Theorem 3.3. Equations (8) and (9) are valid if A1 holds and if either T is continuous or (1)  

( ) ( ) ( )
0,

1 d Yt b
Y

S t
S t∈

−
< ∞∫  ( )0,b τ∀ ∈  and (2) either ( ) 0P T τ> =  or ( ) 0P V τ= > , where the random varia-

ble Y is defined in Theorem 3.1.  

4. Are A1 and A2 the N&S Condition of Equation (4) under the Parametric Set-Up?  
The answer to the question is “No” in general. We shall explain through several examples. 

Example 4.1. Suppose that { }( )2,3, 4 1P T ∈ = , ( )T if i p= , ( )2 3 4, ,p p p= ∈Θp , and  

( )
( )
( )

|

|

|

2 3 4
1| 3 6 2 6 1 6
2 | 2 6 3 6 3 6
3 | 1 6 1 6 2 6

R T

R T

R T

t t t
f t
f t
f t

= = =

 
 
 
 
 

 

where { }0 2 3 4: 0, 1ip p p pΘ = ≥ + + =p  and { }0 2 4: p pΘ = ∈Θ =p . This defines a parametric family of dis- 
crete distribution functions FT. One can verify that possible observations Ii’s are ( )1,∞ , { }2 , ( )2,∞ , { }3 , 
( )3,∞ . Write ( ) ( ) ( )I i F i if I I W Iµ= , then ( )iW I  is either Q or G in Equation (3). In particular,  
( ) ( ) ( ) ( )1 1 1 | 1 | 1 2 6I F RT iiW I f I I f i pµ= = =∑ ,  , which lead to  

( ) ( ) ( ) ( ) ( )
( )

1 2 3 4 5

| | | |: 2 6 2 2 2 3 3 3

: 2 6 3 6 3 6 1 6 2 6
i R T R T T R T R T T

i

I I I I I
W I S f S f

W I

τ τ− −  

Thus the parametric model satisfies the N&S condition Equation (4). But in view of |R Tf , A1 fails. Note that 
the PLE maximizes ( ) ( ) ( ) ( )4 532

2 2 3 2 31 1n nnnp p p p p= − − −p  over 0∈Θp . It is important to notice that 
( )p  with 0∈Θp  is not a likelihood. However, ( )p  with ∈Θp  is a likelihood by Proposition 1.1. Ve-  

rify that the PLE of ( ) ( )
( ) ( ). .2 2 2

1

2 3 6 3ˆ 2 2
1 1 1 2 6 4

a s
T

P T Rn p pF F
n n P R

= ≤
= → = = ≠

− − = −
, thus the PLE is not consistent,  

but the MLE which maximizes ( )p  over ∈Θp  is consistent, as expected. In fact,  
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( ) ( ) ( ) ( ) ( )3 4 5 3 42 52
2 2 2 2 2 2 21 1 2 1 1 2 .n n n n nn nnp p p p p p p+= − − = − −  

2

log 0L
p

∂
=

∂
 yields 2 5 3 4

2 2 2

2 0
1 1 2

n n n n
p p p
+

− − =
− −

. 

( )( ) ( ) ( )2 2 2
2 5 2 2 3 2 2 4 2 21 3 2 2 2 0n n p p n p p n p p⇒ + − + − − − − = . 

( ) ( )2
2 5 2 2 5 3 4 2 2 5 3 43 3 2 2 2 2 2 0n n p n n n n p n n n n⇒ + − + + + + + + + = . 

( ) ( )( )2
2 5 2 2 5 3 4 2 13 3 2 2 0n n p n n n n p n n⇒ + − + + + + − =  which is of the form 2

2 2 0ap bp c+ + = .  

( ) ( ) ( )
( )

2
2 5 3 4 2 5 3 4 2 5 1

2
1

3 3 2 3 3 2 4 2 2
.

4
n n n n n n n n n n n n

p
n n

+ + + ± + + + − + −
=

−
  

Then the MLE is the one that [ ]2 0,1 2p ∈ . Verify that 

( ) ( ) ( )( ) 2
2 2 2 2

8 53 2 3 13 1 2 1 2 6 15 3 4 5
6 6 6 6 6

pb n p p p p + → + + − + − = − − + = 
 

 a.s.; 

( ) 22 4 1 2 6 4 6a n → − =  a.s.; 

2 210164
6 6

pac n →  a.s.  

( ) ( )2 2
2 2 2 2 2

2 22 2

8 5 8 5 160 8 5 8 5
or 5 8 . .

4 4
p p p p p

p p a s
+ ± + − + ± −

→ = =  

Since [ ]5 8 0,1 2∉ , the MLE 2 2p p→  a.s. as expected. That is, the MLE of p based on ( )p  ( )∈Θp  is 
consistent.  

Example 4.2. Suppose that ( )T if i p=  and 2 3 4 1p p p+ + = . This specifies a parametric family of discrete 
distributions with parameter ( )2 3 4, ,p p p  subject to the constraint 0ip ≥  and 4

2 1ii p
=

=∑ . Then A1 and A2 
are the N&S condition of Equation (4) (see Section A.4 in Appendix). 

Remark 4.1. In Example 4.1, since A1 fails, the W&L Theorem does not hold.  
Both Examples 4.1 and 4.2 are parametric cases, but A1 and A2 are the N&S condition of Equation (4) only 

in one case. In both cases the MLE’s based on the simplified likelihood   as in Equation (1) are consistent. 
They indicate that in general under the parametric set-up, A1 is not the necessary condition of Equation (4). 
Since the two examples are discrete case, we also discuss two continuous examples. 

Example 4.3. Suppose that T is continuous, 

( ) ( )
( )
0,1

1 1,2T

p if t
f t

p if t
∈=  − ∈

, and 
( ) ( ) ( ) ( )

( )
( )

|

|

0, 0.5 1,1.5 0.5,1 1.5, 2

1| 1 6 3 6
2 | 5 6 3 6

RT

RT

t t

f t
f t

∈ ∈

 
 
 

 

. 

This defines a parametric family of a continuous random variable with parameter p. The possible observations 
Ii’s are { }t  and ( )1,∞ . A1 is violated due to the table for |R Tf . The ( )G ⋅  and ( )Q ⋅  in Equation (3). satisfy  

( )( ) ( )
( )

( )
( )

( )

( )

1 32 1 21 1 6 61, 1 2,3 31 1 1
6 6 6 6

T

p pP R T P R T
G p pS p p

+ −= < = <
∞ = = = =

+ − + −
 

{ }( ) ( ) ( )
( )

|

1 1
5 6 1,1.5
3 6 1.5,2 .

R T

if t
Q t S t t if t

if t

<
= − = ∈
 ∈

 

Thus both Q and G in Equation (4) are not functions of p or FT and Equation (4) holds. Hence in this example, 
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A1 is not a necessary condition of Equation (4).  
Example 4.4. Suppose that ( )* ~T Exp µ  and ( )( ) ( )*2 1 exp ~ 0,2T T Uµ= − − . Define |R Tf  as in Exam-  

ple 4.3, then A1 fails and Equation (4) holds for the random vector ( ),T R . Now define  

( ) ( ) ( )( )| 2 1 e 2 1 er y
R TR T

f r y f µ µ
∗ ∗

− −= − − , , 0y r > . Then ( )* *,T R  does not satisfy A1 but Equation (4) holds.  

It shows that if ( )~T Exp µ , A1 is not a necessary condition of Equation (4) though Equation (4) can hold un-
der proper assumptions on 

R T
f ∗ ∗ . The idea can be extended to the other continuous parametric families e.g., 

( )2,N µ σ , Weibull, Gamma etc.  

5. Concluding Remark 
We have established the equivalence between the standard RC model and the dependent RC model. The result 
simplifies the study on the properties of the estimators under the dependent RC model. The results in this paper 
may have applications in linear regression with right-censored data. For instance, the model assumption consi-
dered in [18] can be weekend. It is also of interest to study whether the result can be extended to the double 
censorship model [17] and the mixed interval censorship model [19].  
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Appendix 
We shall give the proofs of Lemma 2.1 and Theorem 2.2 and the proofs in some examples of the paper here. 

A1. Proof of Lemma 2.1 

WLOG, one can assume that u satisfies ( ) 0P T u> > . By Equation (6),  

( ) ( ) ( ) ( ) ( )|1 R Ta u P T u P R T T u P R u T u S u uδ= = = = ≥ = = ≥ = = − . 

( ) ( ]( )
( ]( )
( ]( ) ( )
( ]( )

( )
( )
( )

( ]( )
( )

( ]( ) ( )
( )

( )( )
( )

( ) ( )
( )

( )( )
|

d d , , 0 | (by Equation (6))

d , , |

d , , ,

d , , , d , , ,

d , ,
d ,

d , ,
d R T u

B u P V u u u T u

P R u u u T R T u

P R u u u T R T u P T u

P R u u u T R T u P R u u u T R T uP T u
P T u P T u P T u

P R u u u T uP T u
P R u u u T u

P T u P T u

P R u u u T uP T u
F u

P T u P T

δ

>

= ∈ − = ≥

= ∈ − > ≥

= ∈ − > ≥ ≥

∈ − > > ∈ − > =>
= +

≥ > ≥

∈ − =>
= ∈ − > +

≥ ≥

∈ − =>
= +

≥ ( )
.

u≥

 

If T is a continuous random variable, then the previous equation and Equation (6) yield  

( ) ( )
( ) ( ) ( )| |d d .RT t RT tt u t u

P T t
B u F t F t

P T t > >≤ ≤

>
= =

≥∫ ∫   

A2. Proof of Theorem 2.2 

Assume that ( ),T R  is continuous. Then by Lemma 2.1, Equation (5) holds iff ( ) ( )| |d 1R T R T rr u
S u u F r>≤

− + =∫  

a.e. in u w.r.t. 
TFµ , iff ( ) ( )| || dRT RT rr u

F u u F r>≤
− = ∫  a.e. in u w.r.t. 

TFµ . 

Since ( ),T R  is continuous, ( ) ( )| | dR T R Tr u
F u u f r u r

<
− = ∫ . By Lemma 2.1,  

( ) ( ) ( ]( ) ( )| | |d d d , dR T r R T r R T rr u r u r u r u
F r F r P R r r r T r f r r> > >≤ < < <

= = ∈ − > =∫ ∫ ∫ ∫ , 

where ( )
( ) ( )
( )

|
|

dR T Tt r
R T r

f r t f t t
f r

P T r
>

> =
>

∫ . Thus, Equation (5) holds iff  

( ) ( ) ( )
( )

|
|

d
d dR T Tt r

R Tr u r u

f r t f t t
f r u r r

P T r
>

< <
=

>
∫

∫ ∫  a.e. in u (w.r.t. 
TFµ ); 

iff ( ) ( ) ( ) ( )
( )

|
|||

d
: , 0R T Tt r

R TF uR T

f r t f t t
r r u f r u

P T r
µ >

⋅

    < ≠ =  >    

∫  a.e. in u (w.r.t. 
TFµ ); 

iff ( ) ( ) ( ) ( ) ( ){ }( )| | || : , d d 0
R T R T T R T TF u t r t r

r r u f r u f t t f r t f t tµ ⋅ > >
< ≠ =∫ ∫  a.e. in u; 

iff ( ) ( ) ( ){ }( ), | |, : , , 0
T RF R T R Tt r r u r t f r t f r uµ < < ≠ =  a.e. in u (w.r.t. 

TFµ ); 

iff for almost all r (w.r.t. 
RFµ ), ( )|R Tf r t  is constant in t a.e. w.r.t. 

TFµ  on { }: t t r> ; 
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iff r∀ , ( )| |RTF r t  is constant in t a.e. w.r.t. 
TFµ  on { }: t t r>  (which is A1).  

A3. Proof of the Equation ( ) = <B u 1 4 1  for >u 1 2 in Example 3.1 

( ) ( ) ( )
( ) ( )( )

( ) ( )

( )

|

|1 2

|1 2

1 2
|0

d by Lemma 2.1

d as ~ 0,1 2

| d by Theorem 2.2, where 1 2

2 d by the given expression of

1 4 1. 

R T rr u

R T rr

R T T Tr

R T

B u F r

F r T U

f r r

r r f

τ τ

><

><

<

=

=

= =

=

= <

∫
∫
∫

∫


 

A4. Proof of Example 4.2 
If ( )|R Tf r t  is not constant a.e. (w.r.t. 

TFµ ) in { }: t t r> , ,i j r∃ >  such that 
1) ( ) ( )| |R T R Tf r i a b f r j= < = , 
2) 0ip >  and 0jp > . 
3) ( )i j Tp p S r+ =  is fixed.  

( ) ( ) ( ) ( )

( )( ) ( )

( )( )

|

|

d

d if 0 and
4

(by (3)).

T R T Tt r

R T T it j

T

S r G r f r t F r

b af r j c F t p c

S r b c

>

=

=

− ≥ − ≈ = 
 

≈ −

∫

∫  

( ) ( ) ( ) ( )

( )( ) ( ) ( )
( )( )

|

|

d

d if 0

(by (3))

T R T Tt r

R T T jt i

T

S r G r f r t F t

f r i c F t p

S r a c

>

=

=

≤ + ≈

≈ +

∫
∫  

Thus ( )( ) ( )( )T TS r a c S r b c+ ≥ − , contradicting a c b c+ < −  by assumption (2).  
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