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Abstract 
The effects of centering response and explanatory variables as a way of simplifying fitted linear 
models in the presence of correlation are reviewed and extended to include nonlinear models, 
common in many biological and economic applications. In a nonlinear model, the use of a local 
approximation can modify the effect of centering. Even in the presence of uncorrelated explana-
tory variables, centering may affect linear approximations and related test statistics. An approach 
to assessing this effect in relation to intrinsic curvature is developed and applied. Mis-specifica- 
tion bias of linear versus nonlinear models also reflects this centering effect. 
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1. Introduction 
Applied probability models are mathematical constructs that have roots in both theory and observed data. They 
often reflect specific theoretical properties, but may simply be the application of an all-purpose linear model. 
The fitting of a probability model to the observed data requires careful consideration of potential difficulties and 
model sensitivities. These may include aspects of the model itself or anomalies in the structure of the database. 
As large scale observational databases have become more common, the possibility of unplanned and non- 
standard data patterns have become more common. 

The stability of linear models can be affected by various properties of the model-data combination. Model 
sensitivity to rescaling and transformations of the response [1], the presence and effect of heterogeneity [2], the 
need to employ ridge regression when collinearity is present [3], all have the goal of improving the application 
and stability of the model-data combination and resulting fitted model. In the application of linear models, these 
issues extend to consideration of residual error behavior and diagnostic measures to detect the effects of outliers, 
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collinearities and serial correlation. Discussion of these can be found in [4]. 
The simple centering of data in linear models is often applied as a component of standardizing the variables in 

a regression, re-centering the means of the variables at zero. It can also be seen as a way to lower correlation 
among explanatory variables in some cases, but will have limited if any effect on ANOVA related test statistics 
and measures of goodness of fit in models when interaction terms are present in the model. This is due to the 
geometry of the test statistics involved which typically reflect standardized lengths of orthogonal projections 
which are invariant to centering. See for example [5]. In high dimensional linear models, centering allows for 
easier geometric interpretation of correlations among a set of centered vectors and is often an initial step in the 
analysis. Note that in data with nonlinear patterns, correlation based adjustments often does not make sense as 
they implicitly assume an underlying linear framework. A serious concern in this regard is model mis-specifica- 
tion, here the assumption of a linear model when underlying nonlinearity is present. Centering the data may 
induce bias and inaccurate estimation and testing. 

Nonlinear regression models are also available to model data based patterns. The use of centering in such 
models can be challenging to interpret. Such models are common in many biological, ecological and economic 
applications and there is often less flexibility in the set of potential modifications available as theory often 
informs and restricts model choice. Examples can be found in [6]. In terms of inference, the Wald statistic tends 
to be more interpretable, even though the log-likelihood ratio and score function are more theoretically justified. 
The local curvature of the regression surface may require consideration if approximations based on local linear 
models are used to develop pivotal quantities for inference, especially in small samples with normal error. 

In this paper, centering effects are examined in relation to the use of linear approximation in nonlinear 
regression models. To begin, the effects of centering in linear models with interaction effects are reviewed. 
Centering effects in nonlinear models where linear approximation is employed to obtain tests of significance are 
then discussed. Even in the presence of uncorrelated explanatory variables and simple main effects, centering 
may significantly affect locally defined linear approximations and related test statistics. Local measures of 
nonlinearity are defined and used to assess these effects. We then investigate the mis-specification of linear 
versus nonlinear models and show that centering effects arise as a measure of bias. This is particulary relevant in 
high dimensional data modeling where centeriing is common as a first step in data analysis. 

2. Centering in Linear Models 
We can write a standard linear model in the form 

0 1 1i i p pi iy x xβ β β ε= + + + +  

typically assuming the iε  random errors are i.i.d. ( )20,N σ . The iy  are the responses of interest, the jβ  
unknown parameters and the ijx  are explanatory variables taken here as known. The iy  and ijx  can be 
collected into vectors and matrices and re-expressed as .y X β ε= +  The model is quite flexible and can be 
transformed in many ways. 

The use of centering in linear regression settings is typically suggested to lower correlation among the 
explanatory variables. For example, if 2

ix  is entered in the model already containing ix , centering will often 
lower the correlation between them. This will provide more stability in the interpretation of the fitted model. 
Centering is often thought to be useful when interaction terms are entered into the model, giving more stability 
in least squares based estimation. The cross-product term in regression models with interaction may be collinear 
with the main effects, making it difficult to detect identify both main and interaction effects. However in such 
models, as shown in [5], mean-centering does not change the computational precision of parameters, the 
sampling accuracy of main effects, interaction effects, nor the 2R . The pivotal quantities and related test statis- 
tics for the main effects may require adjustment for this to be clear as the respective parameters may alter mean- 
ing. 

To see this, consider the simple linear regression model 

0 1 .i i iy xβ β ε= + +  

Centering by definition will not affect the shape of the initial ( ),x y  data cloud, it simply re-centers it to 
( )0,0 . The best fitting line will therefore not alter in terms of its slope and neither will the residuals of the fitted 
line. As the SSE is the squared length of the residuals, the MSE the average squared length and the goodness of 
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fit measure R2 2 1 ,R SSE SST= −  where ( )2 ,iSST y y= −  these also do not alter with centering. The OLS 
estimate for the slope, 1̂β , is based on sums of differences from the x and y means and is invariant to centering, 
as is the correlation between x and y. The error distribution assumed does not affect these results. It is based on 
the initial assumption of normally distributed (theoretical) erros and the geometric properties of the least squares 
estimators. Note that the estimate for the intercept 0β  will alter upon centering the data. 

For the multivariate linear model 

0 1 1i i p pi iy x xβ β β ε= + + + +  

the same basic argument related to residuals holds and the results are similar. The centering of all variables has 
no effect on the measures of association between the x and y variables, including the least squares estimators 
ˆ , 1, ,j j pβ =  . Note again that if terms of the form 2

j jxβ  are added to the model, then centering may lower 
the correlation between the jx  and 2

jx  terms. 
The addition of interaction terms i jx x  to the linear model are a way of examining whether the relationship 

between y and ix  can be interpreted directly without accounting for the levels of another variable jx . If the 
coefficient for the respective interaction term is found to be significant, the main effect relating y and ix  
cannot be directly assessed and stratification of the model may be necessary. Typically the multiple i jx x⋅  is 
taken to represent interaction effects as the partial derivative of the response with regard to either of the x will 
have the form 

i j j
i

y x
x

β β∂
= +

∂
 

This implies that the main effect of ix  is dependent on the level of jx . Note that the transformation 
( )logy y→  may remove a significant interaction. 

The centering of the data to limit potentially high levels of correlation between the interaction term i jx x , and 
both ix  and jx  is sometimes suggested. As noted above this will not alter most measures of fit in the linear 
model (even a linear model where one of the variables is the interaction term). In particular, as shown in [5], if 
we have as our model 

0 1 1 2 2 1 2ij i i i i ijy x x x xβ β β β ε= + + + +  

then the least squares estimate of the interaction term will not alter if 1x  and 2x  are centered, neither will the 
2R  value for the model. Note that the significance for the main effects in this model will appear to alter, but 

only due to the parameters having a different meaning in the centered model and thus related t-tests are testing 
slightly different hypotheses. 

3. Example 1 
Consider the Penrose bodyfat ([7]) dataset of physiologic measurements where some measures are highly 
correlated. We look to predict bodyfat density as a function of several body measurements; Abdomen, Wrist, 
Weight, Hip, Knee, Ankle, Forearm, Biceps, Thigh, Chest. Three principal components account for 84% of the 
total variation in the data. Stepwise regression gives three variables (Abdomen, Weight, Wrist) accounting for 
an 2R  value of 73%. These variables have high correlations (0.88, 0.73, 0.62) which do not alter if we center 
the data. If we proceed to include interactions, dropping the Abdomen-Weight interaction due to extreme 
collinearity, we obtain a similar 2R  value (73.1%). The correlations among the interactions themselves can be 
examined pre-centering (0.95, 0.96, 0.94) and post-centering (0.38, 0.90, 0.30) showing the effect of centering. 
We also obtain an overall F-test value of 133.95 (significant at 0.0001) which does not alter and 0.02SSE = , 
also invariant to centering. Further results are given in Table 1. Note that the OLS estimates for the interactions 
terms and their standard errors do not alter. 

4. Nonlinear Regression Models: Local Curvature Assessment 
Nonlinear regression models typically are developed and applied in areas such as toxicology, economics and 
ecology. See [8]. Consider the nonlinear regression model 

( ),i i iy η ε= +x β                                        (1) 
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Table 1. Centering in linear models. (a) Original Data (S = 0.0099, R-sq = 73.1); (b) Centered Data (S = 0.0099 R-sq = 73.1).                                                                                                      

(a) 

Variables Wt Ab Wrist Ab * Wt Ab * Wrist 

Coeff (Std Error) −0.0005 (0.00041) −0.0026 (0.00041) −0.0017 (0.0056) 0.000002 (0.000002) 0.00003 (0.00003) 

p-value 0 0.001 0.77 0.29 0.35 

(b) 

Variables Wt Ab Wrist Ab * Wt Ab * Wrist 

Coeff (Std Error) 0.0002 (0.00005) −0.0022 (0.00013) 0.0037 (0.001) 0.000002 (0.000002) 0.00003 (0.00003) 

p-value 0 0.001 0.001 0.29 0.35 

 
 1, ,i n=   where ix  are fixed values of the explanatory variable x , the model function η  is known and 

depends on the parameter vector p∈Rβ  and ix . The iε  are independent error terms, each normally dis- 
tributed with mean zero and variance element 2σ . The set of possible mean values defines a surface, 
( ) : p∈Ω ⊆ Rη β β , where Ω  is the parameter space and ( )η β  is the 1n×  column vector with thi  com- 

ponent given by ( ),iη x β . Some standard examples of nonlinear models include the Michaelis-Menten model 
( )1 2i i i iy x xβ β ε= + +  and the Logistic model; ( )3

1 2= 1 e .ix
i iy ββ β ε+ +  

Nonlinear regression models are subject to the effects of centering when using local linear approximation. 
The relative position of the response y vis-a-vis the solution locus ( ),iη x β  and the point on the surface at 
which the linear or tangent plane approximation is developed will affect the degree to which centering affects 
least squares based analysis of the model. In relation to the residual vector, an important aspect of the linear 
argument above, when there is intrinsic curvature present, the usual geometric properties of the residual vector 
are affected as they are the projection of an idempotent matrix only locally. Below we show that simply cen- 
tering the data affects the observed residuals, affects the level of a locally defined measure of intrinsic curvature 
and thus the linear approximation based analysis, and in the setting of misclassification, imputes bias into the 
analysis even to the first order. 

Local Geometry 
Some geometry is briefly reviewed. Let 0  be the pn×  matrix with column elements given by  

( )
o

i iβ =
= ∂ ∂f

β β
η β  for 1, ,i p=  . If ( )0L  is the tangent plane to the surface N defined at ( )0η β , then  

( ) 1
0 0 0 0 0P −′ ′=    is the orthogonal projection matrix for ( )0L  evaluated at 0=β β . Further  

( )( )0 0P −y η β  is the projection of ( )( )0−y η β  onto the tangent plane at 0=β β . Let  

( )( ) ( )( )0 0 0 0P P= − −u y yη β η β , where ⋅  denotes length, be a unit vector centered at ( )0η β  on the 
tangent plane. The quadratic approximation to ( )η β  at 0=β β  is given by  

( ) ( )0 0 0
1  
2

Hθ θ θ  ′− = +  
 

η β η β  where 0H  is the Hessian p p×  matrix with vector elements  

( )2
ij

i j

η
β β

∂
=
∂ ∂

h
β

 evaluated at 0=β β  and ( )0= −θ β β . The intrinsic acceleration vector in the direction u can  

be expressed as ( ) ( )I ′ ′′− uu η β  or ρ−v , where v  is the unit vector perpendicular to the acceleration 
vector in the direction u  and ( )0ρ ρ= β  is the corresponding radius of curvature at ( )0η β . We then have 

0
2

0

G
F

θ
ρ

θ

′
− =v

θ
 

where ( )0 0 ijG I P h = −  . Taking the norm gives the intrinsic local curvature 

0
2

0

1
G

F

θ θ
κ ρ

θ

′
= =                                    (2) 
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where again ( )0= −θ β β , all matrices are evaluated at 0=β β . 
An intrinsic curvature based adjustment to standard ANOVA can be developed. See [9]. The usual orthogonal 

decomposition of regression and error can be replaced with the orthogonal decomposition 1 2 3z z= + +y u v Vz  
with the residual space spanned by the intrinsic curvature vector v  and the column vectors of V , which are 
orthonormal vectors spanning the remaining residual space dimensions, orthogonal to both tangent plane and v , 
evaluated at 0=β β . The relevance of the curvature in the direction u  at 0=β β  can be assessed by 
comparing the orthogonal projection(s) of ( )( )0−y η β  onto u  and v  respectively. 

To investigate this curvature effect in relation to the hypothesis 0 0:H =β β  an approximate linear model 
based approach can be used. A sum of squares regression component can generate a global F-test with p and 
( )n p−  degrees of freedom. Assuming ( )( )( )2

0 ,N Iσy η β  where 2σ  is unknown, we have under the 
null; 

( )( )
( ) ( )( ) ( )

2

0 0
,2

0 0

  
  .

  p n p

P p
F

I P n p −

−

− − −


y

y

η β

η β
                         (3) 

with large values of the test statistic leading to rejection of 0 0: .H =β β  
A further orthogonal decomposition gives a test of significance for curvature in the direction u  using 

orthogonal projection onto the vector v ; 

( )( )
( ) ( )( ) ( )( )( ) ( )( )

2

0 0
1, ( 1)22

0 0 0

  

 1
n p

v

P p
F

I P P n p
− +

−

− − − − − +


y

y y

η β

η β η β
             (4) 

where ( )( )0 .vP vv′− =y η β  A large value here reflects a significant projection length onto the curvature vector 
v  in the direction u . The orthogonal projection onto the vector v  also provides a correction factor for the 
global test 

( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( )( ) ( )( )

2 2

0 0 0

1, ( 1)2 2

0 0 0

1
.

1

v

p n p

v

P P p
F

I P P n p
+ − +

− + − +

− − − − − +


y y

y y

η β η β

η β η β
 

See [10] for further details and application in regard to the testing of global null hypotheses. As the effect of 
intrinsic curvature depends where on the actual regression surface the linear approximation is developed in 
relation to the position of the response vector y, all of these test statistics may reflect centering effects. 

5. Centering in Nonlinear Models 
As in linear models, the use of centering on both response and some if not all of the explanatory variables 
initially would seem to have little or no effect on the underlying geometry of the model-data combination. A 
graph of the ( ),x y  point cloud initially centered at ( ),x y  will simply re-center at ( )0,0  even if the overall 
pattern is nonlinear. However there may be effects on the subsequent analysis due to the nature of the nonlinear 
model and the locally linear frame of reference used for inference. The relative centering based shift in the 
( )η β  surface versus the shift in the response y may alter the geometric relationship between y and ( )η β  and 

the tangent plane relevant to the local approximation, related test statistics and orthogonal projections. These 
effects do not exist in the standard linear model setting as projections are taken onto the same flat surface with 
zero curvature at all points. Here the more curved the regression surface, the more the local frame of reference 
can be affected by small changes in the relative positioning of the response vector. 

In regard to standard m.l.e. based analysis, the effects of centering will depend on the actual model itself. For 
example consider the asymptotic growth model 

( )( )1 21 exp .i i iy xβ β ε= − − +  

where centering the data yields 

( ) ( )( )( )1 21 expi i iy y x xβ β ε− = − − − +  
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If the differences ( )iy y−  are relatively greater than ( )ix x−  then in terms of the response vector and 
regression surface the portion of the regression surface relevant to supporting the local linear approximation and 
analysis will alter. Note also that the parameters and their estimators in a nonlinear model are not easily 
interpreted as simple intercept and slope. They are often defined and justified in terms of underlying differential 
equations or asymptotic properties. 

The fundamental nature of a nonlinear regression model may be reflected in its possible forms under 
reparameterisation, especially in regard to re-expression as a linear model. If this is possible, then intrinsic cur- 
vature corrections tend to be of little value and centering can be seen to have the same non-effect as in standard 
linear models with regard to the rescaled parameters. For example, the Michaelis-Menten model is given by; 

( )
1

2

i
i i

i

x
y

x
θ

ε
θ

= +
+

 

where iε  are i.i.d. ( )20,N σ . This can be re-expressed and re-parameterized as 

( ) ( ) ( )( )
1

2 2 1 1

i i
i

i i

x x
y

x x
θ
θ θ θ θ

= =
+ +

 

( )( )1 2 11 1i iy xθ θ θ= +  

Letting 1i iy y∗ =  and 1i ix x∗ =  the model has a linear form if this reformatting of the variables is 
acceptable. In some settings however this re-writing of the model may not be possible. 

For models which may not be re-expressed as linear models, we can assess the change in curvature effect at a 
given ( )0 ; xη β  when centering the data ( ) ( ), ,y x y x∗ ∗→  using 

( )( ) ( )( )
2 2

0 0, , .v i v iP P∗ ∗− −y x y xη β η β  

The SSE values may also differ and together these alter the relevant F-statistics for the local ANOVA analysis 
discussed above. Note that while the raw data plot is simply re-centered, the local approximation and analysis 
reflecting the model-data combination is more strongly affected by centering. 

6. Example 2 
We examine these concepts further in the context of the asymptotic growth model applied to the BOD dataset 
found in Bates and Watts (1988). This is given by 

( )( )1 21 exp .i i iy xβ β ε= − − +  

The original and centered dataset is given in Table 2 and results from fitting the model based on the m.l.e. are 
given in Table 3. 

The non-standard behavior of this model yields log-likelihood based confidence regions that are open at 
confidence levels above 95% in the 2β  direction and a linear approximation based analysis can be applied. The 
first order derivative matrix is n by 2 and can be written, for 1, ,i n=   

( )2 2
11 e , ei ix x

ixβ ββ− − = −   

with related 2 by 2 by n second order Hessian matrix 
2

2 22
1

0 e
e e

i

i i

x
i

x x
i i

x
H

x x

β

β ββ

−

− −

 
=  

− 
 

where each ijh  is an n-dimensional vector. The 0 value denotes a linear aspect to the model in certain direc- 
tions, sometimes called partially linear. 

Note that the m.l.e. here is not available in closed form, rather it is defined by differentiating the log- 
likelihood with regard to each parameter and setting the resulting equations equal to zero. Here the log- 
likelihood is given by 
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Table 2. BOD Data (Centered).                                                                                  

Demand 8.3 (−6.53) 10.3 (−4.53) 19 (4.17) 16 (1.17) 15.6 (0.77) 19.8 (4.97) 

Time 1 (−2.667) 2 (−1.667) 3 (−0.667) 4 (0.333) 5 (1.333) 7 (3.333) 

 
Table 3. BOD Model Standard Output ( 0 1 2: 0, 0H β β= = ).                                                          

 MLE ( 1 2
ˆ ,β β ) Std Error ( 1 2

ˆ ˆ,β β ) t-statistic ( 1 2
ˆ ˆ,β β ) p-value ( 1 2

ˆ ˆ,β β ) SSE 

Original Data 19.14, 0.53 2.50, 0.20 7.67, 2.62 0.0015, 0.06 2.549 

Centered Data 8.10, 0.21 11.94, 0.27 0.68, 0.78 0.53, 0.48 2.878 

 

( ) ( )( )( )22
1 21 2 1 expi iy xσ β β − − − −  ∑  

Note that the effects of centering on the m.l.e. occur in this set of equations. Standard errors can be deter- 
mined from the inverse of the Fisher Information matrix. 

For the original data, the resulting maximum likelihood or least squares value for ( )1 2,β β  is given by 
( )1̂ 19.143 2.5β = ± , ( )2

ˆ 0.5311 0.2β = ±  with residual standard error 2 2.549s =  on 4 degrees of freedom. The 
residual vector is given by (0.41, −2.22, 3.75, −0.85, −2.20, 1.12). T-tests for for a difference from zero give p- 
values of 0.0015 and 0.059 respectively. For the centered data, the maximum likelihood values for ( )1 2,β β  are 

( )1̂ 8.1055 11.94β = ±  and ( )2
ˆ 0.2147 0.27β = ±  with residual standard error 2 = 2.878s  on 4 degrees of free- 

dom. The residual vector is given by (−0.29, 1.05, 5.41, 0.61, −1.24, 0.83). Comparing the maximum likelihood 
values is difficult as the meaning of the parameters alters. More importantly we can see that the residual vector 
and related SSE have altered due to centering. 

The curvature adjusted approach using ANOVA is given in Table 4 for a null value of ( )0 18.0,0.4=β . 
The measure 

( )( ) ( )( )
2 2

0 0, , .v i v iP P∗ ∗− −y x y xη β η β  

is examined here by comparing the SSCurv elements pre and post centering. This has a value pre-centering (0.40) 
that is approximately only 10% of its value post-centering (3.90). Whether this incurs statistically significant 
effects will depend on the local curvature of the surface, the manner in which the parameters enter into the 
model and the relative position of y in relation to ( );xη β  and its linear approximation before and after 
centering. The results in Table 4 show the centering of the data affecting the formal significance of the global 
test. 

7. Mis-Specification and Centering Related Bias 
The use of linear models when the underlying model-data combination is nonlinear can lead to mis-specification 
error. It is interesting to consider this in relation to centering effect which can yield bias even where second 
order intrinsic curvature is not significant. In many high dimensional data analytic techniques the centering of 
the data is a standard first step. See for example [10]. However it is rare in those settings that linearlity can be 
confidently assumed. 

To examine mis-specification generally in this setting, we begin by expressing a linear model as function of 
two sets of variables 

1 1 2 2y X X Xθ ε θ θ ε= + = + +  

Assume that the variables of interest form the 1X  ( )1n p×  matrix with 1p  variables and the 2X  ( )2n p×  
matrix has 2p  additional variables and 1 2p p p+ = . The error distribution is given by ( )20,N Iε σ . The 
goal here is to identify significant variables in the 1X  matrix. 

Assume now that a true nonlinear model underlies the set of 1X  variables. Re-expressing our initial model 
we have 

( )1 1 2 2,y W X Xθ θ ε= + +  
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Table 4. (a) ANOVA Table for BOD Model and Data ( )( )0 0: = 18.0,0.4H β ; (b) ANOVA Table for Centered BOD Model 

and Data ( )( )0 0: = 18.0,0.4H β .                                                                                

(a) 

Source df SS MS F-statistic p-value 

Regression 2 31.93 15.97 2.44 0.21 

Residual 4 26.11 6.53   
Curvature 1 0.4 0.4 0.047 0.85 

Modified Residual 3 25.71 8.57   
Regression + Curvature 3 32.33 10.78 1.26 0.43 

Total 6 58.03    

(b) 

Source df SS MS F-statistic p-value 

Regression 2 1103.5 551.53 65.66 0.001 

Residual 4 33.58 8.4   
Curvature 1 3.91 3.91 0.4 0.572 

Modified Residual 3 29.67 9.89   
Regression + Curvature 3 1106.96 368.99 37.31 0.007 

Total 6 1136.63    
 
where ( )1 1,W X θ  is a nonlinear model for the 1X  subset of variables. Replacing ( )1 1,W X θ  with its Taylor 
expansion about 10θ  gives 

( ) ( )( )1 10 1 10 1 10 2 2, ,y W X W X Xθ θ θ θ θ ε′ = + − + +                        (5) 

where ( )1 10,W X θ  is a constant function of 1X  and W ′  the relevant derivative. We can further write 

1 1 2 2y X Xθ θ ε∗ ∗= + +  

where ( )( ) ( )1 10 10 1 10, ,W X W Xε ε θ θ θ∗ ′= − +  and ( )1 1 10, .X W X θ∗ ′=  
If we fit the original linear model, mis-specification effects arise as we will use (i) 1X  instead of 1X ∗  and 

(ii) apply a biased error distribution as the more appropriate error distribution with nonlinearity present is; 
( )( ) ( )( )2

1 10 1 10 1 10, ,N W X W X Iε θ θ θ θ σ∗ ′ − + . This reflects a type of centering effect that will be incorporated 
into the approximate least squares based analysis to follow. Typically we evaluate this at 1 1̂.θ θ=  

If the actual data are also centered, it follows that a data-based centering effect will further occur. Letting 1x  
be the centering element we have as the resulting error distribution 

( )( )( )( ) ( )( )( )2
1 1 10 10 1 1 10, , , .N W X x W X x Iε θ θ θ σ∗ ′ − + −  

The effect of centering the data here may be to worsen the mis-specification related biasing effect. This will 
depend on how the linear and nonlinear elements in the W vector and W ′  matrix interact with the centered data 
( )1 1X x− . Note that if the Taylor expansion is to the second order, then intrinsic curvature also affects the 
usefulness of residuals. See [11]. Here we have shown that in a nonlinear model with the possibility of linear 
versus nonlinear mis-specification, bias results from simple first order issues and the centering of data. 

8. Discussion 
Model sensitivity and stability are essential components of applied research using probability modes. These are 
functions of the model structure, data structure and the inferential or estimation method used to fit the model. 
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This is most pronounced when nonlinear models are to be employed and linear approximation is a component of 
the inferential process. Wald statistics are the most interpretable in this setting and in the case of nonlinear 
regression with normal error; the curvature of the regression surface is a key component affecting the accuracy 
of the inferential process. The underlying nature of the model is also relevant with linearity on same scale being 
reflected in the intrinsic curvature related calculations. These issues arise often in the analysis of high dimen- 
sional datasets where centering is a standard first step. 

If we examine centering in the context of the original point cloud the effects of centering seem non-existent. 
But the information in the data is assessed in relation to the assumed linear or nonlinear model. The properties of 
the assumed model are thus relevant to the estimation and testing of parameters defined within the fitted local 
model. The positioning of the response vector y in n-space in relation to the p-dimensional nonlinear regression 
surface defines a local frame of reference for inference with the intrinsic curvature and even simple centering 
has effects in nonlinear models both generally and when linear approximation is employed. Nonlinear models 
often reflect theoretical results for carefully chosen parameter and data scaling. In conclusion, the centering of 
data in relation to nonlinear regression model should be applied and interpreted carefully. 
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