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Abstract 
The paper introduces a new simple semiparametric estimator of the conditional variance-covari- 
ance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dy-
namic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the di-
rect parameterization of the conditional covariance or correlation processes, therefore also 
avoiding any assumption on their long-run target. In the proposed framework, conditional va-
riances are estimated by univariate GARCH models, for actual and suitably transformed series, in 
the first step; the latter are then nonlinearly combined in the second step, according to basic 
properties of the covariance and correlation operator, to yield nonparametric estimates of the 
various conditional covariances and correlations. Moreover, in contrast to available DCC methods, 
SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the esti-
mation of conditional cross-covariances and correlations, displaced at any time horizon of interest. 
A simple ex-post procedure to ensure well behaved conditional variance-covariance and correla-
tion matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential imple-
mentation and scant computational burden, SP-DCC is very simple to apply and suitable for the 
modeling of vast sets of conditionally heteroskedastic time series. 
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1. Introduction 
Since the seminal contribution of [1], the literature on multivariate Generalized Autoregressive Conditional He-
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teroskedasticity (GARCH) models has rapidly developed (see [2] and [3], for surveys). To date, three genera-
tions of models can be counted. First generation models, likewise the VEC model of [1] and the BEKK model of 
[4], are straightforward extensions of the univariate GARCH model. They allow for very general conditional va-
riance covariance matrix dynamics, yet at the cost of a very profligate parameterization, which limits their use to 
small sets of time series. This drawback has been overcome by second generation models, yet at the cost of im-
posing either parameter restrictions on the BEKK model, as for the case of the scalar BEKK model and the ex-
ponentially weighted moving average model introduced by [5], or on the conditional correlation matrix, as-
sumed time-invariant in the constant conditional correlation CCC model of [6]. Alternatively, restrictions have 
been imposed through factor structures, likewise [7] and the orthogonal models of [8]-[10] and [11]. On the oth-
er hand, a different approach has been pursued by the most recent third generation of multivariate GARCH 
models, i.e. the dynamic conditional correlation models, grounded on a two-step estimation procedure, involv-
ing the estimation of univariate GARCH models for the conditional variances in the first step and then the esti-
mation of the conditional covariances in the second step. Although inefficient, the latter sequential procedure is 
consistent and asymptotically normal. Moreover, by dramatically reducing the numerical optimization burden, it 
can be implemented also in the case of vast sets of time series. In this respect, seminal is the Dynamic Condi-
tional Correlation models (DCC) of [12] and [13]. Further extensions are [14], the Dynamic Conditional Equi- 
Correlation (DECO) model of [15], [16] and [17]. 

Dynamic conditional correlation models, in order to ensure positive definiteness of the conditional va-
riance-covariance matrix, posit the correlation matrix to be a transformation of a latent matrix, which is a func-
tion of past devolatilized innovations. In particular, while the CCC model of [6] assumes time invariant, but 
pairwise specific correlations, the DECO model of [15] makes the opposite assumption, positing time varying 
correlations, but equal across series. Both CCC and DECO therefore rely on assumptions on conditional correla-
tion dynamics which are unlikely to be supported by the data. On the other hand, in the alternative formulation 
of [13], the correlation matrix is modeled directly and as a function of past correlations of devolatilized innova-
tions. As a common drawback, all of the available dynamic conditional correlation models rely on the choice, 
neither unique nor obvious, of a long run target for the conditional variance-covariance or correlation matrix. 

In the light of the above issues, the paper then contributes to the literature by introducing a new simple semi-
parametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a 
similar sequential approach to DCC and DECO, SP-DCC has the advantage of not requiring the direct parame-
terization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their 
long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, 
for actual and suitable transformed series, in the first step; the latter are then nonlinearly combined in the second 
step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates 
of the corresponding conditional covariances and correlations. In contrast to available DCC methods, SP-DCC 
allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional 
cross-covariances and correlations displaced at any time horizon of interest. A simple ex-post procedure to en-
sure well behaved conditional covariance and correlation matrices, grounded on nonlinear shrinkage, is finally 
proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to ap-
ply and suitable for the modeling of vast sets of conditionally heteroskedastic time series. We point to [18] for 
an empirical application of the proposed approach. 

2. Semiparametric Estimation of Dynamic Conditional Correlations  
Consider a discrete time, real-valued vector stochastic process { }ty  of dimension 1N ×  

( )t t ty µ θ ε= +                                     (1) 

where ( )tµ θ  is the conditional mean vector ( )1|t tE y I − , θ  is a vector of parameter, 1tI −  is the sigma field, 
and 

( )1 2
t t tH zε θ=                                      (2) 

where ( )1 2
tH θ  is a positive definite matrix of dimension N N× . 

The random vector tz  is of dimension 1N ×  and assumed to be i.i.d. with first two moments 
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( ) 0tE z =                                        (3) 

( )t NVar z I=                                      (4) 

where NI  is the identity matrix of dimension N. 
It is straightforward to show that ( )tH θ  is the conditional variance-covariance matrix; in fact  

( ) ( ) ( )

( ) ( ) ( )
1 1 1

1 2 1 2
1

|

( ).

t t t t t t

t t t t

t

Var y I Var y Var

H Var z H
H

ε

θ θ

θ

− − −

−

≡ =

′=

=

 

In general both tµ  and tH  depend on the parameter vector θ . While, the conditional mean vector does 
not depend on the conditional variance parameter, apart from the GARCH-in-mean case, the conditional va-
riance matrix depends on the conditional mean parameters through the residuals. In what follow, for simplicity, 
we leave out θ  from notation and neglect the conditional mean vector, which might be modelled in various 
ways, i.e. by means of univariate or multivariate ARMA models. 

2.1. The Conditional Variance Process  
We assume the elements along the main diagonal of tH  follow a GARCH (1, 1) process 

2
, , 1 , 1 1, ,ii t i i i t i i th h i Nω α ε β− −= + + =                             (5) 

subject to the usual restrictions required to ensure that the generic ith conditional variance process  
( )1 , ,t i t ii tVar y h− ≡  is positive almost surely at any point in time. For instance, sufficient (not necessary) condi-

tions are 0iω > , 0iα ≥ , 0iβ ≥ , with stationarity condition 1i iα β+ < .1 
An extended specification is in principle also viable, i.e. 

2 2
, ,1 1, 1 , , 1 ,1 1, 1 , , 1 1, ,ii t i i t i N N t i t i N N th h h i Nω α ε α ε β β− − − −= + + + + + + =    

yet actually feasible only for small N. 

2.2. The Conditional Covariance Process  
Consider the identity 

( ) ( ) ( )1,
4

Cov A B Var A B Var A B≡ + − −                            (6) 

given that ( ) ( ) ( ) ( )2 ,Var A B Var A Var B Cov A B± = + ± . 
The off-diagonal elements of tH  can then be defined accordingly, i.e. 

( ) ( )1 , , , 1 , , 1 , ,
1( , ) , 1, , .
4t i t j t ij t t i t j t t i t j tCov y y h Var y y Var y y i j N i j− − −
 ≡ = + − − = ≠          (7) 

By defining the new variables , , ,ij t i t j ty y y+ ≡ +  and , , ,ij t i t j ty y y− ≡ − , and assuming a GARCH (1, 1) specifi-

cation for their conditional variance processes ( )1 , ,t ij t ij tVar y h+ +
− ≡ and ( )1 , ,t ij t ij tVar y h− −

− ≡  

( ) 2
1 , , , , , , 1 , , 1= , 1, ,t ij t ij t i j i j i j t i j i tVar y h h i j N i jω α ε β+ + + + + + +
− − −≡ + + = ≠                 (8) 

( ) 2
1 , , , , , , 1 , , 1= , = 1, ,t ij t ij t i j i j i j t i j i tVar y h h i j N i jω α ε β− − − − − − −
− − −≡ + + ≠                 (9) 

subject to the usual restrictions required to ensure a well behaved conditional variance process, (7) becomes 

, , ,
1 , 1, , .
4ij t ij t ij th h h i j N i j+ − = − = ≠                            (10) 

 

 

1The GARCH (1, 1) model is chosen for simplicity; the approach is very flexible and can accommodate any model of the GARCH family. 
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Moreover, if residuals are obtained from linear transformations of the original variables2, then  

( )22
, 1 , 1 , 1ij t i t j tε ε ε+
− − −= +  and ( )22

, 1 , 1 , 1ij t i t j tε ε ε−
− − −= − ; hence, (8) and (9) can be written as 

( )2
, , , , 1 , 1 , , 1 , 1, ,ij t i j i j i t j t i j i th h i j N i jω α ε ε β+ + + + +

− − −= + + + = ≠                 (11) 

( )2
, , , , 1 , 1 , , 1 , 1, , .ij t i j i j i t j t i j i th h i j N i jω α ε ε β− − − − −

− − −= + − + = ≠                 (12) 

By means of the proposed method conditional cross-covariances and correlations can also be computed, as  

( ) ( )1 , , 1 , , 1 , ,
1( , ) = , 1, , , 0.
4t i t j t k t i t j t k t i t j t kCov y y Var y y Var y y i j N i j k− − − − − −
 + − − = ≠ ≠        (13) 

2.3. Estimation 
Consistent and asymptotically normal estimation is performed in two steps. 

Firstly, the conditional variances ,i th , 1, ,i N=  , i.e. the elements along the main diagonal of tH , and ,ij th+ , 
,ij th− , , 1, ,i j N=  , i j≠ , are estimated equation by equation by means of QML ; this yields ,î th ,  
1, ,i N=  , and ,îj th+ , ,îj th− , , 1, ,i j N=  , i j≠ . 

Then, in the second step the off-diagonal elements of tH , ,ij th , , 1, ,i j N=  , i j≠ , are estimated nonpa-
rametrically by computing  

, , ,
1ˆ ˆ ˆ , 1, , .
4ij t ij t ij th h h i j N i j+ − = − = ≠                            (14) 

By defining 

( )1 2 1 2
1, ,
ˆ ˆˆ diag , ,t t N tD h h=   

the conditional correlation matrix tR  is then estimated as  
1 1ˆ ˆ ˆ ˆ .t t t tR D H D− −=  

By definition the matrix tH  is positive definite; our estimation approach does not restrict ˆ
tH  to be almost 

surely positive definite at any point in time. The latter property can however be checked ex-post by computing 
the eigenvalues of ˆ

tH , which by being a real, square and symmetric matrix, under positive definiteness are ex-
pected to be all positive. In practice this can be performed by means of Descartes’ rule of alternating signs ap-
plied to its characteristic polynomial3, as well as by means of Sylvester’s criterion4, or by assessing the existence 
and uniqueness of its Cholesky decomposition. 

However, the positive definiteness property might also be imposed ex-post, by means of shrinkage methods, 
as in Ledoit and Wolf (2004, 2012). In the latter case a compromise estimate of the conditional correlation ma-
trix ˆ c

tR  is obtained by shrinking the estimated conditional correlation matrix ˆ
tR  towards the identity matrix, 

i.e. by computing 

( )ˆ ˆ1c
t t N t tR I Rλ λ= + −  

where tλ  is the shrinkage intensity at time period t . The compromise estimate of tH , i.e., ˆ c
tH  can then be 

 

 

2This, for instance, would occur when the conditional mean vector is specified as a vector autoregressive (VAR) process, yet not in the 
presence of a VARMA structure. In the latter case residuals , ,i j tε +  and , ,i j tε −  should be computed from time series models specified for the 

new variables ,i ty+  and ,i ty− . 
3By ordering the terms of the characteristic polynomial with real coefficients by descending variable exponent, the number of positive roots 
of the polynomial is then either equal to the number of sign differences between consecutive nonzero coefficients, or is less than it by an 
even number. Multiple roots of the same value are counted separately. 
4According to Sylvester’s criterion, a real, square symmetric positive definite matrix shows all positive leading principal minors, where the 
kth leading principal minor of a matrix M is the determinant of its upper-left k by k sub-matrix. In practice the M matrix is reduced to an up-
per triangular matrix by means of row operations, as in the first part of the Gaussian elimination method, preserving the sign of its determi-
nant during pivoting process. Since the kth leading principal minor of a triangular matrix is the product of its diagonal elements up to row k, 
positive definiteness can be assessed by checking whether its diagonal elements are all positive. The latter condition is then checked each 
time a new row k of the triangular matrix is obtained. 
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obtained as 
ˆ ˆ ˆ ˆc c

t t t tH D R D=  

which is positive definite by construction, as ˆ c
tR  is positive definite and the elements of ˆ

tD  are well-defined. 

2.4. Ex-Post Correction for Well-Behaved Conditional Covariances and Correlations 
Alternatively, the validity of the Cauchy-Schwarz inequality and the condition of positive definiteness can be 
imposed sequentially, at each point in time t, following the below procedure. 

Firstly, the estimated conditional correlations in ˆ
tR , ˆijρ , , 1, ,i j N=  , i j≠ , are bounded to lie within 

the range ˆ1 1ijρ− ≤ ≤ , by applying the sign-preserving bounding transformation 

( ) 1
ˆ ˆ ˆ1

kk
ij ij ijρ ρ ρ

−∗ = +                                   (15) 

where 0k >  and even; the value of k can be selected optimally by solving  

2

, ,
1 1 1 1

ˆ ˆ ˆ ˆmin min
T T N N

t t ij t ij tFk kt t i j
R R ρ ρ∗ ∗

= = = =

− = −∑ ∑ ∑∑                        (16) 

i.e. by setting k in such a way that the sum of Frobenious norms over the temporal sample is minimized; this 
yields ˆ

tR∗ , the transformed correlation matrix, which satisfies, by construction, the Cauchy-Schwarz inequality. 
Secondly, positive definiteness is enforced by computing the eigenvalue-eigenvector decomposition of the 

transformed conditional correlation matrix ˆ
tR∗ , yielding 

ˆ ˆ ˆ ˆ
t t t tR E V E∗ ′=  

where t̂V  is the N N×  diagonal matrix containing the N ordered eigenvalues along the main diagonal, and 
ˆ

tE  is the N N×  matrix containing the N associated orthogonal eigenvectors. In the case of violation of the 
positive definiteness condition one or more of the eigenvalues will be negative; an empirically viable strategy to 
impose positive definiteness ex-post consists of replacing the negative sample eigenvalues with positive values, 
computed for instance from their sample average value when positive or from the grand average across sample 
eigenvalues. The rationale guiding this practice is the well-known issue of downward biased estimation of the 
smallest eigenvalues (versus upward biased estimation of the largest eigenvalues). Rather than shrinking all the 
sample eigenvalues towards their grand average, as occurring by implementing [19], only the negative eigenva-
lues are shrank towards positive average values. The latter practice is consistent with nonlinear shrinkage of the 
covariance matrix ([20]), allowing in principle for different shrinkage intensities to be applied to the various ei-
genvalues. 

The shrank matrix of eigenvalues t̂V ∗  would then be obtained, and therefore 
ˆ ˆ ˆ ˆ

t t t tR E V E∗∗ ∗ ′=                                     (17) 

which, by construction, is well-behaved at each point in time. The implied conditional covariance process at 
time period t can then be obtained as 

ˆ ˆ ˆ ˆ
t t t tH D R D∗∗ ∗∗=  

where  

( )1 2 1 2
1, ,
ˆ ˆˆ diag , ,t t N tD h h=   

as before. The implied estimated variance-covariance matrix ˆ
tH ∗∗  then obeys the Cauchy-Schwarz inequality 

and the positive definiteness condition, at each point in time, by construction. 

2.5. Asymptotic Properties 
Under assumptions (1) through (5), estimation and inference for the parameters of the univariate GARCH (1, 1) 
processes (5), (8) and (9) can be performed by means of QML . The Gaussian log likelihood function for the 
generic process ,i ty , assuming for simplicity ( ), 1| 0i t tE y I − =  and a GARCH (1, 1) structure  
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2
, , 1 , 1i t i i i t i th y hω α β− −= + +  can then be written as  

( ){ } ( ) ( ){ }2 1
, , , , ,

1
ln , , , 0.5 ln 2π 0.5 ln

T

i t i T i t i t i t
t

L y y T h y h−

=

= − − +∑ϑ  

and numerically maximized with respect to the vector of parameters ( ), ,i i iω α β ′=ϑ . Similarly for the other 
variables , ,i j ty+  and , ,i j ty− . 

Under fairly general conditions, the asymptotic distribution of QML  is 

( ) ( ) ( ) ( ){ }1 11 2
0 0 0 0

ˆ ,T N − −− →ϑ ϑ ϑ ϑ ϑ0 A B A  

where 0ϑ  denotes the true value of the vector of parameters, and where ( )0ϑA  is the Hessian and ( )0ϑB  is 
the outer product gradient, both of which are evaluated at the true parameter values. This also establishes the 
consistent and asymptotically normal estimation of the conditional variance of ty , ( )2

, 1|i t tE y I − , as well as of 
the transformed variables ,ij ty+  and ,ij ty− . 

Consistent and asymptotically normal estimation of the off-diagonal elements of the conditional variance-co- 
variance matrix tH  then follows directly from the consistent and asymptotically normal estimation of the con-
ditional variances of the transformed variables in (8) and (9). In fact, considering the generic off-diagonal ,i j  
element of tH , , 1, ,i j N=  , i j≠ , one has 

 ( )  ( )  ( )1 , , 1 , , 1 , ,
1,
4t i t j t t i t j t t i t j tCov y y Var y y Var y y− − −
 = + − −   

as the conditional covariance estimator  ( )1 , ,,t i t j tCov y y−  is a linear combination of the (consitent and asymp-
totically normal) conditional variance estimators for the transformed variables  ( )1 , ,t i t j tVar y y− +  and  
 ( )1 , ,t i t j tVar y y− − . 

3. Conclusion 
The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correla-
tion matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation 
methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance 
or correlation processes. In the first step, conditional variances are estimated by univariate GARCH models for 
actual and suitably transformed series. In the second step, the estimated conditional covariances are then nonli-
nearly combined, according to basic properties of the covariance and correlation operator, to yield nonparame-
tric estimates of the various conditional covariances and correlations. At this step, SP-DCC also allows for the 
estimation of conditional cross-covariances and correlations, displaced at any time horizon. In the third step, 
well behaved conditional variance-covariance and correlation matrices are obtained by means of nonlinear 
shrinkage. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to ap-
ply and suitable for the modeling of vast sets of conditionally heteroskedastic time series. 
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