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Abstract 
In this article, we develop estimation approaches for nonparametric multiple regression mea-
surement error models when both independent validation data on covariables and primary data 
on the response variable and surrogate covariables are available. An estimator which integrates 
Fourier series estimation and truncated series approximation methods is derived without any er-
ror model structure assumption between the true covariables and surrogate variables. Most im-
portantly, our proposed methodology can be readily extended to the case that only some of cova-
riates are measured with errors with the assistance of validation data. Under mild conditions, we 
derive the convergence rates of the proposed estimators. The finite-sample properties of the es-
timators are investigated through simulation studies. 
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1. Introduction 
We can consider the following nonparametric regression model of a scaler response Y on an explanatory variable X  

( ) ,Y g X ε= +                                      (1) 

where ( )g ⋅  is assumed to be a smooth, continuous but unknown nonparametric regression function and ε  is 
a noise variable with ( )| 0E Xε =  and ( )2E ε < ∞ . It is not uncommon that the explanatory variable X is 
measured with error and instead only its surrogate variable W can be observed. In this case, one observes inde-
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pendent replicates ( ),i iW Y , 1 i N≤ ≤ , of ( ),W Y  rather than ( ),X Y , where the relationship between iW  
and iX  may or may not be specified. If not, the missing information for the statistical inference will be taken 
from a sample ( ),j jW X , 1N j N n+ ≤ ≤ + , of so-call validation data independent of the primary (surrogate) 
sample. The objective of this manuscript is to estimate the unknown function ( )g ⋅  via the surrogate data  

( ){ } 1
,

N
i i i

Y W
=

 and the validation data ( ){ }
1

,
N n

j j j N
X W

+

= +
. 

A wide number of problems of similar type have attracted considerable attention in research literature over 
the past two decades (see, [1]-[6]). For instance, a quasi-likelihood method is intensively studied by [7]. A re-
gression calibration approach is developed by [8] [9] and [10] [11] propose a method based on simulation- 
extrapolation (SIMEX) estimation. Other related methods include Bayesian approaches (see, [12]), semi-parametric 
method (see, [13] [14]), empirical likelihood method (see, [15]) and the instrumental variable method (see, [16]). 
Unfortunately, all these work mostly assume some parametric relationships between covariates and responses. 
Recently, nonparametric estimators of g have been developed by [17] and [18]. [17] develops a kernel-based 
approach for nonparametric regression function estimation with surrogate data and validation sampling. Howev-
er, his method is not applicable for model (1) since it assumes that the response but not the covariable is meas-
ured with error. [18] proposes a nonparametric estimator which integrates local linear regression and Fourier 
transformation method when both explanatory and surrogate variable are scalars. Nonetheless, their method 
cannot be extended to multidimensional problems in which the explanatory variable vectors can consist of va-
riables being measured with or/and without errors. For additional references and relevant topics for nonparame-
tric regression models with measurement errors, ones may consult [19] and the references therein. 

In practice, nonparametric estimation of g may not be an easy task since, as explained in Section 2, the rela-
tion that identifies g is a Fredholm equation of the first kind, i.e.  

,Tg m=                                        (2) 

which may lead to an ill-posed inverse problem. Ill-posed inverse problem related to nonparametric regression 
model has received considerable attention recently. [20] [21] consider kernel-based estimators while [22] and 
[23] develop series or sieve estimators. However, their methods require an instrumental variable, and assume 
that the explanatory variable X is directly observable without errors. In this article, we propose a nonparametric 
estimation approach which consists of two major steps. First, we propose estimators of generalized Fourier coef-
ficients of T and m based on surrogate and validation data. Second, we replace the infinite-dimensional operator 
T by the finite-dimensional approximation to avoid higher-order coefficient estimation, and hence it develops an 
estimator of g. Furthermore, we extend this method to the case that only some of covariates are measured with 
errors. Under mild conditions, the consistencies of the resulting estimators are established and the convergence 
rates are also derived. 

This article is arranged as follows. In Section 2, we first describe our estimation approach for the case that the 
covariates are all measured with errors. Extension to the case that only some of covariates are measured with 
errors will be discussed as well. We derive the convergence rates of our estimators under some regularity condi-
tions in Section 3. Section 4 presents some numerical results from simulation studies. A brief discussion will be 
given in Section 5. Proofs of the theorems are presented in Appendix. 

2. Methodology  
We first describe our estimation approach for the case that the covariates are all measured with errors. In addi- 

tion to the independent and identically distributed (i.i.d.) primary observations ( ){ } 1
,

N
i i i

Y W
=

 from model (1), 

assume that i.i.d. validation data ( ){ }
1

,
N n

j j j N
X W

+

= +
 are also available. We shall suppose that X and W are both  

d-dimensional random vectors. Without loss of generality, let the supports of X and W both be contained in 
[ ]0,1 dχ =  (otherwise, one can carry out monotone transformations of X and W). 

In the following we let XWf , Xf , Wf  denote respectively the joint density of ( ),X W , marginal densities 
of X and W. Then we have  

( ) ( ) ( ) ( )
( )

,
| | d .XW

W

f x w
E Y W w E g X W w g x x

f wχ
= = = =   ∫                    (3) 
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According to Equation (3), g is actually the solution to an integral equation called Fredholm equation of the 
first kind. Let ( ) ( ) ( )| Wm w E Y W w f w= =  and  

( ) ( )( )1 22
2 : , . . d .L s t x x

χ
χ ϕ χ ϕ ϕ = → = < ∞ 

 ∫  

Define the operator ( ) ( )2 2:T L Lχ χ→  by  

( )( ) ( ) ( ), d .XWT w x f x w x
χ

ϕ ϕ= ∫  

Hence, Equation (3) is equivalent to the operator equation  
( ) ( )( ).m w Tg w=                                    (4) 

For the unknown smooth function :g χ → , we assume that sg ∈  where  

( ){ }
22 : ,s

s
s g g cχ= ∈ <


   

where c is a positive and finite constant. ( )2
s χ  denotes the Sobolev space of smoothness 1s ≥ , that is  

( ) ( ) ( ){ }2 2 2: , ,s
xL s Lαχ ϕ χ α ϕ χ= ∈ ∀ ≤ ∂ ∈  

where ( )1, , dα α α=  , 1 dα α α= + + , and the derivatives 
1

1
dx

dx x

α
α

αα

ϕϕ ∂
∂ =

∂ 

. Given an integer s, the 

norm 
2
sg


 is  

2

1 2
2

1
,s

s

x
k

g gα

=

 = ∂ 
 
∑

 

here ⋅  denotes the norm on ( )2L χ . 
An estimator of g can then be obtained by replacing T and m by their series estimators based on surrogate data 

and validation data, and solving the resultant empirical version of (4). As before, let { }, 1, 2,k kφ =   denote a 
complete, orthonormal sequence for ( )2L χ . Hence, we can write  

( ) ( ) ( ) ( ) ( )
1 1 1

, and  , ,k k XW kl k l
k k l

m w m w f x w d x wφ φ φ
∞ ∞ ∞

= = =

= =∑ ∑∑  

where km  and kld  represent the generalized Fourier coefficients of m and XWf , respectively. Intuitively, we 
can obtain the estimators of km , ( )m w , kld  and ( ),XWf x w  by  

( ) ( ) ( )
1 1

1ˆ ˆ ˆ,   ,
qN

k i k i k k
i k

m Y W m w m w
N

φ φ
= =

= =∑ ∑  

( ) ( ) ( ) ( ) ( )
1 1 1

1ˆ ˆ ˆ, and  , ,
q qN n

kl k j l j XW kl k l
j N k l

d X W f x w d x w
n

φ φ φ φ
+

= + = =

= =∑ ∑∑  

respectively, where the integer q is a truncation point which is the main smoothing parameter in the approx-
imating Fourier series. The operator T can then be consistently estimated by  

( )( ) ( ) ( )ˆˆ , d .n XWT w x f x w x
χ

ϕ ϕ= ∫  

Define the subset of s :  

21
: .s

q

ns k k
k

cϕ ϕ φ ϕ
=

 
= = < 
 

∑ 
  

The estimator of ( )g x  can be computed by  
2ˆˆ ˆarg min .

ns
ng T m

ϕ
ϕ

∈
= −


                                 (5) 
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Remark 1. Let NW  be the N q×  matrix whose ( ),i j  element is ( )j iWφ  and ( )T
1, ,N NY Y Y=   be the  

observed vector of Y based on the surrogate data ( ){ } 1
,

N
i i i

Y W
=

. Let nW  and nX , respectively, denote the n q×  

matrices whose ( ),j k  elements are ( )k jWφ  and ( )k jXφ  based on the validation data. If T1
n n nA W X

n
=  

and T1
N N Nb W Y

N
=   , then the solution to (5) assumes the following form  

( ) ( )
1

ˆ ˆ
q

k k
k

g x g xφ
=

= ∑                                    (6) 

where { }ˆ , 1, ,kg k q=   is given by ( ) ( ) 1T T T
1ˆ ˆ, , q n n n Ng g A A A b

−
= .  

Next, we extend the estimator in (5) to nonparametric regression measurement error models with multi-covariates, 
that is  

( ), ,Y g X Z ε= +                                     (7) 

where X is measured with error and W being its observed surrogate variable, and Z is measured without error. 

Let ( ){ } 1
, ,

N
i i i i

Y W Z
=

 be a random sample from model (7), and ( ){ }
1

, ,
N n

j j j j N
X W Z

+

= +
 be i.i.d. validation observa-

tions. We assume that X and W are supported on [ ]0,1 dχ = , and Z is supported on [ ]0,1 p . 
Let |XW Zf , |X Zf  and |W Zf  denote respectively the joint density of ( ),X W , marginal densities of X and W, 

all conditioning on Z z= . Similar to (3), for any [ ]0,1 pz∈ , we have  

( ) ( )( ), , ,zm w z T g w z=                                  (8) 

where ( ) ( ) ( )|, | , W Zm w z E Y W w Z z f w= = = , and the operator zT  is defined by  

( )( ) ( ) ( )|, , d ,z z z XW ZT w z x f x w x
χ

ϕ ϕ= ∫  

where ( ),z zϕ ϕ= ⋅  is any function on ( )2L χ . 
To obtain the estimator of ( ),g x z , we set ( ) ( )hK u K u h=  where K is a kernel function and 0h >  is a  

bandwidth. Let ( ) ( ), 1p h h kk pK z K z
≤ ≤

=∏ . We consider the following estimators  

( ) ( ) ( )

( ) ( )

1

,
1

1

,
1

ˆ ,
N

N

N
p
N i k i p h i

i
zk N

p
N p h i

i

Nh Y W K z Z
m

Nh K z Z

φ
−

=

−

=

−
=

−

∑

∑
 

and  

( ) ( ) ( ) ( )

( ) ( )

1

,
1

1

,
1

ˆ .
n

n

N n
p

n k j l j p h j
j N

zkl N n
p

n p h j
j N

nh X W K z Z
d

nh K z Z

φ φ
+−

= +
+−

= +

−
=

−

∑

∑
 

Then we have  

( ) ( ) ( ) ( ) ( )|
1 1 1

ˆ ˆˆ ˆ, , and  , .
q q q

zk k XW Z zkl k l
k k l

m w z m w f x w d x wφ φ φ
= = =

= =∑ ∑∑  

Define the operator n̂zT  by  

( )( ) ( ) ( )|
ˆˆ , , d ,nz z z XW ZT w z x f x w x

χ
ϕ ϕ= ∫  

for any ( )2z Lϕ χ∈ . 
Then, for any [ ]0,1 pz∈ , the estimator of ( ),g x z  is  
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2ˆ ˆarg min .
z ns

nz zg T m
ϕ

ϕ
∈

= −


                                 (9) 

Remark 2. Denote ( ) ( ) ( )
1

,1 N

Np
N N p h iif z Nh K z Z

−

=
= −∑  and ( ) ( ) 1p

n nf z nh
−

= ( ),1 n

N n
p h jj N K z Z+

= +
−∑ . Let 

( ) ( ) ( )( )1
, 1 ,diag , ,

N NN N p h p h NH f z K z Z K z Z−= × − −

  and  

( ) ( ) ( )( )1
, 1 ,diag , ,

n nn n p h N p h N nH f z K z Z K z Z−
+ += × − − . If T1

n n n np
n

A W H X
nh

=  and T1
N N N Np

N

b W H Y
Nh

=
   , 

then the solution to (9) has the following form  

( ) ( )
1

, ,
q

zk k
k

g x z g xφ
=

= ∑                                   (10) 

where { }, 1, ,zkg k q=
  is given by ( ) ( ) 1T T T

1, ,z zq n n n Ng g A A A b
−

=   

 
 . 

Remark 3. If Z is discretely distributed with finite support, then ( ),g x z  can be estimated by (9) with 
( )hK u  being replaced by ( )0I u = , where ( )I ⋅  is the indicator function.  

3. Theoretical Properties 
In this section, we study the asymptotic properties of the estimators proposed in Section 2. We define nτ  ( znτ ) 
as a sieve measure of ill-posedness (see, [23]):  

: 0 : 0
sup ;     sup .

ns z ns z

z
n zn

z zT Tϕ ϕ ϕ ϕ

ϕ ϕ
τ τ

ϕ ϕ∈ ≠ ∈ ≠
= =

 
 

First, we investigate the large-sample properties of the estimator ĝ . For this purpose, we present the follow-
ing regular conditions which are mild and can be found in [24]) and [23]. 

A1. (i) The support of ( ),X W  is contained in 2χ ; (ii) The joint probability measure of ( ),Y W  is abso-
lutely continuous with respect to the product probability measure of Y and W and; (iii) The support of W is a 
cartesian product of compact connected intervals on which W has a probability density function that is bounded 
away from zero. 

A2. For each w χ∈ , the function ( )2 |E Y W w=  is bounded by c. 
A3. (i) sg ∈  with ( )2

sg χ∈  and 1s > ; and (ii) ( )m W  belongs to ( )2
r χ  with 1 2r > . 

A4. The set of functions { }, 1, 2,k kφ =   is a orthonormal, complete basis for ( )2L χ , and bounded un-
iformly over k. 

A5. (i) lim n N λ=  for some constant 0 1λ< ≤ ; and (ii) ( ),q q N n= →∞ , 0q N → , 0q n →  as 
n →∞ , N →∞ .  

Theorem 1. Under conditions A1 - A5, as N →∞  and n →∞ , we have  

{ }1 2 1 2 1 2 1 2ˆ ,s d r d
P nXg g O q q N q n qτ− − − − − = + × + +                     (11) 

where 
X⋅  denotes ( ) ( ){ }1 2

2 dXX x f x x
χ

ϕ ϕ= ∫  for any ( )2Lϕ χ∈ .  

In (11), the term s dq−  arises from the bias of ĝ  caused by truncating the series approximation of g. The 
truncation bias decreases as s increases and g becomes smoother. Therefore, the smoother of g the faster the rate 
of convergence of ĝ . The terms 1 2 1 2

n N qτ −  and 1 2 1 2
nn qτ −  are respectively induced by random surrogate 

sampling errors and random validation sampling errors in the estimates of the generalized Fourier coefficients 
ˆkg . When X is measured without error, the convergence rate of the sieve estimator of g is ( )1 2 1 2s d

PO q N q− −+ . 
Comparing this rate to that in (11), we note that the bias part s dq−  is of the same order, however, the standard  
deviation part blows up from 1 2 1 2N q−  to 1 2 1 2 1 2 1 2r d

n q N q n qτ − − − × + +  . 

A more precise behaviour of the estimator can be obtained but depends on nτ , as [23] discussed, which can 
be classified into mildly ill-posed case and severely ill-posed case. In the next corollary, we obtain these rates 
for the two particular cases.   
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Corollary 1. Suppose the assumptions of Theorem 1 are satisfied.  
(i) Let ( )( )r s d

n O qτ −=  (mildly ill-posed case) with 1 2 0r s− − > , and ( )2d r dq N +∝ , we have  

( )( )2ˆ ;s r d
PXg g O N − +− =  

(ii) Let ( ) ( ){ }r s d
n O q L qτ −=  (severely ill-posed case) with 1 2 0r s− − > , and ( )2d r dq N +∝ , we have  

( ) ( )( ){ }2 2ˆ ,s r d d r d
PXg g O N L N− + +− =

 
where the function ( )L q  goes to ∞  slowly such that ( ) 0L q qε →  for all 0ε > .  

Remark 4. According to Corollary 1(i), the convergence rate becomes ( )2 7O N −  when 3r = , 2s =  and  

1d = . This is slower than that of the sieve estimator of a conditional mean function which can achieve the rate 
of convergence 2 5N − .  

Next, we study the large-sample properties of the estimator ( ),g x z . For this purpose, we make the following 
assumptions. 

B1. (i) The support of ( ),X W  is contained in 2χ , and Z is supported on [ ]0,1 p ; (ii) Conditioning on 
Z z= , the joint probability measure of ( ),Y W  is absolutely continuous with respect to the product probability 
measure of Y and W and; (iii) Conditioning on Z z= , the support of W is a cartesian product of compact con-
nected intervals on which W has a probability density function that is bounded away from zero. 

B2. For each ( ) [ ], 0,1 d pw z +∈ , ( )2 | ,E Y W w Z z= =  is bounded by c. 

B3. (i) For each [ ]0,1 pz∈ , (8) has a solution ( ), sg z⋅ ∈  with ( ) ( )2, sg z χ⋅ ∈  and 1s >  that does not 
depend on z and; (ii) For each [ ]0,1 pz∈ , ( ),m W Z z=  belongs to ( )2

r χ  with 1 2r > . 
B4. (i) The set of functions { }, 1, 2,k kφ =   is a orthonormal, complete basis for ( )2L χ , and bounded un-

iformly over k and; (ii) The kernel function K is a symmetrical, twice continuously differentiable function on  

[ ]1,1− , and ( )1

1
d 0ju K u u

−
=∫  for 1, , 1j r= −  and ( )1

1
dru K u u c

−
=∫ , with 0c ≠  being some finite con-

stant. 
B5. (i) N, n, Nh , nh  satisfy the conditions that NNh →∞  and nnh →∞ ; (ii) ( )1 2r p

n hh c n− +=  and 
( )1 2r p

N hh C N − += , where hc  and hC  are constants and 0 ,h hc C< < ∞ ; and (iii) ( )2d r d
qq c nκ +=  with  

( )2 2r r pκ = +  for some constant qc < ∞ . 
B6. (i) lim n N λ=  for some constant 0 1λ< ≤ ; and (ii) ( ),q q N n= →∞ , 0q N → , 0q n →  as 

n →∞ , N →∞ .  
Theorem 2. Suppose assumptions B1 - B6 are satisfied. For each [ ]0,1 pz∈ , let ( )( )r s d

zn O qτ −=  with 
1 2 0r s− − > , we have  

( ) ( ) ( )2
|

, , .s r d
PX Z

g x z g x z O N κ− + − =  

 
The proofs of all the theorems are reported in Appendix. 

4. Numerical Properties 
In this subsection, we conducted a simulation study of the finite-sample performance of the proposed estimators. 
First, we choose the cosine sequence with ( )1 1xφ =  and ( ) ( )( )2 cos 1 π , 2,k x k x kφ = − =   as the complete  

orthonormal basis for [ ]( )2 0,1L , then get our estimators (denoted as ˆ ( )g x  and ( ),g x z ) following (6) and 
(10). For comparison, we consider [18] method (denoted as ˆDg ), and used the standard Nadaraya-Watson esti-
mator with a Epanechnikov kernel to calculate ˆNg  based on the primary dataset. It should be pointed out that 
ˆNg  can serve as a gold standard in the simulation study, even though it is practically unachievable due to mea-

surement errors. The performance of estimator estg  is assessed by using the average integrated squared errors  

(MISE) ( ) ( )
2

1

1MISE M est
s ss g u g u

M =
 = − ∑ , where , 1, ,su s M=  , are grid points at which ( )est

sg u  is 

evaluated. 
Example 1: We considered model (1) with the regression function being  
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( ) ( ) [ ]{ }
22

0,11 2 1 ,xg x x I ∈
 = − −   

and ε  being distributed as ( )0,0.25N . To perform this simulation, we generate X from a standard normal 
distribution, that is, ( )~ 0,1X N , and assume that ( )1 221W X vη η= + − , ( )~ 0,1v N , and η  is the standard 
deviation of the measurement error. Then, trim X and W in [ ]2.5,2.5−  and scale to [ ]0,1  respectively. Only 
results for 0.7η =  and 0.9η =  are reported here. Simulations were run with different validation and primary 
data sizes ( ),n N  ranging from ( )10,30  to ( )60,300  according to the ratio 3N nγ = =  and 5N nγ = = , 
respectively. For each case, 1000 simulated data sets were generated for each sample size of ( ),n N . 

It is interesting to compare our estimator ĝ  with the estimators ˆDg  and ˆNg . Here, since our estimator ĝ  
involves the regulation parameter q, we therefore present the following cross-validation (CV) selection criterion  

( ) ( ){ }2

1
ˆ ˆarg min , ,

N
i

CV i i
q i

q Y g W q−

=

 = −  
∑  

where the subscript i−  meant that the estimator was constructed without using the ith observation ( ),i iY W . 
For ˆDg , [18] proposed an automatic way of choosing the smoothing parameters Nh , nb  and q. For ˆNg , the 
CV approach is used for choosing bandwidth Nh . 

Figure 1 shows the regression function curve ( )g x , and the curves of the median MISEs based on 1000 rep-
licated estimates of ĝ , ˆDg  and ˆNg  with 0.7η =  under different sample size. From Figure 1, both ĝ  and 
ˆDg  successfully capture the patterns of the true regression curves and have smaller bias than ˆNg . As expected, 
ˆNg  fails to produce accurate function curve estimates. In addition, it is obvious that the quality of our proposed 

estimator improve with the increase of sample sizes. 
Table 1 compares, for various sample sizes, the results obtained for estimating curve ( )g x  when 0.7η =  

or 0.9η = . The estimated MISEs which were evaluated on a grid of 201 equidistant values of x in [ ]0,1  are 
presented. Our results show that the estimators ĝ  and ˆDg  outperform ˆNg . It is noteworthy that our proposed 

 

 
Figure 1. Curves for ( )ĝ x , ( )ˆDg x  and ( )ˆ Ng x , and the regression function curve of ( )g x . The solid, short-dashed, 

dash-dotted, and long-dashed curves respectively represent ( )g x , ( )ĝ x , ˆDg  and ˆ Ng .  

 
Table 1. The estimated MISE ( 210−× ) comparison for estimators ( )ĝ x , ( )ˆDg x  and ( )ˆ Ng x  in Example 1. 

 
( ),n N  

0.7η =  0.9η =  

 ( )ĝ x  ( )ˆDg x  ( )ˆ Ng x  ( )ĝ x  ( )ˆDg x  ( )ˆ Ng x  

3γ =  

(10, 30) 3.7858 5.1262 7.2254 3.8193 3.7822 6.8632 

(30, 90) 1.8630 2.2648 4.9030 1.3901 2.7834 5.0495 

(60, 180) 1.3056 1.8036 3.9296 0.8524 1.7082 3.7758 

5γ =  

(10, 50) 2.2956 3.1562 5.8640 2.0930 3.2097 5.2816 

(30, 150) 1.9711 2.1350 4.2684 1.6413 2.0299 4.0137 

(60, 300) 1.0628 1.5073 3.3890 0.7938 1.4438 3.2761 



Z. H. Yin, F. Liu 
 

 
815 

estimator generally performs better than the estimator proposed by [18] for the resultant MISEs of ĝ  are 
usually smaller. Also, the performance of ĝ  improves (i.e. the corresponding MISEs decrease) considerably as 
the sample sizes increases. For any nonparametric method in measurement error regression problem, the quality 
of the estimator also depends on the discrepancy of the observed sample. That is, the performance of the esti-
mator depends on the variances of measurement error. Here, we compare the results for different values of η . 
As expected, Table 1 shows that the effect of the variances on the estimator performance is obvious. 

Example 2: We considered model (7) with the regression function being  

( ) ( ) ( )
( ) [ ]{ }2

22

, 0,1
, 1 2 1 exp 4 1.4 2 ,

x z
g x z x x z I

∈
 = − − − − 

 
and ε  being distributed as ( )0,0.01N . The covariate ( )T,X Z  was generated from a bivariate normal dis-
tribution ( )0,N Σ  with ( ) ( ) 1var X var Z= =  and the correlation coefficient between X and Z being 0.6, and  

( )1 221W X vρ ρ= + − , ( )~ 0,1v N . Then, trim X, W and Z in [ ]2.5,2.5−  and scale to [ ]0,1  respectively.  

Results for 0.7ρ =  and 0.9ρ =  are reported. Simulations were run with different validation and primary da-
ta sizes ( ),n N  ranging from ( )10,30  to ( )60,300  according to the ratio 3N nγ = =  and 5N nγ = = , 
respectively. For each case, 1000 simulated data sets were generated for each sample size of ( ),n N . 

Here, we only compared our estimator ( ),g x z  with the naive estimator Ng  which is the multivariate ker- 

nel regression estimator based on the primary dataset ( ){ } 1
, ,

N
i i i i

Y W Z
=

, since [18] method cannot be applied to  

multivariate cases. Here, we used the Epanechnikov kernel function ( ) ( )20.75 1K x x= − , 1x ≤  for ( ),g x z   

and used an product kernel ( ) ( ) ( )1 2 0 1 0 2,K x x K x K x=  with ( ) 2
0

15 9 , 1
8 8

K x x x= − + ≤  for Ng . For the  

naive estimator Ng , bandwidth selection rules were considered by [25]. For our estimator ( ),g x z , we used 
the cross-validation approach to choosing the three parameters Nh , nh  and q. For this purpose, nh  and ( ),Nh q  
are selected separately as follows. 

Define  

( ) ( )
1

1ˆ ; .
n

N n

Z n h j
j Nn

f z h K z Z
nh

+

= +

= −∑  

Here, we adopt the cross-validation (CV) approach to estimate nh  by  

( ) ( ){ }2

1

1ˆ ˆarg min ; ,
n

N n
j

n j Z j n
h j N

h Z f Z h
n

+
−

= +

= −∑  

where the subscript j−  denotes the estimator being constructed without using the jth observation. After ob-
taining n̂h , we then select ( ),Nh q  by  

( ) ( ) ( ){ }2

, 1

1ˆ ˆˆ, arg min , ; , , ,
N

N
i

N i i i n N
h q i

h q Y g W Z h h q
N

−

=

= −∑ 

 
where the subscript i−  denotes the estimator being constructed without using the ith observation ( ), ,i i iY W Z . 

We compute MISE at 101 101×  grid points of ( ),x z  ranging in [ ] [ ]0,1 0,1× . Table 2 reports the MISE for 
estimating curves ( ),g x z  when 0.7ρ =  or 0.9ρ =  for various sample sizes. Table 2 shows that our pro-
posed estimator substantially outperformed the naive kernel estimator Ng . It is obvious that our proposed esti-
mator g  has much smaller MISE than Ng .  

5. Discussion  
In this paper, we propose a new method for estimating non-parametric regression measurement error models us-
ing surrogate data and validation sampling. The covariates are measured with errors while we do not assume any 
error model structure between the true covariates and the surrogate variable. Most importantly, our proposed 
method can be readily extended to the multi-covariates model, say, ( ),y f x z ε= +  where x is measured with 
error but z is measured exactly. Numerical results show that the new estimators are promising in terms of cor- 
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Table 2. The estimated MISE ( 210−× ) comparison for the estimators ( ),g x z  and ( ),Ng x z  in Example 2. 

 
( ),n N  

0.7ρ =  0.9ρ =  
 ( ),g x z  ( ),Ng x z

 ( ),g x z

 ( ),Ng x z

 

3γ =  

(10, 30) 7.9858 9.8647 7.8340 9.4697 

(30, 90) 7.1677 9.0080 5.2114 8.0132 

(60, 180) 5.8270 8.7088 5.0759 6.7445 

5γ =  

(10, 50) 7.8902 9.7127 6.7415 9.7355 

(30, 150) 5.9597 9.2369 4.9424 7.0742 

(60, 300) 4.4316 8.3258 3.6832 6.9901 

 
recting the bias arising from the errors-in-variables. It generally preforms better than the approach proposed by 
[18]. 
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Appendix  
Proof of Theorem 1 
Let ( ) ( )*

2 2:T L Lχ χ→  denotes the adjoint operator of T. Under assumption A1(ii), the self-adjoint operators 
of *TT  and *T T  have the same eigenvalue sequence { }2

kµ  with 2 2
1 21µ µ= ≥ ≥  Moreover, we assume 

that the corresponding eigenfunctions of the operators *TT  and *T T  are also orthonormal basis { }, 1, 2,k kφ =  , 
and for all 1k ≥   

* * 2 * 2,  ;   ,  .k k k k k k k k k k k kT T T T TTφ µ φ φ µ φ φ µ φ φ µ φ= = = =  
Define  

( ) ( ) ( ) ( )
1 1

, and .
q q

n k k N k k
k k

g x g x m w m wφ φ
= =

= =∑ ∑  

Let nT  be the operator whose kernel is  

( ) ( ) ( )
1 1

, ,
q q

n kl k l
k l

t x w d x wφ φ
= =

= ∑∑
 

then n n NT g m= . By the definition of ns , we have n nsg ∈ . 
Lemma 1. Under conditions A1 and A3(i) and the sieve space ns , we have  
1) { } const.n q nT g g g gµ− ≤ × × − ; 

2) 1n qτ µ≤ .  
Lemma 2. Under conditions A1, A3(ii) and A4, we have  

{ } ( )1 2 1 2ˆsup .
ns

r d
n PT T O q q n

ϕ
ϕ − −

∈
− = +


 

By some modifications of the proof of Theorem 2 in [23] and applying the Theorem 7 in [24], the proofs of 
Lemma 1 and Lemma 2 are straightforward and are omitted. 

Proof of Theorem 1. By the triangle inequality, we have  
ˆ ˆ .n ng g g g g g− ≤ − + −  

By the definition of ns  and condition A3(i), we have  

( ).s d
ng g O q−− =                                   (12) 

see e.g. [26] for Fourier series. 
Next, by the definition of nτ  and the triangle inequality, we have  

( )ˆ ˆ .n n ng g T g gτ− ≤ −
 

We now analyze the term ( )ˆ nT g g− . By the triangle inequality, we have  

( ) ( ) ( )

( ) ( )

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ .

n n n n

n n n

T g g T T g T g m m m T g g

T T g T g m m m T g g

− = − + − + − + −

≤ − + − + − + −
 

By conditions A2, A4 and central limit theorem, we can show that ( )1 2ˆ ˆ Pm Em O q N − =   . From condi-

tion A3(ii), we have ( )ˆ r dEm m O q−− = . Hence, ( )1 2 1 2ˆ r d
Pm m O q q N− −− = + . In addition, by the defini-

tion of ĝ  and the triangle inequality, we have  

( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ .n n n n n nT g m T g m T T g T g g m m− ≤ − ≤ − + − + −  

These and Lemma 2 imply  

( ) ( )( ){ }1 2 1 2 1 2 1 2ˆ .r d
n n P ng g O q q N q n O T g gτ − − −− ≤ × + + + −  
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This and Lemma 1 imply  

( )1 2 1 2 1 2 1 2ˆ .r d
n n Pg g g g O q q N q nτ − − −− ≤ − + × + +                     (13) 

The theorem follows immediately from (12)-(13).  

Proof of Theorem 2 
Lemma 3. For each [ ]0,1 pz∈ , define  

( ) ( ) ( ) ( )
1 1

, and .
q q

zn zk k zN zk k
k k

g x g x m w m wφ φ
= =

= =∑ ∑  

Let znT  be the operator whose kernel is  

( ) ( ) ( )
1 1

, ,
q q

zn zkl k l
k l

t x w d x wφ φ
= =

= ∑∑  

then zn zn zNT g m= . By the definition of ns , we have zn nsg ∈ . 
Proof of Theorem 2. For each [ ]0,1 pz∈ , by the triangle inequality, we have  

( ) ( ) ( ), , ,zn zn zn z zn zng x z g x z g g g g T g g g gτ− ≤ − + − ≤ × − + −  

 
By assumption B3(i), it is easy to show that ( )s d

zng g O q−− = . 
Similar to the proof of Theorem 1, we have  

( ) ( ) ( )ˆ ˆ ˆ ˆ .z zn z zn zn z znT g g T T g T g m m m T g g− ≤ − + − + − + −  

 

According to assumptions B2, B3(ii), B4, and B5(i), we can show that ( )( )21 2ˆ ˆ r r p
Pm Em O q N − +− = , 

( )( )21 2ˆ r r p r dEm m O q N q− + −− = + . In addition, by some modifications of the proof of Lemma 2, under as-

sumptions B1, B3(ii), B4, B5(i) and B6, we have  

{ } ( )( )21 2ˆsup .
ns

r r pr d
zn PT T O q q n

ϕ
ϕ − +−

∈
− = +

  
For the term ( )z znT g g− , under assumptions B1, B3(i) and the sieve space ns , we have  

( ) const.zn z zn znT g g g gτ × − ≤ × −
 

Combining all these results, we complete the proof.   
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