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Abstract

In this paper, we generalize the proof of the Cochran statistic in the case of an ANOVA two ways
structure that asymptotically follows a Chi-2. While construction of homogeneity statistics test
usually resorts to the determination of the covariance matrix and its inverse, the Moore-Penrose
matrix, our approach, avoids this step. We also show that the Cochran statistic in ANOVA two ways
is equivalent to conventional homogeneity statistics test. In particular, we show that it satisfies the
invariance property. Finally, we conduct empirical verification from a meta-analysis that confirms
our theoretical results.
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1. Introduction

In ANOVA methodology, it is generally accepted that the error variance is unknown and is the subject of an es-
timate. However, in practice, these fundamental assumptions are rarely checked, forcing the use of Fisher statis-
tic in the homogeneity test on the mean of the different groups ([1]-[5]).

According to the work of [6], the statistic test of homogeneity of two ways is of the form:
K K L 2
ngzwij(yij _Zzhnmynmj (1)

j=1 n=lm=1

n.
where @, =S—”2 y; and Sif are respectively the mean and variance sample of the group (i, j) consisting of
ij
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K L
n; observations; h; :% with o= ZZ@U . In the foregoing expression, the number of groups is equal to

i=1 j=1
KL, and Equation (1) is valid if S; >0,V (L j)e{L -, K}x{L-L}.

[7] tests the homogeneity of medical treatment between both groups of patients, using the [6] statistic in a
meta-analysis (e.g. see [1]). The above studies suggest that under the null hypothesis Hy of equality of the means
of different groups (i, j), the Cochran statistic asymptotically follows a %, , .However, neither the work of [6],
nor those of [7] offer a formal proof of this result.

Despite the existence of some attempts proposed by [8]-[10] and [11], in the literature, the construction of
homogeneity statistical test on mean (or medians and percentiles) of various groups is generally based on a
three-step methodology.

Step 1: The global average is estimated by a linear combination of the individual averages.

K L
y= ZZ p;Y; » where ¥, represents respectively the mean and the non-negative weight of group (i, j),
i=1 j=1

K L
and > > p; =1.

i=1 j=1
Step 2: One assumes that the population variances of each group are unknown and estimated by the variances
of the corresponding samples.

=Y.~ V) - We have:

9=Yu =V Y =V V=V Vo =V Vo = Vo Vi = Y) 5
. Pu - P
q:Q(Vll'“"VlL!VZl’“'!VZL"“lVKI"“’VKL) , with QZIKL_P’ P=| : - :

Pu o Pa

The covariance matrix is then estimated by Var(q)=QVar(y)Q'=QXQ’, with

]/wn 0 0
5 0 Yo, :
: . 0

0 0 Yoo

Step 3: One constructs the statistics test
G=q'¥q
In explicit form,
G=q¥q :(Vll'”"VlL’VZl’.“’VZL’.“’VKl"”’VKL)[Q((QZQ’)JF Q}(Vw._.'yl“721’...,72“...,yKl,...'yKL)

where W* is the Moore-Penrose inverse matrix (M —P) of W.

In the case of one way ANOVA, [12] provides a faster method of building statistics homogeneity test, show-
ing that this statistic is equivalent to Cochran. However, the authors offer no generalization of their result to the
case of the two-factor ANOVA.

Following [12], this paper proposes to generalize the construction of the statistical homogeneity test in
ANOVA two ways settings. To our knowledge, this issue has not been discussed in the literature. Beyond the
theoretical importance, in practice it induces many applications, particularly in medicine, to compare the effec-
tiveness of two methods of administration of a molecule to two different populations.

The remainder of the paper is organized as follows: Section 2 presents the main results. Section 3 provides an
empirical evaluation of the proposed test; and Section 4 concludes the paper.
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2. Main Results

In this section, we first show that statistics T =d'T"'d (see Equation (3) below) is asymptotically distributed
according to a g7, _,. Then, we prove that the Cochran statistics in a two ways ANOVA is equivalent to T. Fi-
nally, we conclude that the C statistics also follows a %, , distribution. We thus have the following important
results.

Proposition 1.

T = dTl_ld b ZliL—l 2

Proof.
2

o
We suppose that Y ~ N[y;—”J for the groups (i, j)e{L-- K}x{L-,L} where the variance of the
i

population o is unknown.

Now let us consider d; = ¥; = ¥,,, for (i, j) € {1+, K}x{L--,L} - {11}, then E(d;)=0,
var (d;; ) = var (¥ )+ var (¥, ) = vy +v, and cov(dy,dy, ) =y 58y, + (18,6, — 88y )Vay: With v =0 /.

ij il

Let us consider d =(d,, —dy,-,dy —dyy,dpy —dyy, -,y — 0y, o, dyy =y, dy —dyy ), the variance-
covariance matrix of d is written as follows:

Vi, + Vi Vi, Vi, v, 0 ... 0
vy, Vi TV, vy, 0 v, ..
I = : : : : =l : : AT
vy, vy, Vi +Vyy 0 ... 0 v 1 ... 1 1

According to [13], p.9, Theorem 1.7, the inverse of T, exists and it is given by:

Yv, O 0 v,
) 0 v 0 1| Yv
Fll = : :13 : : _V ;13 (]/Vu ]7/V13 ]/VKL) )
0 0 v v
K L 1 i
where v=>)"%»"—. Therefore, one obtains the result. B
i=1 j=1 Vij
Proposition 2.
T, = d’rild ~ ZliL—l (3)

Proof.
In practice, the variance Ui,? is unknown and estimated from the variance of the sample si? . Replacing in

Equation (2) v; =0y /n; by s /ng =1/, , and since,

]7/(012 +]/w11 ]/0)11 ]7/5011

= ]7/(‘)11 ]7/0)13 +1/a)11 ]7/(011
]7/(‘)11 jv/wu ]7/0)KL +:17/5‘)11

ZI,/a)l2 0 0 1 1 ... 1

0 0 1 1 ... 1

I 1/6:013 : : +1/ ey :

0 0 Yo, 1 ...1 1

Based on Slutsky Theorem, the statistic T is asymptotically distributed asa 7, , distribution. B
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Proposition 3.

T and C are equivalent.
Proof.

Since,

C

Il
.Mx

L _ K L _ 2
Za}Ij yij _Zzhnmynm]

j=1 i=1 j=1

I
iN

(@]

Il
-
M-
2

I
N
I
N

2
K L
i| Vi —711+711—Zzhnm7nmj

i=1 j=1

(@)

1]
M
Ml_
2

I
[N
I
[N

[ K L 2 K L
ij (VIJ _711)2+(711_Z;Z:lhnm7nmj +2(7ij _711)(711_Zzhnm7nmj:|

(i,1)#(12)

Y o, —Vll)z{iiwuj[vn— > ihnmvnmjz+2[Vn—§ihnm7nm]iiwu(vu %)

n=lm=1 i=1 j=1
and since,
K L K L K L
;;a’u(yu yll)_;JZ;whij(Vij 3@1)‘“’[;;%]—711]
We obtain:
) KoL 2 KoL 2
C= Z @5 yll yll) +w[_ll_zzhnm7nmj Zw(yll_zzhnmynmj
(i, j)=(11) n=1m=1 n=1m=1

Therefore, we get:

Alsosince, T,=dT;'d, ie.
So that,

2
B N
T= Z @ (yij _yu) _w|:yll_zzhijyij:|
(i.§)=@21) i=1 j+1
Therefore we obtain the equivalence between T and C. And as it was demonstrated that T is asymptotically
distributed as a 4.1, then C also follows the same law. I
Defining G by

@j; o ... 0 wy,
’ 0 @, 0 . 1 | @
T=d7 . 63 0 d—gd :13 [0, @5 ... og]d
0 0 [ Wy
2 2
1 2 1
= Y o= Y ody | = Y o (%-W) -S| > o5
(i:J)Z*;‘lxl) Y w((i-i)g;‘ll) : JJ (i,j)z#;‘u) J( ' 11) (0|:(i‘j§l‘1) J( ' 11)
2
__ 3 o
= Z wij(yii_yll) —a){ Z hij(Yij_yu):I
(i,))=(212) (i,J)=(1)
2
_ _ 3 _ _
= Z ; (yij _yu) _wli(l_hll)yij - z hij yij:l
() (1.7

G :(Vll"”’VlL'VZl’”"VZL’”"VKl"”'VKL)[Q'(QZQ'y— Q:|(V11'”"VlL’VZl"”’VZL"”'yKl'”"VKL)’ (4)
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G verifies the following invariance property.
Theorem 1.
The G statistics is invariant by the choice of the weightsand G=C .
Proof of Theorem 1.
To prove this theorem, we need the following lemmas.
Lemma 1.
According to [14], p. 130, 7.11 (d) (ii), X (XX) X'=XX" is invariant, where (XX ) is the generalized
inverse matrix of XX and X* isthe inverse M-P matrix of X. Therefore, X (XX )+ X'=XX".
Proof.
Straightforward. B
Lemma 2.
According to [14] p. 144, 7.73, if A and B are compatible matrices, then (AB)" = (A" AB)+ (ABB*)+.
Proof.
Straightforward. B
Lemma 3.
,1,1,~~-,1,0}

M.—

pu

I
N

i=1j

K
For Q in (4), its singular value decomposition is, Q =UDV', where D =diag{ ( )Z

. 1 '
and the k-th columnof Vis v, =——(1,1,---,1
= 0
Proof.
It is easy to show that
pll 1
P 1
. . T ... 1 ... 1 ... 1 KL
Q'QZIKL_ : : |: j|+[zzpi?J‘]KL
Pyy P Pk Pwe i=1 j=1
P 1
[P 1]

where |1, is the identity matrix of dimension KxL and J, is the squared matrix of dimension KxL
whose elements are 1. The eigenvalues of Q'Q are

(KLT Y pELL,

i=1 j=1

. K L . 1 ,
Therefore, D =diag pf, ,1,---,1,0+ and the k-th columnof Vis v, =——(11,---,1) . 1
{ (U230 = (1)
Lemma 4.
N 1
We have Q"Q = IKL—HJKL

Proof.

FeS
-

According to Lemma 3, Q" =VD'U’', where D" =diag {% (KL)X > b L1+ } Therefore,

Q"'Q=VD'UUDV'=VD'DV'=V (I, —diag{0,0,--,0,1} )V’

Vl,KL Vi ke Vo ki e V1 ke Vi kL
2
. Vo i Vi V. Vo kLY 1
:VIKLV’—leag{O,O,---,O,l}v’: IKL_ 2,KL. 1,KL 2“KL . Z,KL.KL,KL _ IKL __JKL
2
VinkVike Vi ke Va ke e Ve ke
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From the above lemmas, we then can provide the proof of Theorem 1.
Proof of Theorem 1.

Q'(QZQ’)+ Q- ZfVZEl/ZQ'(QZQ')JF szzzfl/z _y¥2 (ZMQ'(QZQ'Y QZM)EWZ
_ 512 (21/2(2'((221/221/2(2,)+ Q2 )2-1/2

—»Y2 (ZMQ'(Z“Q'Y)Z’V2 (Based on Lemma 1)
= Q’((ZWQ’Y)E’]/2 = Q’{((ZV2 )+ ZMQ’)+ (ZMQ'(Q')+ )ﬂz” (Based on Lemma 2)
~of(@) (o)) [ -(eef(x*(eef | 2+
:(lKL —iJKLj{Z“(IKL —iJKL jT ¥ (Based on Lemma 4)
KL KL

Therefore, Q'(QXQ’)" Q s invariant for Q and G=T . As T =C, one obtains G =C . In other words,
the G statistics is determined by the variance and means of the sample in C. Finally, G is independent of the
weights p; and Q. B

3. Application Meta-Analysis

In this Section, we empirically verify equality between both statistics G and C from a meta-analysis. The data
come from the Stael program base. Specifically, we want to compare the effectiveness of three different mole-
cules and, at the same time, we want to appreciate the impact of administration mode of different molecules
(orally or intravenously). However, we don’t want to multiply experiments and number of subjects. In total,
there are six possible combinations that means 6 series of measures (of different or identical subjects) on which
is then measured a relevant quantitative parameter, sensible capture the influence of the decision of the molecules
tested). The various combinations of two factors (molecules 3 and 2 modes of treatment) are the factorial design.
Here the factor 1 has 3 modes: molecule A, B and C, while the factor 2 admits 2 modalities: Oral and injection.

Table 1 summarizes the distribution of the data used.

Table 2 and Table 3 report the main statistical characteristics of the both factors.

Table 4 gives the estimation of different parameters and that of the Cochran statistic.

Thus, from the definition of Cochran statistics C:

2
C=Yr > w (7”. —Z::lz;zlhnmynm) with K = 3 and L = 2. After calculation, one obtains: C = 44.5

Table 1. Data.

Mol. A Mol. A Mo. B Mol. B Mol. C Mol. C
Oral Injection Oral Injection Oral Injection

10 11 7 8 12 7

12 18 14 9 9 6

8 12 10 10 11 10

10 15 11 9 10 7

6 13 9 11 7

13 8 10 13 5

9 15 9 7 13 6

10 16 11 14 14 7

9 7 15 10 9

13 9 12 11 6
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Table 2. Statistics of factor 1.

Factor 1 Mol. A Mol. B Mol. C
Nber subjects 20 20 20
Mean 11.25 10.25 8.75
Std deviat. 3.127 2.381 2.552
Median 10.5 10 8.5
Table 3. Statistics of factor 2.
Factor 2 Oral Injection
Nber subjects 30 30
Mean 9.9 10.27
Std dvt. 2.057 3.503
Median 10 9.5
Table 4. Estimation of main parameters.
Mol. A Mol. A Mol. B Mol. B Mol. C Mol. C
Oral Injection Oral Injection Oral Injection
10 11 7 8 12 7
12 18 14 9 9 6
12 10 10 11 10
10 15 11 9 10 7
13 9 11 7 7
13 8 10 13 8 5
15 9 7 13 6
10 16 11 14 14 7
9 7 15 10 9
13 9 12 11 6
Size (ny) 10 10 10 10 10 10
Mean (y;) 9.5 13 9.7 10.8 10.5 7
Std deviation (s;;) 2.01 3.13 2.06 2.66 2.17 1.49
Variance (s; ) 4.06 9.78 4.23 7.07 4.72 2.22
W 2.47 1.02 2.36 1.42 2.12 4.50
hjj(weights) 0.18 0.07 0.17 0.10 0.15 0.32
yi*hy 1.69 0.96 1.65 110 1.60 2.27
Qi 0.23 3.73 0.43 1.53 1.23 —2.27
Then we determine the G statistics as:
1 00000 -0.18 -0.07 -0.17 -0.10 -0.15 -0.32
010000 -0.18 -0.07 -0.17 -0.10 -0.15 -0.32
0 01000 -0.18 -0.07 -0.17 -0.10 -0.15 -0.32
=10 001 0 0/"-018 -007 -017 -010 -0.15 -032
0 00O0T1OQO0 -0.18 -0.07 -0.17 -0.10 -0.15 -0.32
0 00O0O01 -0.18 -0.07 -0.17 -0.10 -0.15 -0.32
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040 O 0 0 0 0
0 098 O 0 0 0
s 0 0 042 O 0 0
0 0 0 070 © 0
0 0 0 0 047 O
0 0 0 0 0 022
033 -0.071 -0.100 -0.07 -0.073 -0.07
-0.07 0913 -0.100 -0.07 -0.069 -0.07
-0.07 -0.07 0.350 -0.07 -0.072 -0.07
¥=Q2Q=

-0.07 -0.068 -0.100 0.634 -0.071 -0.07
-0.07 -0.069 -0.100 -0.07 0.400 -0.07
-0.07 -0.069 -0.100 -0.07 -0.071 0.151

The Moore-Penrose decomposition ¥* of the matrix ¥ in pseudo-inverse is obtained by using Matlab
program. Thus we get the singular decomposition matrix that provides a diagonal matrix (with positive values),
and matrices 1,S suchthat ¥ =1*S*Vv'. We obtains

-0.07 -0.14 -027 071 049 040
098 011 002 -0.01 0.07 0.16
-0.07 -0.15 -042 070 041 0.38
-0.15 095 005 -0.02 013 0.22
-0.08 -0.18 087 -0.11 030 0.33
-0.05 -0.08 -0.06 0.03 -0.69 0.71

-0.07 -014 -0.27 071 049 0.40
098 011 0.02 -0.01 0.07 0.16
-0.07 -0.15 -042 -0.70 041 0.38

V= ;
-0.15 095 005 -002 0.13 0.22
-0.08 -0.18 087 -0.11 0.30 0.33
-0.05 -0.08 -0.06 0.03 -0.69 0.71
0.94 0 0 0 o

0 067 O 0 0

S =

0 041 O
0 0 030
0 0 0 0

0

.6 0
0 0 046 O 0 0

0 0

0 0

0

Finally, we have ¥* =I1S*V'. To obtain S*, we simply reverse the elements on the diagonal excepted those
equal to zero. Thus,

106 0 0 0 0 0

0 150 O 0 0 0

ot = 0 0 219 O 0 0
0 0 0 241 0 O

0 0 0 0 336 0

0 0 0 0 0 O
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The Moore-Penrose pseudo-inverse matrix of ¥ is then given by,
222 -0.01 -0.22
-0.01 1.05 0.00
-0.22 0.00 2.16
-0.05 0.03 -0.04
-0.16 001 -0.14
-1.03 -0.24 -0.95

\P+

Therefore, the G statistics is calculated according to the formula, G=q¥"q" where

-0.05 -0.16 -1.03

0.03 001 -0.24
-0.04 -0.14 -0.95
145 -001 -041
-0.01 202 -0.78
-0.41 -0.78 1.63

q'=(0.23 3.73 043 153 123 —2.27) ;weget G=445.
Finally, we can verify the invariance property of G statistics, compared to h; weights. It is assumed in this
case that the weights are identical in all groups (i, j) , that means that

We then obtain

(i, j)efL2,30x (L

0.83 -0.17 -0.17
-0.17 083 -0.17
-0.17 -0.17 0.83
-0.17 -0.17 -0.17
-0.17 -0.17 -0.17
-0.17 -0.17 -0.17

040 O
0 098
0 0
0 0
0 0
0 0

0 0
0 0
042 O
0 0.70
0 0
0 0

2),h, =1/6.
~017 -017 -0.17
~0.17 -0.17 -0.17
~017 -017 -0.47
083 -017 -0.17
~017 083 -0.17
~0.17 -0.17 083

0 0

0 0

0 0

0 0

047 0

0 022

Returning to the procedure described in the previous Section, the following results were obtained,
q= (—0.580 292 -0.38 -0.72 0.42 —3.08) and

-0.14 -0.05 -0.10
0.74 -0.15 -0.19
-0.15 037 -0.10
-0.19 -0.10 0.56
-0.15 -0.06 -0.11
-0.11 -0.02 -0.06

¥ =QEQ=

0.36
-0.14
—0.05
-0.10
—0.06
-0.01

And the corresponding Moore-Penrose matrix is

203 -0.19 -042
-0.19 094 -0.18
-042 -0.18 196
-0.26 -0.11 -0.25
-0.38 -0.16 -0.36
-0.79 -0.32 -0.76

¥ =

Once again, we can observe that

-0.06 -0.01
-015 -0.11
-0.06 -0.02
-0.11 -0.06
0.40 -0.03
-0.03 0.24
-0.26 -0.38 -0.79
-011 -0.16 -0.32
-0.25 -0.36 -0.76
127 -022 -0.45
-022 179 -0.68
-0.45 -0.68 3.06
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G=qV¥'q =44.47 =445

Interpretation

According to the above results, we observe that C =G, and G is invariant whatever the choice of weights is.
Finally, the null hypothesis Hy that assume that all groups (i, j) have the same mean, can be tested based on
the fact that C~y(5). The tabulated statistics at the 5% level is 11.070. Asa C > Crq - the null hypothesis
Ho of homogeneity between groups is rejected.

4. Final Remarks

The literature generally uses a multi-step method for determining homogeneity statistics test. It is based on a li-
near combination of individual mean of the sample to estimate the overall mean. Like the G statistic in (6), this
approach involves determining a covariance matrix and its Moore-Penrose inverse. However, we show that
Theorem 1 generalizes the result of [12] in a two ways ANOVA and simplifies this process. We build a G sta-
tistic that is equivalent to C. In other words, the expression of C provides a simple formula for determining the
statistic in the homogeneity test. Moreover, Theorem 1 shows that G is asymptotically distributed according to
a y° distribution, and it checks certain properties of Cochran statistic. Finally, we also prove that the general
form of the G statistic is invariant regardless of the choice of weights.
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