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Abstract

In the paper, the deviation of the spline estimator for the unknown probability density is approx-
imated with the Gauss process. It is also found zeros for the infimum of variance of the derivation
from the approximating process.
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1. Introduction

The present work is a continuation of the work [1], that’s why we use notations admitted in it. We shall not turn
our attention to more detailed review because it is given [1].

Let X, X,,---,X, be asimple sample from the parent population with the probability density f (t) con-
centrated and continuous on the segment [0,1]. Let S (x) be a cubic spline interpolating values y, =F, (t,)
at the points x, =kh, k=0,---,N with the boundary conditions

' Y1 =Y ' Yn — Yn-
S (0): lh 0, Sn(l): N h N-1

where N=N(n), h=1/N, h—0, nh—>w as n—>wo.
Remind that
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S, (x

f(x)
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o (VT (9]
(

" (x ﬁmax—x) ES, (x)
g ( ) 0<x<1 oy (X)m

-~ \/,J'W (x,y)da,(y),

rmw

0<x<1

1 (X) =

1
where o} (x):%IWNZ(x, y)dy, Wy (x,y) isthe kernel of the spline, see [1], {w, (t), t[0,1]} isa sequence
0

of Wiener processes.
Denote by Q,(y) the distribution function of the random variable

2

1, max|& (x)] 17,

and by le) (y) thedistribution functions of the random variable
2

Ll ()=l

where
l, =+2logN (1+4g,), limg, =0. (@)
In the second section of the work, Theorem 2 and 3 are proven:

[, max

0<x<1

& (X )|—I2——>I max

0<x<1

7 (%) =15,

and

,& —12—L2—1, max

0<x<1

& (0] =17,
And it is also stated (Theorem 5) that
inf Var . (x)=0.

0<x<1

2. Formulation and Proof the of Main Results

It holds the following
Theorem 1. Let & and 7 be random variables, in addition P(|§—77|>g)<5 for some £>0, §>0.
Then for any x

P(n<x—&)-6<P(E<X)<P(n<x+¢)+45.

The proof of this statement is easy, therefore we omit it.
Theorems 2 and Theorem 3 will be proved by the mthods given in [2].
Theorem 2. Let h=n"", 0< ¢ <1, and there exist a constant » >0 such that
3
n”7” >logn2n

vlogn?n 2. 2

s 3
2

Then under our assumption a) and b) concerning f (x), there exists a constant C,; >0 such that for suffi-
ciently large n

QW (x —C,n7 ) ~Cgn” <Q, (x)< QY (x+Clsn‘7)+C18n" .

)
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Proof. By the main Theorem from [1],

eV (x)+&? (x)‘ —max

0<x<1

max

0<x<1

£ 0] .o

0<x<1

&7 (%), 3)

n

and forany £>0

P(I
Set g =¢,=Cy/nlogN -1 .
Theorem 2 follows now from Theorem 1, relations (2) from [1], inequalities (3) and (4), and the fact that the

rEl)(x)‘—lf and |, (r)rl%‘nn(xﬁn,ﬂl)(x)‘—lnz have the same distribution.

(1)

max |7, (X)+ 7,

0<x<1

—Mmax

0<x<1

+CgeWhexp{-Coe®h 1,7} 4)

C,h
< 4
n (X )”>€)_IogN

random variables |, max
0<x<1

Theorem 3. If conditions of Theorem 2 hold and %< 6 <1, then for sufficiently large n

Q,(x-C/n7)-C/n7 <G, (x)<Q, (x+C/n7)+C/n7,

where C, >0 isaconstant, G,(x)="P(l,& 12 <x), » isdefined in (2).
Proof. From the interpolation condition
S, (%)=F, (%), k=0,N
we have
ES, (% )=F (%), k=0N
One can easily note that MS (x) is a cubical spline interpolating of
Y = F(xk), k=0,1---,N

in the points of interpolation x, =kh, k=0,N . On the other hand ES/(x)= (ES, (x))'. By Theorem 9 from
the monograph [3] we get

|ES; (x)— f (X)|<5hg,, (5)
where
pr=o(t ’,h)+max{§ (0. 21 '(1)},
o(f'h)=
The relation (5) implies that for arbitrary & >0

P(1,[é, - max|e: (x)] > )

f(x)- f’(y)|, 0<xy<1.

\X V\<h

0<x<1

=P[|n o max| 2 )T E0D| o |0 (0 ZES () >€J
e=xstl gy (X)) F(X) 0=t g ()4 T (X)
<P[I \/_max S ()= () >5]£ P(In«/mczoh>g).
=, (009

It remains to choose & = 2C,,l.+/nh® and using Theorem 1 [1]. Theorem 3 is proved.
Relations !'TT E/(t )_Ilm El.; (1), ItITT E/; (t );t I|m Ery (1), i=L1-+,N-1 imply
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Theorem 4. First order mean square derivations of the Gauss process 7, (x) =0 are continuous in [0, 1],
and second order mean square derivations do not have discontinuity in the points of the spline interpolation.

Let now x =kh,k=0,1---,N be points of the cubical spline interpolation, and T, =[x, % ].k=1,--,N
be a uniform partition of the interval [0, 1]. Is is valid the following

Theorem 5. 1) The variance of mean square derivations of the Gauss process

1 o . , 20h
7, (X)=———=|W, (x,y)dw, (t) vanishes in the intervals T, and T, at the points t =-— and
( ) oy (X)\/H'([ N( ) ( ) 1 N tl (1_0)2
(1+ O'Z)h )
ty =Xy + 5~ respectively;

-0
2) If the variance vanishes also in intervals T,,---,T,_, , then there will be not more than two roots in each in-
terval.
Proof. At the beginning of the proof of the theorem, we proceed as in [2]. Let ht,hseT,. Then using the re-
lation ([4], p. 28)

(Zaibi ]2 =28 )b —%Z(akbj -ajb, )2,
we get for (t,s)e[0,1]°
P2 (th,sh) = (cov(7, (th). 7, (sh)))
> [Euu (h)E, (sh) - E, (t) &y () ©)

_1_ki=0
20, (th) o} (sh)

Substituting into (6)

E.o(th)E,; (sh)—Ey, (th)E, o (sh)
=D, (th) Dy, (sh)— D, (sh) Dy, (th)+ Dy, (sh)— Dy, (th)

Dl 0
and taking into account that D, (th) D,, (sh)—D,,(sh)D,, (th) =0, we obtain
E,, (th)E,, (sh)—E,, (sh)E, (th)= D, (sh)—-D,, (th)

or

[E,o (th)E,, (sh)—E,o (sh) Ey, (th)
=3(s-tf[(2-t-9) (A AR )+ (s (A - Ad)]
We find analogously
[E, (t)E,; (sh)~Ey, (sh)E,; (th) ]
~ 2507 [(2-t=s)(A] - Al )+t ) (Al - AL
and also

[Epnes (th)Eypy o (Sh) —Epy s (Sh) Epy, (th) ]
:%(s—t)z [(2-t=5) A% +(t+3) Aj‘ﬁ,fl}z :

Generalizing the obtained results, we have

)
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N-2

2[(2_5_'{)('%,1] _A\;,li+1) (t+s)(AiJ Ail+1):|2

1- p? (th, sh) = g{
2| &

+[(2-t=8) Ay +(t48) A T (o (t) i (sh) (st
Denote K, (t,7)=W, (t,r)/(\/HGN (t)) . The equality

1

1-p,(t,5)= I[ ST):|2

implies
op, (t, op, (t,
pu(t)=1, 2 ) )l
o |, s,
On the other hand,
th, sh By, (t,t
Varryr'](th) 0 pn( S )| N,l( )
aes | 20°(th)
where
N-2 2 2
By, (tt)= 18{ [(1 (AL - AL +t(AT AM)J -t Ak +AL ] }
j=
N-1
Obviously, o (th)=>"EZ (th)>0. The point t, :—h~(2—0)2eT1 will be a solution of the equation
=0 l-o0
Varn, (th)=0. Recall that o = J3-2. Like the case of i=1, we can act analogously in the case of i=N,
2
i.e.at ht+xy,eT,, Varp,(th)=0 when t, =h1+—02+ Xy1 €Ty -
—O0

The first part of Theorem 5 is proved.

Let pass to the proof of the second part. Both in the case of i=1, i.e. when ht, hseT,, and in the case of
i=2,---,N -1, the equality
Byi(ts)

, th » h » :1_ t— 2—
Pa (th+x_;,sh+x_;) (t-s) 4oy (th+x%,)

isvalid for ht+x_,, hs+x_€T,.

The explicit form of B, ;(t,s) isgiven in Muminov (1987), and it is very cumbersome.
By, (t.t)
20" (th+x.,)
One can easily see that B (t,t) is the sum of second powers of quadratic trinomials with respect to

t€[0,1], and it has not more than two real roots if they exist in [0, 1].
The first part of Theorem 5 is proved.

At last, Theorems 2 and 3 imply that limit distributions of the random variables 1.&, —12 and |, [)na>§|77n (x)| -2

Note, in this case Varz; (th) = also.

coincide. However, the Gauss process 7, (x) does not have second order mean square derivatives in the inter-
polation points for the spline, and Oinf1Var n (x) =0. Therefore one can not apply results of the works [5]-[7]

to investigate the distribution of the maximum of 7, (x). This deficiency has been removed in [8].
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