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Abstract 
In the paper, the deviation of the spline estimator for the unknown probability density is approx-
imated with the Gauss process. It is also found zeros for the infimum of variance of the derivation 
from the approximating process. 
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1. Introduction 
The present work is a continuation of the work [1], that’s why we use notations admitted in it. We shall not turn 
our attention to more detailed review because it is given [1]. 

Let 1 2, , , nX X X  be a simple sample from the parent population with the probability density ( )f t  con-
centrated and continuous on the segment [ ]0,1 . Let ( )nS x  be a cubic spline interpolating values ( )k n ky F t=  
at the points kx kh= , 0, ,k N=   with the boundary conditions 

( ) ( )1 0 10 , 1 N N
n n

y y y y
S S

h h
−− −′ ′= =  

where ( )N N n= , 1h N= , 0h → , nh →∞  as n →∞ . 
Remind that 
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( ) ( )
( ) ( )0 1

max n
n x

N

S x f x
nh

x f x
ξ

σ≤ ≤

′ −
= , 

( ) ( ) ( )
( ) ( )

*

0 1
max n n

n x
N

S x ES x
x nh

x f x
ξ

σ≤ ≤

′ ′−
= , 

( )
( )

( ) ( )
1

0

1 , dn N n
N

x W x y y
x h

η ω
σ

= ∫ , 

where ( ) ( )
1

2 2

0

1 , dN Nx W x y y
h

σ = ∫ , ( ),NW x y  is the kernel of the spline, see [1], ( ) [ ]{ }, 0,1n t tω ∈  is a sequence  

of Wiener processes. 
Denote by ( )nQ y  the distribution function of the random variable 

( )* 2

0 1
maxn n nx

l x lξ
≤ ≤

− , 

and by ( ) ( )1
nQ y  the distribution functions of the random variable 

( ) 2

0 1
maxn n nx

l x lη
≤ ≤

− , 

where 

( )2log 1 , lim 0n n nn
l N g g

→∞
= + = .                             (1) 

In the second section of the work, Theorem 2 and 3 are proven: 

( ) ( )* 2 2

0 1 0 1
max max ,D

n n n n n nx x
l x l l x lξ η

≤ ≤ ≤ ≤
− → −  

and 

( )2 * 2

0 1
max ,D

n n n n n nx
l l l x lξ ξ

≤ ≤
− → −  

And it is also stated (Theorem 5) that 

( )
0 1
inf 0.nx

Var xη
≤ ≤

′ =  

2. Formulation and Proof the of Main Results 
It holds the following 

Theorem 1. Let ξ  and η  be random variables, in addition ( )P ξ η ε δ− > <  for some 0ε > , 0δ > . 
Then for any x 

( ) ( ) ( )P x P x P xη ε δ ξ η ε δ< − − ≤ < ≤ < + + . 

The proof of this statement is easy, therefore we omit it. 
Theorems 2 and Theorem 3 will be proved by the mthods given in [2]. 
Theorem 2. Let h n δ−= , 0 1δ< < , and there exist a constant 0γ >  such that 

3 1 3
2 2 2 2log logn n n n n

δ δ
γ

−
− −− ≥ ∨ .                              (2) 

Then under our assumption a) and b) concerning ( )f x , there exists a constant 18 0C >  such that for suffi-
ciently large n 

( ) ( ) ( ) ( ) ( )1 1
18 18 18 18n n nQ x C n C n Q x Q x C n C nγ γ γ γ− − − −− − < ≤ + + . 
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Proof. By the main Theorem from [1], 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

0 1 0 1 0 1
max max maxn n n n n nx x x

l x x x l xξ ξ ξ ξ
≤ ≤ ≤ ≤ ≤ ≤

+ − ≤ ,                   (3) 

and for any 0ε >  

( ) ( ) ( )( ) { }1 1 2 1 24
5 60 1 0 1

max max exp
logn n n n nx x

C hP l x x C h C h l
N

η η η ε ε ε− − −

≤ ≤ ≤ ≤
+ − > ≤ + − .          (4) 

Set 20 logn nC n N lε ε= = ⋅ . 
Theorem 2 follows now from Theorem 1, relations (2) from [1], inequalities (3) and (4), and the fact that the  

random variables ( ) ( )1 2

0 1
maxn n nx

l x lξ
≤ ≤

−  and ( ) ( ) ( )1 2

0 1
maxn n n nx

l x x lη η
≤ ≤

+ −  have the same distribution. 

Theorem 3. If conditions of Theorem 2 hold and 1 1
3

δ< < , then for sufficiently large n 

( ) ( ) ( )* * * *
1 1 1 1n n nQ x C n C n G x Q x C n C nγ γ γ γ− − − −− − < ≤ + + , 

where *
1 0C >  is a constant, ( ) ( )2

n n n nG x P l l xξ= − < , γ  is defined in (2). 
Proof. From the interpolation condition 

( ) ( ) , 0,n k n kS x F x k N= =  

we have 

( ) ( ) , 0,n k kES x F x k N= = . 

One can easily note that ( )nMS x  is a cubical spline interpolating of 

( ) , 0,1, ,k ky F x k N= =  , 

in the points of interpolation kx kh= , 0,k N= . On the other hand ( ) ( )( )n nES x ES x ′′ = . By Theorem 9 from 
the monograph [3] we get 

( ) ( ) 5n nES x f x hβ′ − ≤ ,                                 (5) 

where 

( ) ( ) ( )2 3 3, max 0 , 1 ,
5 5 5n f h f fβ ω  ′ ′ ′= +  

 
 

( ) ( ) ( ), max , 0 , 1
x y h

f h f x f y x yω
− ≤

′ ′ ′= − ≤ ≤ . 

The relation (5) implies that for arbitrary 0ε >  

( )( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

*

0 1

0 1 0 1

200 1

max

max max

max .

n n nx

n n n
n x x

N N

n
n nx

N

P l x

S x f x S x ES x
P l nh nh

x f x x f x

ES x f x
P l nh P l nhC h

x f x

ξ ξ ε

ε
σ σ

ε ε
σ

≤ ≤

≤ ≤ ≤ ≤

≤ ≤

− >

 ′ ′ ′− − = − >
 
 
 ′ − ≤ > ≤ >
 
 

 

It remains to choose 3
202 nC l nhε =  and using Theorem 1 [1]. Theorem 3 is proved. 

Relations ( ) ( ) ( ) ( ), 1, , 1,lim lim , lim lim , 1, , 1
i i i i

i j i j i j i jt x t x t x t x
E t E t E t E t i N+ +↑ ↓ ↑ ↓
′ ′ ′′ ′′= ≠ = −  imply 
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Theorem 4. First order mean square derivations of the Gauss process ( ) 0n xη =  are continuous in [0, 1], 
and second order mean square derivations do not have discontinuity in the points of the spline interpolation. 

Let now , 0,1, ,kx kh k N= =   be points of the cubical spline interpolation, and [ ]1, , 1, ,k k kT x x k N−= =   
be a uniform partition of the interval [0, 1]. Is is valid the following 

Theorem 5. 1) The variance of mean square derivations of the Gauss process 

( )
( )

( ) ( )
1

0

1 , dn N n
N

x W x y t
x h

η ω
σ

= ∫  vanishes in the intervals 1T  and NT  at the points 
( )1 2

2
1

ht σ
σ

= −
−

 and 

( )
( )

2

1 2

1

1
N N

h
t x

σ

σ
−

+
= +

−
, respectively; 

2) If the variance vanishes also in intervals 2 1, , NT T − , then there will be not more than two roots in each in-
terval. 

Proof. At the beginning of the proof of the theorem, we proceed as in [2]. Let 1,ht hs T∈ . Then using the re-
lation ([4], p. 28) 

( )
2

22 2

,

1 ,
2j j j j k j j k

j j j k j
a b a b a b a b

 
= − − 

 
∑ ∑ ∑ ∑  

we get for ( ) [ ]2, 0,1t s ∈  

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( )

22

1 2
1, 1, 1, 1,

, 0
2 2

, cov ,

1 .
2

n n n

N

k j j k
k j

N N

th sh th sh

E th E sh E th E sh

th sh

ρ η η

σ σ

−

=

=

 − 
= −

∑                        (6) 

Substituting into (6) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1,0 1,1 1,1 1,0

1,0 1,1 1,0 1,1 1,1 11

E th E sh E th E sh

D th D sh D sh D th D sh D th

−

= − + −
 

and taking into account that ( ) ( ) ( ) ( )1,0 1,1 1,0 1,1 0D th D sh D sh D th− = , we obtain 

( ) ( ) ( ) ( ) ( ) ( )1,0 1,1 1,0 1,1 1,1 1,1E th E sh E sh E th D sh D th− = −  

or 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

2
1,0 1,1 1,0 1,1

22 1 1 1 1
0,1 0,2 1,1 1,2

9 2 .
4

E th E sh E sh E th

s t t s A A s t A A− − − −

 − 

 = − − − − + + − 

 

We find analogously 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

2
1, 1, 1, 1,

22 1 1 1 1
0, 0, 1 1, 1, 1

9 2 ,
4

k j k j

j j j j

E th E sh E sh E th

s t t s A A t s A A− − − −
+ +

 − 

 = − − − − + + − 

 

and also 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1, 1 1, 2 1, 1 1, 2

22 1 1
0, 1 1, 1

9 2 .
4

N N N N

N N

E th E sh E sh E th

s t t s A t s A

− − − −

− −
− −

 − 

 = − − − + + 

 

Generalizing the obtained results, we have 
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( ) ( )( ) ( )( )

( ) ( ) } ( ) ( )( ) ( )

2 22 1 1 1 1
0, 0, 1 1, 1, 1

1

2 2 21 1
0, 1 1, 1

91 , 2
2

2 .

N

n j j j j
j

N N N N

th sh s t A A t s A A

t s A t s A th sh s t

ρ

σ σ

−
− − − −

+ +
=

−− −
− −

  − = − − − + + −  

 + − − + + ⋅ ⋅ ⋅ − 

∑
 

Denote ( ) ( ) ( )( ), ,n N NK t W t h tτ τ σ= . The equality 

( ) ( ) ( )
1 2

0

11 , , ,
2n n nt s K t K sρ τ τ − = − ∫    

implies 

( ) ( ) ( ), ,
, 1, 0.n n

n
t s t s

t s t s
t t

t s
ρ ρ

ρ
= =

∂ ∂
= = =

∂ ∂
 

On the other hand, 

( ) ( ) ( )
( )

2
,1
4

,,
Var

2
Nn

n

s t

B t tth sh
th

t s th
ρ

η
σ

=

∂
′ = =

∂ ∂
 

where 

( ) ( )( ) ( ) ( )
2 2 21 1 1 1 1 1

,1 0, 0, 1 1, 1, 1 0, 0, 1
1

, 18 1 1
N

N j j j j N N
j

B t t t A A t A A t A tA
−

− − − − − −
+ + −

=

    = − − + − + − +    
∑ . 

Obviously, ( ) ( )
1

2 2
1,

0
0

N

N j
j

th E thσ
−

=

= >∑ . The point 
( )1 12

2
1

t h Tσ
σ

= − ⋅ ∈
−

 will be a solution of the equation  

( )Var 0n thη′ = . Recall that 3 2σ = − . Like the case of 1i = , we can act analogously in the case of i N= ,  

i.e. at 1N Nht x T−+ ∈ , ( )Var 0n thη′ =  when 
( )

2

12

1
1

N N Nt h x Tσ
σ

−
+

= + ∈
−

. 

The first part of Theorem 5 is proved. 
Let pass to the proof of the second part. Both in the case of 1i = , i.e. when ht , 1hs T∈ , and in the case of 

2, , 1i N= −
, the equality 

( ) ( ) ( )
( )

2 ,2
1 1 4

1

,
, 1

4
N i

n i i
N i

B t s
th x sh x t s

th x
ρ

σ− −
−

+ + = − −
+

 

is valid for 1iht x −+ , 1i ihs x T−+ ∈ . 
The explicit form of ( ), ,N iB t s  is given in Muminov (1987), and it is very cumbersome. 

Note, in this case ( ) ( )
( )

,
4

1

,
Var

2
N i

n
i

B t t
th

th x
η

σ −

′ =
+

 also. 

One can easily see that ( ), ,n iB t t  is the sum of second powers of quadratic trinomials with respect to 
[ ]0,1t∈ , and it has not more than two real roots if they exist in [0, 1]. 

The first part of Theorem 5 is proved. 
At last, Theorems 2 and 3 imply that limit distributions of the random variables 2

n n nl lξ −  and ( ) 2

0 1
maxn n nx

l x lη
≤ ≤

−   

coincide. However, the Gauss process ( )n xη  does not have second order mean square derivatives in the inter-  
polation points for the spline, and ( )

0 1
inf Var 0nx

xη
≤ ≤

′ = . Therefore one can not apply results of the works [5]-[7]  

to investigate the distribution of the maximum of ( )n xη . This deficiency has been removed in [8]. 
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