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Abstract 
The analysis of spatially correlated binary data observed on lattices is an interesting topic that 
catches the attention of many scholars of different scientific fields like epidemiology, medicine, 
agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting 
the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte 
Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodol-
ogy. Assuming a normal distribution for the latent random variable may not be realistic and wrong, 
normal assumptions might cause bias in parameter estimates and affect the accuracy of results 
and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spa-
tial models. A review of the recent literature in spatial statistics shows that there is an increasing 
tendency in presenting models that are involving skew distributions, especially skew-normal ones. 
In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the 
spatially correlated binary data that were acquired on uncorrelated lattices. The proposed me-
thodology was applied in inspecting spatial dependency and related factors of tooth caries occur-
rences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results in-
dicated that the skew-normal latent variable model had validity and it made a decent criterion 
that fitted caries data. 
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1. Introduction 
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the atten-
tion of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology 
and geography [1]-[11]. A review of the spatial statistical literature reveals that the autologistic regression, as a 
special case of the conditional autoregressive (CAR) models, is the main tool for analyzing the binary data col-
lected from random fields [12]-[20]. Since the autologistic model normalizing factor does not have a closed 
form, it is tough to handle it [4] [21] [22]. So, following the traditional estimation methods, other inferential 
methods such as Bayesian paradigm were proposed to decline computational complications or to augment the 
efficiency of the estimates of model parameters [4] [12] [23]-[25]. To overcome the encountered difficulties 
upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte 
Carlo (MCMC) techniques, the Gaussian latent variable method has been enrolled in the spatial generalized li-
near models [3] [8] [12] [13] [26]. Assuming a normal distribution for the latent random variable may not be 
realistic, so wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of re-
sults and inferences of the proposed methodology [1] [5] [6] [27]-[29]. Thus, it entails more flexible prior dis-
tributions for the latent variable in the spatial models [30] [31]. A review of the recent literature in spatial statis-
tics shows that there is an increasing tendency in presenting models that are involving skew distributions, espe-
cially skew-normal ones [8] [27] [29] [32]-[36]. 

The univariate skew-normal distribution, a pioneering work started by Azzalini [37] [38], has many similar 
properties to normal distribution and include an extra parameter which regulates (represents) its skewness [35] 
[37]-[42]. The multivariate case and its marginal distributions as well as the extended conditional versions of the 
skew-normal distributions were developed by Azzalini and Dalla Valle [43], Azzalini and Capitanio [44] and 
Azzalini [45]. 

The main capability of this class of distributions in applications is its ability in capturing and simplicity mod-
eling departures from symmetry, whilst retaining tractability and closeness [46] [47]. Following the develop-
ment in spatial domain by Kim et al. [33] and Kim and Mallick [34], the authors such as Zhang and El-Shaaravi 
[29], Mohamadzadeh and Hosseini [31], Flecher et al. [27] and Allard and Soubeyrand [2], used the skew-nor- 
mal distribution in analyzing spatial structure models. Moreover, Kim and Mallick [6] [48] and Karimi and Mo-
hammadzadeh [5], implemented a Bayesian analysis in modeling skew-normal spatial observations. Although 
Hosseini et al. [3] incorporated the skew-normal latent variables in inference from a spatial generalized mixed 
model, no studies were found considering skew-normal latent variables in analysis of spatially correlated binary 
data modeled via autologistic regression [8] [49]-[51]. 

In this study, a skew-normal latent variable modeling in Bayesian analysis of the spatially correlated binary 
data acquired on uncorrelated lattices will be developed. 

2. Statistical Models 
2.1. Modeling Based on the Autologistic Regression 
Let ( )1, , , ,i i ij iny y y y ′=    be the binary (1/0) observations at n sites of the ith element of a set of N uncorre-
lated and uniform lattices [4] [12] [20] [52]. We suppose that ( )1, ,ij ij ijmx x x ′=   be the m-vector of covariates 
related to response variable ijy . Thus, in lattice i, iy  is a random field and the observations ( )1, , , ,i ij iny y y ′

   
are spatially correlated binary data [15] [52], to the extent that neighboring observations affect a site observation. 
Thus the appropriate model is the autologistic regression which incorporates the effects of neighboring res-
ponses and covariates simultaneously and is a Markov random field model [20] defined as the conditional prob-
ability ijp , where 1ijy =  given all other values ijy : 

( ) ( )( ) ( )
( )

exp
, ,

1 exp
i

i

ij ikk N
ij ij ik i

ij ikk N

x y
p p y y j k k N j

x y

γ

γ

∈

∈

′ +
= ≠ ∈ =

′+ +

∑
∑

β
η

β
                  (1) 

where ijx  as defined before is the vector of covariates of ijy  with its first element 1; ( )1, ,
t

qβ β= β  is the 
vector of coefficients of the covariates ijx ; and γ  is the coefficient of spatial auto covariate 

i ikk N y
∈∑ , such 

that ( ) { }: is a neighbo  of r  i ik ijN j k y y=  denotes indices of the first-order neighborhood set of site j in lattice i , 
which for a rectangular lattice, is defined as adjacent two vertical and two horizontal sites. We assume that the 
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model (1) is a fixed effect and the spatial associations that are obeying an isotropic function are stationeries [52] 
[53]. Hence, effects of individual lattices and coefficients are the same at neighboring sites as well as in all di-
rections [54]. 

Based on the Equation (1), the joint probability model of the ijy s  (vector iy ) is 

( ) ( )( ) 1

1, 1 , exp
2

n
i ij ij ijjp y x wγ ϕ γ γ

=

  ′= +    
∑β β βy                      (2) 

where ( )ij ikk N jw y
∈

= ∑  and ( ),ϕ γβ  is a normalizing factor obtained by summing overall possible realiza-  

tions of iy  namely 

( ) for all 1

1, exp
2ij

n
ij ij ijy j y x wϕ γ γ

=

  ′= +    
∑ ∑β β , 

and for all observations ( )1, , N
′= y y y  is 

( ) ( ) ( )( ) 11

1, 1 , exp
2

N n
ij ij ijjiL p y wγ ϕ γ β γ

==

  = = +    
∑∏η β βy y x                (3) 

In this stage the set of parameters is denoted by { },= β γ . 
The parameter estimation of the models (1) to (3), which are based on the autologistic model, using traditional 

[15] [23], Bayesian [24] [25] or Markov chain Monte Carlo methods [19], is time-consuming and might expose 
limitations and complications [21] [51]. Consequently, the authors such as Afroughi et al. [12] [13] with intro-
ducing Gaussian latent variables, made easier the computational implications in proposed models. The current 
study implements a posterior analysis with the help of skew-Gaussian latent variable modeling [6] [37] [38] 
[43]-[45] [55]. 

2.2. Using Skew-Normal Latent Variables Model 
Let ( )1, ,i i inz z ′= z  be the vector of latent variables corresponding to iy , so that for every observed binary  
variable ijy , ( ) ( )01ij ijp y p z d= = >  and ( ) ( )00ij ijp y p z d= = < . We assume that based on the Azzalini  

and Dalla Valle [43], Azzalini and Capitanio [44], Liseo and Loperfido [46], Ashur and Abdel-Hameed [56], 
Gupta et al. [41], Liseo and Parisi [57] and Figueiredo and Gomes [58], the n-dimensional random vector iz  
has a multivariate skew-normal distribution with n-dimentional location parameters vector i i i′= +µ β γx w , 
n n×  positive-definite variance-covariance matrix θΣ  and skewness parameters vector na , written as 

( ), ,i n i i nSN θ′∼ + Σβ γz x w a , with probability density function 

( ) ( ) ( )( )( )1, 2 ,i n i i n i i if x w z x wβ γ φ β γ ω γ−′ ′ ′= + Σ Φ − +βz a                  (4) 

where ϕn and Φ are n-dimensional normal density and standard normal cumulative distribution functions, respec-
tively, n na= 1a  such that 1n is a n × 1 vector of 1 and a R∈ , ( )1 2, , ,i i i in

′= ′ ′ ′
x xx x , ( )1 2, , ,i i i inw w w ′= w  

and ω  is a diagonal matrix such that 1
θ θω ω−Σ = Σ , where θΣ  is the correlation (positive definite) matrix of 

the vector iz , the spatially correlated variables ijz . If the element of Σ  is denoted by ijσ  and 2 1jj jσ σ= = , 
then ( )1 2

11diag , , nnω σ σ=  . The element of θΣ  in lattice i is defined in the equation below, such that 

( ) ( )corr , jkd
ij ik jkz z k dθ θ= =                              (5) 

where jkd  is the Euclidian distance between sites k  and j  in the lattice i , and θ  is the correlation para-
meter which measures smoothness of the correlation function kθ  [6]. Thus, the final states of the model and its 
parameters are 

( ) ( ) ( )( )2 , (i n i i n i i if x w a z x wθη φ β γ γ′ ′ ′= + Σ Φ − +1 βz                    (6) 

and { }, , , aγ θ′=η β , respectively. 
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2.3. Bayesian Inference 
The latent variable z  is augmented to the acquired data y , so the posterior function of parameters and latent 
variables are ( ),f η z y . Since, this function has a complicated form, sample generations could be done by full 
conditional functions ( ),f η z y  and ( ),f ηz y , using Gibbs sampler technique [59]. To generate i.i.d. sam-
ples from ( ),f η z y , first sample generation must be down from ( ),f ηz y . The analytic process for exploit-
ing the above functions and/or related conditional distributions with Markov chain Monte Carlo methods is pre-
sented as follows. 

a) Inlattice i, the distribution of the skew-normal (latents) vector iz  is 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
1

, 2 , 0 1 0 0
n

t
i i n i n i ij ij ij ij

i
f a I z I y I z I yθφ

=

= Σ Φ > = + < =∏ηz y z z           (7) 

which is a multivariate truncated skew-normal distribution [60]. Based on the Gibbs sampling technique, the re-
lated full conditionals, which are univariate truncated skew-normal distributions, are given as below: 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 2
2.1 21 22 21 2.1 2.1, , ,1 1

                              0 1 0 0 ,

t
ij i j ij ij ij

ij ij ij ij

f z z Y z a z a L

I z I y I z I y

φ µ µ ϕ ϕ−
− = − −Σ Σ Σ ×Φ − + + Φ

 × > = + < = 

η
        (8) 

where, 

( )1 1 1, , , ,
t

i j i ij ij inz z z z− − +=  z , 

( )1
2.1 12 22

t t
ij ij i j i j jwµ γ β−

− − −
 = + + Σ Σ − βx z x , 

( )t t
z i j i j jaϕ β− − −= × −a z x , 

1
2.1 12 22 121 tL −= −Σ Σ Σ , ( )( ) ( )1 2

22 21 1 2.11 1 1
tt t

z nna I a Lα −
−−= + Σ Σ + −1 , 

1, , , ,ij ij ijk ijqx x x ′ =   x , 

1, , , ,
t

i i ij inx x x =   x  

1 1 1, , , , ,t t t t
i j i ij ij inx x x x− − +

′ =   x  

1 2, , , qβ β β β ′ =   , 

1 2 1 1, , , , , ,j j j qβ β β β β β− − +
′ =    , 

and Σ12, Σ22 and Σ21 are the submatrixes of the n × n partitioned correlation matrix Σ of the vector ( ),ij i jz −
′z   

such that 11 12

21 22

Σ Σ 
Σ =  Σ Σ 

. 

b) The posterior distribution ( ),f η z y  is equal to ( )f η z  or ( )( ), , ,f aβ θ γ z . 
Again, based on the Gibbs sampling technique [61] and assumption of prior independence of parameters, the 

related full conditional functions are given as follow: 
b-1): 

( ) ( ) ( )
( ) ( )0

, , , , , , , ,

, , ,

f a f a f

f a f

θ γ θ γ θ γ α

θ γ

∝

∝

z z

z

β β β

β β
                        (9) 
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where ( ) ( )1, , , ?N
iif aθ γ

=
=∏z zβ η  in which ( ), ,i n i i nSN θ′∼ + Σβ γz x w a  

Such that 

( ) ( ) ( ), , , 2 , t
i n i i n if a θγ θ φ ′= + Σβ β γz x w a zΦ  

or in other form 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( ) 21 22 1 2

, , , 2 ,

1 1                        2 2π exp e d ,
2 2π

i i i

t
i n i i i n i i i

n t
i i i i i i

f a

t

θ

α
θ θ

γ θ φ

′− +−− − −

−∞

′ ′∝ − + Σ − +

− ′′ ′= Σ − + Σ − +   ∫
β γ

β β γ β γ

β γ β γ
z x w

z z x w a z x w

z x w z x w

Φ

 
since 

( ) ( )

( ) ( )( ) ( )( ) ( )( ) 2

1

2 1 22

1 1

1 12 2π exp e d ,
2 2π

i i i

N

i
i

N NnN NN t
i i i i i i

i i

f n f n

t
α

θ θ

=

− ′− +− − −

−∞
= =

=

−  ′′ ′∝ Σ − + Σ − +    

∏

∑ ∏∫
z x w

z z

z x w z x w
β γ

β γ β γ
 

Then 

( ) ( ) ( )0, , ,f f fθ α γ ∝β η βz z  

where ( )0f β  is the prior distribution of the vector β  such that ( )0 0~ ,q Vφβ β . 
Therefore, 

( )

( )( ) ( )( ) ( )( )( ) ( )

( ) ( )( )( )

2 1
0

1 1

1

, , ,

1  exp
2

  , ,

N N
N t

i i i i i i i i i
i i

N t
q i i ii

f

fθ θ

β β

θ γ α

α γ

φ α γ

− −

= =

=

−  ′′ ′∝ Σ − + Σ − + Φ − +    

∝ − Φ − +

∑ ∏

∏

β

β γ β γ β β

β β

z

z x w z x w z x w

u v z x w

  (10) 

where 

( )1 1
0 01

ˆN t
i i i ii v Vβ θ

− −
=

= Σ +∑ β βu x x , ( ) 11 1
0

t
i i iv Vθ

−− −= Σ +x x  

1
N

ii vβ =
= ∑v  and ( ) 11 1ˆ t t

i i i i izθ θ

−− −= Σ Σβ x x x  

b-2): 

( ) ( ) ( ) ( ) ( )0, , , , , , , , , , ,f f f f gγ θ α γ θ α γ θ α γ θ α γ∝ =β β β βz z z              (11). 

where the above equations ( )0g γ  is the prior distribution of γ  and assumed Gamma distribution ( )0 0,G a b . So 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )( )
( )

( ) ( )( ) ( )( ) ( )( ) 2

0 0 01

22 1

1 1

0 0

22 1 2
1

, , , ,

12 2π exp
2

        ,

1 12 2π exp( e d
2 2π

t t
i i i

N
ii

N NtNNnN t
i i i i i i i i i

i i

tNNn NN t
i i i i i ii i

f f g f n G a b

z x w z x w

G a b

z x w z x w t

θ θ

α γ
θ θ

γ θ α γ

β γ β γ α γ

β γ β γ

=

−− −

= =

− +−− − −
= = −∞

∝ =

− 
= Σ − + Σ − + Φ − + 

 
×

−
= Σ − + Σ − +

∏

∑ ∏

∑ ∫
z x w

z z z

z x w

β

β η

β

( ) ( )
0

0

1

10
0

0

exp ,

N

a
ab b

Г a
γ γ−× −

∏

 (12) 

As it is evident, ( ), , ,f γ θ αβz  does not have a specified form and we can sample again from this distribu-  

tion through Metropolis-Hastings [59] steps with proposed density ( ) ( )2ˆ. ,q N γγ γ σ=  where γ̂  and 2
γσ   
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(Appendix A) are derived from ( )ln , , ,f z aβ γ θ γ ∂ ∂   and ( )2 2ln , , ,f z aβ γ θ γ −∂ ∂  , respectively. b-3): 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

( )

2

0

ln22 1 2
1 1

0

, , , , , , , , , , ,

1 1  2 2π exp( e d
2 2π

      ,

i i itNNn NNN t
i i i i i ii i

f f f f z f

z x w z x w t

f

γ
θ θ

θ α γ γ θ α θ β α γ β γ θ α θ

β γ β γ

θ

∝ − +−− − −
= = −∞

∝ ∝

−
= Σ − + Σ − +

×

∑ ∏ ∫
β

β β

z x w

z z

(13) 

where 0f  is the prior distribution of θ  and assumed uniform in (0, 1). In order to generate a sample from
( ), , ,f θ γ αβz , which has not a closed form, we use Metropolis-Hastings algorithm [59] as follows. The corre-

lation parameter θ  is changed to ( )logitξ θ=  and ξ ′  is generated from the proposed density 

( ) ( )2
0. , 0.81q Nξ ξ ξ ξ= = Ψ = . 

The value 

( ) ( )( )exp 1 expθ ξ ξ′ ′ ′= +  

is accepted with regard to ( ) ( ) ( ) ( )1 1q qξ ξξ ξ ξ ξ θ θ θ θ′ ′ ′ ′= − −    and probability of  

( )
( )

( )
( )

, , , 1
min ,1

1, , ,
f a z
f a z
θ β γ θ θ

α
θ θθ β γ

  ′ ′ − = ×       ′−    
. 

b-4): 

( ) ( ) ( )
( )

( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( )( )

0

1
0

1 1

0 1

, , , , , , , ,

  , , , ( )

1  exp
2

  ,

N N
t

i i i i i i i i i
i i

N t
i i ii

f a z f z a g a

f z a f a

f a a

f a a

θ

β θ γ β θ γ β θ γ

β θ γ

γ γ γ

γ

−

= =

=

∝

=

−  ′′ ′∝ − + Σ − + Φ − +    

∝ Φ − +

∑ ∏

∏

β β β

β

z x w z x w z x w

z x w

     (14) 

where 0f  is the prior distribution of a  and since we assumed priori ( )2
0~ 2, 1N aα σ= = , then 

( ) ( ) ( )( )( )2
0 1

1, , , exp
2

N t
i i iif a z a a aβ θ γ γ

=

 ∝ − − Φ − +  
∏ βz x w                 (15) 

this distribution does not have a closed form and we could sample from it again through Metropolis-Hasting 
technique with proposed density ( ) ( ). 0, 4q a N= . 

3. Application 
In this section, the proposed methods are applied to the actual data-set that were collected in a study designed to 
explore spatial dependency and related factors in tooth caries experiences in a random sample of size 132 taken 
from students of Yasuj University of Medical Sciences, Iran, in 2012. A team of oral health hygienists working 
in a dentistry centre gathered data as follows. First, information regarding demographic, social and mouth 
healthcare were obtained through a questionnaire. Then, each tooth along with its periodontal in the complete 
(32) teeth set of every student were assessed and the presence of caries in each surface of a tooth and gingivitis 
in its periodontal was diagnosed based on the clinical methods [62] like light, mirror and sound. Additionally, 
the teeth of each subject were stratified as sound, carious, missing and/or filled due to caries, and a chart was 
prepared denoting the caries status and site position of each tooth in his/her mouth. The above steps were ap-
proved by adentist and a professor of pediatric dentistry. 

The autologistic model (1) is fitted to data such that ijy  is the binary response variable of tooth j in subject i 
where 1ijy =  indicates that a tooth is decayed, missed or filled due to caries, and 0ijy =  if it is sound [49]. 
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Further ijx  denotes that the covariates in subject and tooth levels including age (in years), gender (1 = male, 0 
= female), gingivitis (gingv) (1 = present, 0 = otherwise), father occupation (ocf) (1 = official worker, 0 = oth-
erwise), father education (edf) (1 = university educalated, 0 = otherwise), teeth were check up at least once in 
every 6 months by a dentist (vizd6) (1 = yes, 0 = no) at least brushing the teeth once in a day (tbr) (1 = yes, 0 = 
no), and every day tooth flossing (tfl) (1 = yes, 0 = no). Additionally, the sum of three responses in the first-or- 
der neighborhood teeth (Figure 1) of a ijy , constitutes the spatial autocovriate (spacov) ( )ijw . The coefficients 
of explanatory covariates and spatial autocovariate are denoted by ( )0 1 8, , ,β β β ′= β  and γ  respectively. 
As was explained in previous work [54], the teeth caries statuses ( )ijy s  in a mouth are spatially correlated bi-
nary data clustered in uncorrelated (subjects) lattices. Accordingly, the posited extended autologistic model (1) 
based on the logit link is as follows. 

( ) 0 1 2 3 4 5 6 7 8logit ginv gend age ocf edf vzd6 tbr fls spacovijp tβ β β β β β β β β γ= + + + + + + + + +     (16) 

The Bayesian estimations of parameters using Gibbs sampling and MCMC technique were obtained through 
programming coded in freeware R [63] version 3.1 as follows. First based on the adopted prior distributions  

( )( )9 0 0 90,0,0,0,0,0,0,0,0 , 2N v I= =µ , ( )Gamma 1,2 , ( )0,1U  and ( )0,10N  for the parameters β , γ, θ ,  

a , respectively, a sample of ijz s  were generated [51] from skew-normal distribution (8). Then, implementing 
these ijz s  in each of 50 iterations a sample of size 10000 of parameters { }, , , aγ θ=η β  were simulated from 
full conditional distributions (10), (12), (13) and (15), and after discarding first 4000 samples, the rest were ap-
plied to estimate the parameters. 

The estimates of the parameters such as mean, standard errors (SE) as well as the 95% credible intervals are 
summarized in Table l. As is shown from this table, the coefficients of constant value, spatial auto covariate, the 
covariates gender, age, father occupation and father education and the skewness parameter are significantly dif-
ferent from zero. These findings demonstrated that caries statuses in neighboring teeth had influenced in caries 
occurrence in a tooth, female and younger students were more susceptible to tooth decaying and students whose 
fathers were official workers and/or university educated had lower tooth caries experiences. Further, as the con-
tents of this table indicate, the gingivitis in a student notably arises caries occurrence in his (or her) teeth. Al-
though the tooth brushing prevents the dental caries, yet, it doesn’t have a significant impact. Furthermore, the 
estimate of the skewness parameter is different from (below) zero in a considerable case which indicates that the 
latent variable is highly skewed to the right side. 
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Figure 1. Spatial locations of complete (32) teeth in lattice system. 
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Table 1. Results of parameter estimations of the skew-normal latent variable model. 

Covariate Parameter Estimate Standard error 95% Cridble interval 

Constant B0 −0.1037 0.044 (−0.1477, −0.097) 

Ginv B1 0.0713 0.027 (0.0173, 0.1253) 

Gend B2 −0.1544 0.057 (−0.2684, −0.0404) 

Age B3 −3.1108 0.65 (−4.4108, −2.8108) 

Ocf B4 −0.0828 0.028 (−0.1388, −0.0268) 

Edf B5 −0.0550 0.011 (−0.077, −0.033) 

Vzd6 B6 0.0715 0.038 (−0.0048, 0.1475) 

Tbr B7 −0.1446 0.056 (−0.2566, 0.0326) 

Tfls B8 0.0276 0.03 (−0.324, 0.0876) 

Spacov γ  0.23 0.032 (0.166, 0.294) 

− θ  (correlation) 0.58 0.051 (0.478, 0.682) 

− a (skewness) −2.75 0.027 (−2.794, −2.696) 

4. Assessing the Model 
To check the accuracy and validity of the presented skew-normal latent variable modeling, implementing a normal- 
latent variable methodology in Bayesian analysis of spatially correlated binary data was considered. The para-
meters estimates of this model using MCMC sampling were obtained and shown in Table 2. The findings in this 
table indicates that the estimates of parameters in the two methodology are often near to each other or in the same 
direction, while standard errors of the estimates in the methodology using skewed normal latent variable is lower 
than other case. Furthermore the Bayesian information criterion (BIC) [64] based the ( )( )ˆBIC 2ln logL q m= − +η , 
where L, q, m and η̂  are likelihood function, number of parameter sample size and the estimated parameters, 
respectively, were computed for two models. For skew-normal latent model BIC = 1162036.2 and for normal 
latent variable model BIC = 1225318.8 were obtained. As is seen, the model using skew-normal latent variable 
in analysis of spatially correlated binary data is the better one. 

5. Discussion 
In this paper, a skew-normal latent variable methodology has been developed in Bayesian analysis of the spa-
tially correlated binary data using autologistic regression model. Parameter estimation for the autologistic model 
is an extremely difficult job since its likelihood function has a normalizing factor which doesn’t have a closed 
form [22] [23]. On the other hand, the traditional pseudo-likelihood estimation method, due to spatial depen-
dency in data, especially when the lattice size is small, is inefficient [54]. Furthermore, the likelihood-based 
Markov chain Monte Carlo and Bayesian approaches often encounter with complicated and rigorous computa-
tions. Recently, authors such as Hughes et al. [4] have presented a method for easier and faster implementing the 
autologistic model. But with introduced excess parameters in their model, the inferential complications have not 
been reduced and their presented method is appropriate only for large size lattices. Also, Hossaini et al. [3] have 
researched the using of skew-normal latent variable approach in analyzing spatial data. However, they haven’t 
introduced the autologistic model and a covariate capturing the influences of the neighboring sites of the re-
sponse variable. Moreover, in the mentioned studies only data from one lattice were investigated. 

The application of the presented methodology in tooth caries analysis demonstrates that the model is well fit-
ted and the coefficients of spatial autocovariate which involves the sum of caries statuses in neighboring teeth of 
a tooth, and the gingivitis around it, and the education and occupational statuses of the participant’s father, are 
notably different from zero. In addition, as it is evident from the result, the presented model in comparison with 
the normal latent variable method has a better validity and fitting indicators. So the proposed methodology is a 
novel way for bypassing and overcoming the intensive computational burden and complications resulting from 
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Table 2. Results of parameter estimations of the normal latent variable model. 

Covariate Parameter estimate Standard error 95% Credible interval 

Constant B0 −0.786 0.36 (−1.106, −0.466) 

Ginv B1 0.151 0.068 (0.15, 0.287) 

Gend B2 0.0418 0.068 (−.0942, 0.1778) 

Age B3 0.018 0.016 (−0.014, 0.050) 

Ocf B4 −.0469 0.074 (−0.1949, 0.1011) 

Edf B5 −0.0255 0.072 (−0.1695, 0.1185) 

Vzd6 B6 0.022 0.037 (−0.052, 0.096) 

Tbr B7 −0.004 0.093 (−0.19, 0.182) 

Tfls B8 0.0012 0.027 (−0.0528, 0.0552) 

Spacov γ  1.6 0.051 (1.57, 1.71) 

− θ  (correlation) 0.54 0.046 (0.4, 0.48) 

 
normalizing constant of the autologistic model in analyzing spatial binary data on multiple lattices. 

In conclusion, the proposed methodology based on the augmenting skew-normal latent variables in analyzing 
spatially correlated binary data is an adequate and appropriate model. A carious tooth in nearest neighbors of a 
tooth is a cause of its decay. The higher education and the income of the head of the family are the lower caries 
occurrences of the individual. These can be considered in oral health care and tooth caries treatment programs in 
the surveyed sample [65]. 
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Appendix A 
We have 
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