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Abstract 
Missing data can frequently occur in a longitudinal data analysis. In the literature, many methods 
have been proposed to handle such an issue. Complete case (CC), mean substitution (MS), last ob-
servation carried forward (LOCF), and multiple imputation (MI) are the four most frequently used 
methods in practice. In a real-world data analysis, the missing data can be MCAR, MAR, or MNAR 
depending on the reasons that lead to data missing. In this paper, simulations under various situa-
tions (including missing mechanisms, missing rates, and slope sizes) were conducted to evaluate 
the performance of the four methods considered using bias, RMSE, and 95% coverage probability 
as evaluation criteria. The results showed that LOCF has the largest bias and the poorest 95% co- 
verage probability in most cases under both MAR and MCAR missing mechanisms. Hence, LOCF 
should not be used in a longitudinal data analysis. Under MCAR missing mechanism, CC and MI 
method are performed equally well. Under MAR missing mechanism, MI has the smallest bias, 
smallest RMSE, and best 95% coverage probability. Therefore, CC or MI method is the appropriate 
method to be used under MCAR while MI method is a more reliable and a better grounded statis-
tical method to be used under MAR. 
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1. Introduction 
The problem of missing observations can frequently occur in all types of clinical trials, especially when obser-
vations are measured repeatedly at each scheduled visit for the same subject in a longitudinal study. In longitu-
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dinal studies, there are many possible causes leading to missing data including the duration of the study, the na-
ture of the disease, the efficacy and adverse effects of the drug under study, accidents, patients’ refusal to con-
tinue, moving, or other administrative reasons. Frequently, missingness can potentially lead to two serious prob-
lems in statistical practice: reducing the overall statistical power and having biases in the estimates. In statistical 
practice, missing data is a key problem that can never be avoided completely. Since the most traditional statis-
tical methods are intentionally designed to handle complete data sets by default, therefore data analysts should 
pay special attention to incomplete data sets. 

Little and Rubin [1] have classified missing data mechanisms into three different types based on the possible 
causes: 1) missing completely at random (MCAR) if the missingness is not related to any observed and unob-
served factors (such as domestic relocation, suffering an accident, or unrelated illness); 2) missing at random 
(MAR) if the missingness is conditional on observed factors and is independent of the unobserved data (such as 
lack of efficacy); and 3) missing not at random (MNAR) if the missingness depends on unobserved quantities as 
well as some observed factors. The MNAR missing mechanism is usually used to describe patients who may 
drop out as a result of health deterioration related to the treatments that we do not have a chance to observe be-
cause of their dropout. Researchers have pointed out that the MAR assumption may be more plausible in prac-
tice than that of the MCAR [2]. In fact, by definition MCAR is only a special case of MAR. In other words, a 
MCAR missing mechanism is also a MAR one, but not every MAR is a MCAR. Actually, it is possible to for-
mally test the MCAR assumption against its alternative hypothesis not MCAR [3] [4]. However, it is not possi-
ble to test MAR or MNAR without using additional (external) information. MNAR is particularly useful in as-
sessing the sensitivity of the results that are not MAR [5] and it is highly recommended to be incorporated into 
the analysis. 

In the literature, several alternative statistical approaches have been applied to the analysis of longitudinal da-
ta with missing values. These appropriate methods for analysis should be selected based on the data missing 
mechanism, since different statistical methods are valid only under certain situations (missing mechanisms) with 
specified missing rates. In other words, there is no unique best method available for all situations. However, it is 
difficult to test the missing mechanism in a longitudinal clinical study and there is also no clear rules regarding 
how much is qualified as too much missing data [6]. In general, the choice of a particular method for handling 
missing data depends largely on whether one is considering a more pragmatic or a more explanatory perspective. 
There is often the question of whether there are too many missing data. Sprint and Dupin-Sprint [7] pointed out 
that the tolerable amount of missing data is that would not conceal an effect in the opposite direction. In order to 
determine whether this level of missing data has been reached, one can perform what was called the “worst case” 
analysis. 

Despite these difficulties, several researchers have considered and constructed simulation studies for the proof 
of strong consistency of imputation methods to check the efficiency of the imputation methods. For example, 
Myers [8] compared the results of two imputation methods (that is, the complete case method and the multiple 
imputation method) based on simulated data sets with a dropout rate ranging from 20% to 60%, and they con-
cluded that MI method provided results that are more closely mimicked the complete data set. 

Hening and Koonce [9] investigated five imputation methods (i.e., mean substitution, median substitution, 
zero value, hot-deck, and MI) and a first-year-student retention data with more than 20% missing values is used. 
The results shown that multiple and hot-deck imputations perform poorly in an accuracy comparison test, but 
they can slightly increase the predication accuracy rate compared with other methods. 

Ali, et al. [10] performed a survival analysis in which missing data were simulated under MCAR and MAR to 
compare four imputation methods―complete case analysis (CCA), means substitution (MS), and multiple im-
putation (MI)with the inclusion of the outcome (MI− and MI+). The simulation results suggested that in general 
MI+ is likely to be the best method. Patrician [11] pointed out that MI is the best approach and should be consi-
dered to handle missing data compared with CCA and MS by an empirical investigation of AIDS care longitu-
dinal data outcomes. 

Recently, Nakai, et al. [12] have shown that MI is the most effective imputation method in longitudinal data 
setting under MCAR via a simulation study. This indeed provides useful information about the performance of 
imputation methods under MCAR, but it is limited and restricted to clinical situations where MAR is more 
plausible. For example, Lavori, et al. [13] have pointed out that the MCAR assumption is often not plausible in 
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most clinical trial settings. The purpose of this paper is through a simulation approach to analytically evaluate 
the performance of four imputation methods for different missing mechanisms (MCAR and MAR) with various 
missing rates. For simplicity and also without loss of generality, a monotone pattern of missing data (meaning 
that once a patient has a missing response at an assessment visit, his or her data will be missing for all subse-
quent visits) is assumed. Under such assumptions, this paper primarily concentrates on the following four impu-
tation methods: 1) complete case (CC); 2) mean substitution (MS); 3) last observation carried forward (LOCF); 
and 4) multiple imputation (MI). To compare the performance of these methods, bias, RMSE, and 95% coverage 
probability (CP) of the estimated parameters are used as evaluation criteria. 

This paper is organized as follows. Section 2 reviews methods of missing data analysis. The simulation pro-
cedures (with available covariates) under MCAR and MAR settings are described in Section 3. In Section 4, the 
simulation results are used to evaluate the performance of those four imputation methods considered. Finally, 
discussion and concluding remarks are provided in Section 5. 

2. Approaches to Handling Missing Data  
There are so many techniques in handling missing data discussed in the literature. Especially, many methods 
have been proposed and developed to handle missing data in longitudinal clinical trials. However, there are few 
methods that are actually used in real trials with missing data. The purpose of this paper is to study four most 
frequently used methods for dealing with missing data and they will be described as follows. 

2.1. Complete Case (CC) Analysis 
This method deletes all cases with missing data and then performs statistical analyses on the remaining complete 
data set (which has a smaller sample size). Since all cases containing missing data have been removed, there is 
no missing data problem to handle. Therefore, all statistical methods can be used to analyze the smaller data set. 
Obviously, one major advantage of this method is its ease of use. In fact, virtually all statistical programs incor-
porate this method as a default method because it accommodates any type of statistical analysis [14]. The me-
thod may be preferred under the situation in which the sample size is large, the proportion of missing data is 
small, and the missing data mechanism is MCAR [15]. For MCAR missing data, the method will yield unbiased 
parameter estimates and larger standard errors due to the smaller sample size. However, even when data are 
MCAR, loss of data will result in loss of precision (larger standard errors), particularly in multivariate data ana-
lyses. 

In general, the major disadvantage of the method is that it could possibly lead to losing statistical power due 
to the reduction of the sample size. Also, complete case techniques erode efficiency such that the variation (i.e., 
the standard error) around the true estimate is too large [16]. In addition, if data are not MCAR, bias can be a se-
rious issue [17]-[19]. 

2.2. Mean Substitution (MS) 
The method of mean substitution imputes the missing values using the mean of the available observed values. 
This method has the potential of introducing biases as well as underestimating variability [20]-[22]. This method 
has the advantage of being able to maintain the original sample size while it also allows one to use the complete- 
data methods for data analysis [23]. However, due to the reduced variability, the estimated parameters are less 
precise. Decreased variances are problematic because the resulting estimates are too close to the mean [24]. 

2.3. Last Observation Carried Forward (LOCF) 
The simplest imputation approach is the LOCF method that replaces every missing value with its corresponding 
last observed value. LOCF method is often used in longitudinal studies of continuous outcomes under MCAR. 
Conceptually, this method assumes that the outcome would not change after the last observed value. Therefore, 
there is no time effect since the last observed data. In fact, LOCF has been a popular method that is frequently 
used in handling missing data problems because it is easy to understand and can be implemented easily as well. 
Also, unlike the CC method, the sample size does not change. For example, in a clinical trial (see the data be-
low), patient 3 dropped out from the study after baseline. Patient 6 dropped out after the first month follow up. 
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Subject Group Baseline 
Follow-Up Week 

1st Month 3rd Month 6th Month 

1 Placebo 296 175 187 192 

2 Placebo 376 329 236 76 

3 Placebo 150 ?(150*) ?(150*) ?(150*) 

4 Active 282 186 225 134 

5 Active 317 31 85 120 

6 Active 362 104 ?(104*) ?(104*) 

?: missing value; *: value imputed by LOCF. 
 

If there are more patients dropped out in the placebo group due to the lack of efficacy, then this method might 
give a biased conclusion about the effect of the treatment group. In general, the measurements are unlikely to 
remain unchanged for either placebo or treatment group. In our example, the measurement of patient 3 from the 
control group will increase while that of patient 6 from the active group will decrease. This implies that there is 
no improvement in the active group and hence no difference between these two groups. 

Rigorously speaking, LOCF is not an analytic approach, but it is a method that is very easy to impute missing 
values. Analytic proofs [25] [26] and studies in simulated data [26]-[29] have been clearly shown that LOCF can 
bias results and lead to either overestimation or underestimation of the parameter estimates. 

2.4. Multiple Imputation (MI) 
Multiple imputation was first proposed by Rubin [23] [30] to analyze incomplete data under the MAR missing 
mechanism. Allison [14] and Schafer [31] [32] further explained Rubin’s MI. MI is a predictive approach to 
handling missing data in multivariate analysis and blends both classical and Bayesian statistical techniques. The 
idea of MI is to impute a missing value multiple times and hence generates multiple (m) data sets. Missing data 
theorists have claimed that good inferences can be made for only 3 - 5 imputed data sets [33]. Others have sug-
gested that the number of imputed data sets should approximate the percentage of subjects with some missing 
data [34]. In this paper, 100 imputed data sets are used because there is a 50% missing rate in Case 3 of the si-
mulation study. Then, these imputed data sets are analyzed by standard procedures that are commonly used in 
analyzing complete data sets. Finally, the results of analyses are combined [35] [36]. A few assumptions and 
constraints of MI are: 1) missing data mechanism should be MAR; 2) the imputation model must match the 
analysis model [14]; and 3) the algorithm used to generate imputed values must accommodate/include the va-
riables associated with the missingness of the data as well as other related variables. Allison [37] illustrated that 
good imputation methods use all information related to missing cases. Two major advantages of MI are allowing 
the use of complete-data methods for data analysis and incorporating random errors in the imputation process. 
MI can accommodate any model with any data and does not require specialized software. In addition, MI in-
creases efficiency of the estimates through minimizing the standard errors [23]. However, Rubin [23] pointed 
out that the three disadvantages of MI are more effort to create the multiple imputations, more time to run the 
analyses, and more computer storage space for the imputation-created data sets. 

3. Simulations 
We conducted a simulation study on different scenarios. In general, generating each dataset is based on the set-
ting described in Section 3.1 by the following assuming: 1) the measurement at the first time point (t = 1) from 
the original data is completely observed; 2) data are MCAR and MAR missing mechanisms; 3) the missing pat-
tern is monotone. To begin the simulated process, the first step (1-step) generates the five-time points of mea-
surements of each subject by a random number from a multivariate normal distribution with AR(1) correlation 
structure and repeats the step 100 times for 100 subjects, given the observed values, ( )it obsY ; 1, 2, ,100i =  ; and 

1,2, ,5j =  . The second step (2-step) is to generate the MCAR and MAR data, ( )it missY , as described in Section 
3.3 by the missing rate (%) at each time point measurement in Table 1. The third step is to test the MCAR and 
MAR condition using Little’s MCAR test to check whether the produced datasets are MCAR and MAR or not.  
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Table 1. Detailed design of the simulation.                                             

 n β1 β0 σ2 ρ 
Missing Rate at Time t 

1 2 3 4 5 

Case 1 100 

0.1 

10 1 0.7 0% 5% 5% 5% 5% 2 

10 

Case 2 100 

0.1 

10 1 0.7 0% 5% 20% 15% 20% 2 

10 

Case 3 100 
0.1 

10 1 0.7 0% 10% 20% 30% 50% 
2 

  10         

 
Finally, each of the predefined 9 situations was repeated 1000 times by using SAS procedures. There are 1000 
data sets each containing 100 subjects with 5 time points per subject to be analyzed. Next, the standard mixed 
model procedures were performed on these simulated data sets. Finally, the regression coefficients and their 
standard errors were obtained. Then, the performance of four selected methods (that is, complete case analysis, 
mean substitution, last observation carried forward, and multiple imputation) was compared based on biases, 
root mean square errors, and 95% coverage probabilities. In the simulation, we considered the missing data with 
MCAR and MAR missing mechanisms. In addition, without loss of generality, the missing pattern was assumed 
to be monotone. The missing rate varied from 5% to 50%. 

3.1. Background of the Simulation 
In the simulation, we generated the longitudinal data itY  ( 1, 2, ,100i =  ; 1, 2, ,5j =  ) for the ith subject at 
the tth visit according to a multivariate normal distribution model, ( ) 0 1itE Y tβ β= +  where β0 is the intercept 
and β1 is the slope. The variance at each occasion is assumed to be constant over time, while the correlation 
coefficient between isY  and itY  is assumed to be a positive correlation coefficient ρ of a first-order autoregres-
sive model (i.e., AR(1)). 

More precisely, a data set X with n rows and p columns is drawn from a multivariate normal distribution with 
a zero mean vector and a variance-covariance matrix Σ  given as follows 
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In this study, the correlation coefficient ρ is taken to be 0.7 to simulate the strong relationships among va-
riables. The total number of cases (or subjects) is 100 and there are 5 measurements at 5 time points for each 
subject. 

3.2. Design of the Simulation 
Table 1 listed the values of parameters used in the simulation study. The value of the intercept was fixed at 10 
while the value of the slope was 0.1, 2, or 10. The variance was chosen to be 1. And, the correlation coefficient 
was set to 0.7, where ρ = 0.7 is a typical value used to represent moderate to high correlation. Nakai (2014) used 
both ρ = 0.1 and ρ = 0.7 in his study. However, he showed the results are not significantly different for both val-
ues of correlation coefficient. Three combinations of missing rates under both MCAR and MAR missing me-
chanisms were considered. (See Table 1 for details). 

Therefore, in the simulation 1000 samples were generated covering 18 different situations: 3 (missing rates) × 
3 (values of the slope) × 2 (missing mechanisms). 

3.3. Missing Data Generation 
The data were generated with situations described in Sections 3.1 and 3.2 and the measurements were drawn 
from a multivariate normal distribution with AR(1) correlation structure [12]. The data generating process was 
repeated 1000 times for each of 18 different situations. PROC IML of the SAS System (version 9.3) was used to 
generate these data sets. Hereafter, these simulated data sets (without any missing observation) are referred to as 
the “Original” data sets. 

After the original data sets were created, the measurements at different time points for different subjects were 
set to missing, according to the MCAR or MAR missing mechanism. However, the measurement at the first time 
point (that is, the baseline value) of each subject was assumed always observed. In the MCAR setting, missing 
data were generated randomly at visits 2 through 5 based on the missing probabilities listed in Table 1. There-
fore, the missing probabilities do not depend on either observed or unobserved data. Furthermore, Little’s 
MCAR test [3] was performed to make sure the missing mechanism is indeed MCAR otherwise that data set 
was discarded and another data set was generated anew. 

In the MAR setting, the probability of missing at visit 2 was set in proportional to the baseline values based 
on a logistic probability distribution model. In the same way, the missing data at visits 3 through 5 were set 
based on the probabilities given in Table 1. In this way, the missing probabilities will depend only on observed 
data. Hence, the missing mechanism is under MAR mechanism by MAR definition. It was quite time-consum- 
ing in generating and analyzing these data sets. Actually, it would take almost a day to do such a job for a single 
simulation setting. 

3.4. Measures of Performance for Imputation Methods 
Bias, root mean squared error (RMSE), and coverage probability are used as criteria to assess the performance 
of the four imputation methods. The SAS System (version 9.3) is used to perform all the statistical analyses as 
well as to produce the required results. Also, we set covariance structure to “Unstructured” simply to explore the 
accuracy of imputation within “PROC MIXED” procedure. These criteria will be described in detail in the fol-
lowing subsections. 

3.4.1. Bias 
Bias is defined as the difference between the average value of estimated parameters ( 0β



 and 1β


) and the true 
parameters (β0 and β1) obtained from the corresponding original data set. 

3.4.2. RMSE 
The mean squared error (MSE) is defined as the average squared difference between the estimated parameters 
( 0β


 and 1β


) and the corresponding true parameters (β0 and β1) obtained from the original data set. MSE is 
equal to the sum of variance and the squared bias of the estimated parameters. RMSE is defined as the square 
root of the MSE. The RMSE is a useful measure of overall precision or accuracy and can be used to evaluate the 
performance of each imputation method. In general, the more effective method would have a lower RMSE [38]. 
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3.4.3. Coverage Probability 
The coverage probability (CP) is defined as the proportion of the simulated data sets, among the 1000 simulated 
data sets, that yield the 95% confidence intervals containing the true parameter values based on the original data 
sets. Therefore, an appropriate method should have a coverage probability around 95%. 

4. Simulation Results 
The simulation results are summarized in Tables 2-7. In these table, CC, MS, LOCF, MI, MCAR, and MAR 
stand for complete case, mean substitution, last observation carried forward, multiple imputation, missing com-
pletely at random, and missing at random, respectively. Case 1, Case 2, and Case 3 represent the low, moderate, 
and high missing rate setting as given in Table 1. In the following tables, bold numbers are used to highlight the 
best method in that particular case. 

4.1. Simulation Results for MCAR Missing Data 
Tables 2-4 show the simulation results for MCAR (missing complete at random) data. The cases of low, mod-
erate, and high missing rates are illustrated in Table 2, Table 3, and Table 4, respectively. In the low missing 
rate case (Table 2), except the LOCF method, the other three methods yield very small biases and RMSEs for 
both Intercept and Slope. In the case that the slope is 10, the 95% CPs are very poor for the LOCF method (100% 
and 0% for Intercept and Slope, respectively). In the moderate missing rate case (Table 3), the results are quite 
similar to that in the low missing rate case. However, the 95% CPs are poor for the LOCF method in both mod-
erate and large slope cases. In the high missing rate case (Table 4), the 95% CPs are very poor for the LOCF 
method in both moderate and large slope cases. In summary, the bias and RMSE will increase with the increase 
of the missing rate. However, the biases are small except for the LOCF method. For a fixed missing rate, the bi-
as and RMSE will increase with the increase of the slope value. 

Based on the six performance criteria for MCAR missing data, the LOCF is the poorest method. The CC me-
thod is the best method. However, the MI method had the same performance as the CC method. The template is 
designed so that author affiliations are not repeated each time for multiple authors of the same affiliation. Please 
keep your affiliations as succinct as possible (for example, do NOT post your job titles, positions, academic de-
grees, zip codes, names of building/street/district/province/state, etc.). This template was designed for two affili-
ations. 
 

Table 2. Performance of four methods for Case 1 and ρ = 0.7 (MCAR).                      

Slope (β1) Method Bias (RMSE) of 0β


 Bias (RMSE) of 1β


 95% CP for 0β


 95% CP for 1β


 

0.1 

CC 0.000 (0.1251) 0.000 (0.0329) 89.5 92.9 

MS 0.000 (0.1254) 0.000 (0.0329) 88.4 92.3 

LOCF 0.005 (0.1237) −0.005 (0.0322) 91.8 94.7 

MI 0.000 (0.1253) 0.000 (0.0330) 90.1 93.2 

2 

CC 0.000 (0.1248) 0.000 (0.0316) 89.0 94.8 

MS 0.000 (0.1251) 0.000 (0.0316) 87.9 93.7 

LOCF 0.100 (0.1586) −0.100 (0.1049) 95.0 40.5 

MI 0.000 (0.1244) 0.000 (0.0317) 90.3 95.2 

10 

CC 0.001 (0.1270) 0.000 (0.0315) 89.1 95.3 

MS 0.001 (0.1273) 0.000 (0.0314) 88.1 94.3 

LOCF 0.501 (0.5164) −0.501 (0.5015) 100.0 0.0 

MI 0.001 (0.1266) −0.001 (0.0315) 89.6 95.7 
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Table 3. Performance of four methods for Case 2 and ρ = 0.7 (MCAR).                      

Slope (β1) Method Bias (RMSE) of 0β


 Bias (RMSE) of 1β


 95% CP for 0β


 95% CP for 1β


 

0.1 

CC 0.001 (0.1251) 0.000 (0.0337) 88.4 93.3 

MS 0.001 (0.1252) 0.000 (0.0328) 84.9 90.9 

LOCF 0.018 (0.1214) −0.013 (0.0327) 94.6 97.2 

MI 0.002 (0.1253) −0.002 (0.0332) 90.8 96.4 

2 

CC −0.001 (0.1258) 0.001 (0.0349) 88.0 92.2 

MS −0.001 (0.1257) 0.001 (0.0340) 85.5 89.6 

LOCF 0.351 (0.3708) −0.251 (0.2525) 51.3 0.0 

MI 0.002 (0.1254) −0.002 (0.0341) 90.2 95.8 

10 

CC 0.000 (0.1287) 0.000 (0.0348) 87.7 92.6 

MS 0.000 (0.1286) 0.000 (0.0338) 84.0 90.4 

LOCF 1.751 (1.7555) −1.251 (1.2511) 0.1 0.0 

MI 0.003 (0.1277) −0.002 (0.0337) 90.0 95.0 

 
Table 4. Performance of four methods for Case 3 and ρ = 0.7 (MCAR).                      

Slope (β1) Method Bias (RMSE) of 0β


 Bias (RMSE) of 1β


 95% CP for 0β


 95% CP for 1β


 

0.1 

CC 0.002 (0.1014) −0.001 (0.0336) 88.7 92.6 

MS 0.001 (0.0838) −0.001 (0.0253) 81.6 86.5 

LOCF 0.038 (0.1217) −0.027 (0.0367) 94.9 93.5 

MI 0.007 (0.1148) −0.004 (0.0393) 91.9 95.5 

2 

CC 0.000 (0.1016) 0.000 (0.0337) 87.6 92.8 

MS 0.000 (0.0839) 0.000 (0.0253) 79.2 86.8 

LOCF 0.781 (0.2135) −0.541 (0.0644) 0.1 0.0 

MI 0.006 (0.1149) −0.003 (0.0394) 91.5 96.0 

10 

CC 0.000 (0.1016) 0.000 (0.0337) 89.0 93.5 

MS 0.000 (0.0839) 0.000 (0.0253) 81.8 87.0 

LOCF 3.901 (0.8862) −2.700 (0.2672) 0.0 0.0 

MI 0.005 (0.1149) −0.002 (0.0393) 92.4 96.7 

4.2. Simulation Results for MAR Missing Data 
Tables 5-7 show the simulation results for MAR (missing at random) data. The cases of low, moderate, and high 
missing rates are illustrated in Table 5, Table 6, and Table 7, respectively. In the low missing rate case (Table 5), 
the biases for the CC and MS methods are slightly larger for Intercept but smaller for those of Slope. However, 
the bias for the LOCF method is slightly smaller for Intercept but larger for that of Slope. Again, in the case that 
the slope is 10, the 95% CPs are very poor for the LOCF method (100% and 0% for Intercept and Slope). Also, 
in the case that the slope is 2, the 95% CP is 41.4% for the LOCF method. Based on the six performance criteria, 
the MI method is the best in this case. In the moderate missing rate case (Table 6), the results are similar for the 
performance of the LOCF method. Again, the MI method yield smaller bias, RMSE, and good 95% CP. In the 
high missing rate case (Table 7), the 95% CPs are very poor for the LOCF method in both moderate and large  
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Table 5. Performance of four methods for Case 1 and ρ = 0.7 (MAR).                         

Slope (β1) Method Bias (RMSE) of 0β


 Bias (RMSE) of 1β


 95% CP for 0β


 95% CP for 1β


 

0.1 

CC −0.029 (0.1253) −0.001 (0.0317) 89.7 95.3 

MS −0.029 (0.1255) −0.001 (0.0317) 88.4 94.3 

LOCF −0.006 (0.1207) 0.012 (0.0324) 92.0 95.0 

MI 0.001 (0.1222) −0.000 (0.0319) 91.3 95.7 

2 

CC −0.029 (0.1290) −0.002 (0.0328) 88.7 93.9 

MS −0.028 (0.1293) −0.001 (0.0330) 87.8 93.3 

LOCF 0.090 (0.1533) −0.084 (0.0891) 90.0 41.4 

MI 0.001 (0.1262) −0.001 (0.0329) 88.9 94.5 

10 

CC −0.028 (0.1296) −0.001 (0.0326) 89.0 93.8 

MS −0.028 (0.1298) −0.001 (0.0326) 88.0 93.2 

LOCF 0.490 (0.5054) −0.483 (0.4842) 100.0 0.0 

MI 0.002 (0.1267) −0.000 (0.0327) 89.8 94.2 

 
Table 6. Performance of four methods for Case 2 and ρ = 0.7 (MAR).                       

Slope (β1) Method Bias (RMSE) of 0β


 Bias (RMSE) of 1β


 95% CP for 0β


 95% CP for 1β


 

0.1 

CC 0.032 (0.1247) −0.050 (0.0605) 88.2 62.7 

MS 0.016 (0.1216) −0.039 (0.0512) 86.6 68.3 

LOCF −0.051 (0.1264) 0.043 (0.0518) 91.0 76.8 

MI 0.001 (0.1219) −0.003 (0.0347) 91.4 96.0 

2 

CC 0.033 (0.1276) −0.050 (0.0599) 88.3 63.3 

MS 0.017 (0.1246) −0.039 (0.0507) 85.7 68.3 

LOCF 0.281 (0.3054) −0.195 (0.1966) 38.5 0.0 

MI 0.001 (0.1267) −0.003 (0.0345) 90.2 94.5 

10 

CC 0.032 (0.1235) −0.050 (0.0602) 88.7 63.1 

MS 0.017 (0.1204) −0.039 (0.0510) 86.8 68.5 

LOCF 1.682 (1.6854) −1.195 (1.1949) 0.0 0.0 

MI −0.001 (0.1213) −0.002 (0.0351) 91.5 94.5 

 
slope cases. In summary, the LOCF method yields larger biases, RMSEs, and poor 95% CPs in most cases. In 
contrast, the MI method performs much better than the other three methods under MAR mechanism. 

5. Discussion and Conclusions 
Although the simulation results suggested that the CC method was superior to the MS, LOCF, and MI methods 
under MCAR missing mechanism while MI method was superior to CC, MS, and MI methods under MAR, the 
performance of these methods actually depended on several factors especially the missing rate and time effect 
(that is, the size of the slope). However, there is no one single method that is the best under all situations. 

Under the assumption of MCAR missing mechanism, when the missing rate increased from low to moderate 
(slope = 0.1 or 2), the values of estimated bias and RMSE for CC, MS, and MI methods were very close. Except  



X. P. Zhu   
 

 
942 

Table 7. Performance of four methods for Case 3 and ρ = 0.7 (MAR).                       

Slope (β1) Method Bias (RMSE) of 0β


 Bias (RMSE) of 1β


 95% CP for 0β


 95% CP for 1β


 

0.1 

CC 0.095 (0.1575) −0.104 (0.1097) 79.8 15.5 

MS 0.015 (0.1256) −0.053 (0.0619) 82.6 48.4 

LOCF −0.056 (0.1288) 0.052 (0.0581) 90.5 66.6 

MI 0.008 (0.1348) −0.004 (0.0433) 92.5 96.5 

2 

CC 0.093 (0.1572) −0.103 (0.1094) 80.0 18.1 

MS 0.014 (0.1269) −0.052 (0.0623) 81.7 48.9 

LOCF 0.684 (0.6934) −0.461 (0.4619) 0.0 0.0 

MI 0.006 (0.1392) −0.004 (0.0462) 91.4 95.2 

10 

CC 0.096 (0.1590) −0.104 (0.1101) 79.4 16.6 

MS 0.015 (0.1262) −0.053 (0.0622) 84.0 47.2 

LOCF 3.805 (3.8064) −2.621 (2.6212) 0.0 0.0 

MI 0.009 (0.1367) −0.005 (0.0432) 93.0 96.9 

 
for high missing rate and large slope (that is, slope = 10), the values of bias and RMSE obtained by the MI me-
thod had large differences compared with those obtained by the CC and MS methods. This is not surprising at all 
because the CC method will yield unbiased estimated parameters under MCAR only with a small missing rate. 

For the MAR missing data, the simulation results revealed that MI is the best method regardless of the miss-
ing rate and slope size based on bias, RMSE, and 95% CP. In fact, such a result is well documented in the litera-
ture [23] [31]. For low missing rate and small slope, the results did not differ significantly between the MI and 
LOCF methods. Such a result was also been discussed in the literature [39] [40]. 

In this paper, we consider a longitudinal study with five visiting time points and a total of 100 subjects. Three 
possible missing rates and three different slopes are used to mimic the real-world situations. In addition, two 
missing mechanisms are considered (that is, MCAR and MAR).Based on the simulation results, we have 
reached the following important conclusions: 1) CC method is the most appropriate method for handling MCAR 
missing data; 2) MI method is the most effective one in all simulated situations particularly under MAR setting 
because it yields smallest biases and has good 95% CP compared with the other methods; 3) the use of the 
LOCF method can potentially lead to imprecise parameter estimates hence can lead to invalid inferences.  

In practice, inferior methods such as LOCF are still used for the longitudinal data analysis. The results via the 
simulation dataare indeed provide a good reference and rationale in choosing missing data handling method in 
order to obtain precise parameter estimates and valid inferences. Kenward and Molenberghs [41] did suggest 
that LOCF method should be avoided which is well supported by our simulation results. 
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