
Open Journal of Statistics, 2014, 4, 742-750 
Published Online October 2014 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2014.49069  

How to cite this paper: Akuno, A.O., Orawo, L.A. and Islam, A.S. (2014) Two-Sample Bayesian Predictive Analyses for an 
Exponential Non-Homogeneous Poisson Process in Software Reliability. Open Journal of Statistics, 4, 742-750.  
http://dx.doi.org/10.4236/ojs.2014.49069  

 
 

Two-Sample Bayesian Predictive Analyses 
for an Exponential Non-Homogeneous  
Poisson Process in Software Reliability 
Albert Orwa Akuno, Luke Akong’o Orawo, Ali Salim Islam 
Department of Mathematics, Egerton University, Egerton, Kenya 
Email: orwaakuno@gmail.com, orawo2000@yahoo.com, asislam54@yahoo.com 
 
Received 4 August 2014; revised 9 September 2014; accepted 29 September 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The Goel-Okumoto software reliability model is one of the earliest attempts to use a non-homo- 
geneous Poisson process to model failure times observed during software test interval. The model 
is known as exponential NHPP model as it describes exponential software failure curve. Parame-
ter estimation, model fit and predictive analyses based on one sample have been conducted on the 
Goel-Okumoto software reliability model. However, predictive analyses based on two samples 
have not been conducted on the model. In two-sample prediction, the parameters and characteris-
tics of the first sample are used to analyze and to make predictions for the second sample. This 
helps in saving time and resources during the software development process. This paper presents 
some results about predictive analyses for the Goel-Okumoto software reliability model based on 
two samples. We have addressed three issues in two-sample prediction associated closely with 
software development testing process. Bayesian methods based on non-informative priors have 
been adopted to develop solutions to these issues. The developed methodologies have been illu-
strated by two sets of software failure data simulated from the Goel-Okumoto software reliability 
model. 
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1. Introduction 
Software reliability is defined as the probability of failure free software operations for a specified period of time 
in a specified environment [1]. The reliability of any software is of great interest to the software developers be-
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fore a decision is made to release the software into the market. Software developers need correct and concise 
information about how reliable software is before they decide to release the software into the market as single 
software defect can cause system failure and to avoid these failures, reliable software is required [2]. Software 
reliability is achieved through testing during the software development stage [3]. The usual way of removing 
bugs from a software system is by running test cases on the software system similar to the way users will oper-
ate it in their particular environment. However, the emulation of end-user environment during the test interval is 
difficult, expensive and time consuming especially when there are multiple types of end-users in different envi-
ronments. Software reliability modeling can be used to address this dilemma especially when reliability testing 
on two software systems can be achieved in one testing period. Software reliability modeling can provide the 
basis for planning reliability growth tests, monitoring progress, estimating current reliability, forecasting and 
predicting future reliability improvements [4]. Predictive analyses help in conducting forecasting and prediction. 
A prediction interval is usually constructed to provide the time frame when the ( )th 0k k >  future failure ob-
servation will occur with a pre-determined confidence level [5]. 

An Exponential Nonhomogeneous Poisson Process with intensity function  

( ) e tt βλ αβ −=                                    (1) 

is the earliest software reliability model to be developed. Such a model is a NHPP and is mostly referred to as 
the Goel-Okumoto (1979) software reliability model, after the researchers Goel and Okumoto who first intro-
duced it in 1979. 

The model described in Equation (1) is a software reliability model and has been applied to a number of soft-
ware testing environments and its application and usefulness in describing and assessing software failures has 
been conducted by various authors. For instance, [6] used Kolmorgorov-Sminorv goodness-of-fit test for check-
ing the adequacy of the software reliability model and they also presented they also presented software failure 
data which, after study, depicted that the failure rate, i.e. the number of failures per hour, seemed to be decreas-
ing with time. One-sample Bayesian predictive analysis on the model has also been conducted, [7]. However, 
there is no literature on two-sample Bayesian predictive analyses on the model.  

This paper therefore focuses on two-sample Bayesian predictive analyses on the model whose intensity func-
tion is described in Equation (1). First, three issues in two-sample predictions that may be experienced during 
the development testing stage of the software are identified and their corresponding predictive distributions are 
thereafter developed in Section 2. The main results for the two-sample prediction are presented in Section 3. The 
developed methodologies are illustrated in Section 6 using simulated two-software failure data. Discussion is 
given in Section 7 and finally, mathematical proofs are given in the Appendix. 

2. Issues in Two-Sample Software Reliability Prediction 
In this section, three issues associated closely with software development testing process are presented and their 
predictive distributions are developed using Bayesian approach. For the purposes of the three predictive issues, 
it is assumed that a reliability growth testing is performed on a software and the cumulative number of failures 
of the software in the time interval ( ]0, t , denoted by ( )N t  is observed. It is further assumed that 

( ) , 0N t t >    follows the NHPP with intensity function given in Equation (1).  
Let 1 20 t t< < <  be the observed failure times. Failure data is said to be failure-truncated when testing 

stops after a predetermined n  number of failures occur. The n  failure times are denoted by [ ]obs 1

nf
i i

Z t
=

=  
where 1 20 nt t t< < < < . Failure data is said to be time truncated if testing stops at a predetermined time t . 
The corresponding observed failure data is denoted by [ ]obs 1, , , ;t

nZ n t t t=  , where  
1 20 nt t t t< < < < ≤ . Now, let us consider two software systems and assume that their cumulative inter-failure 

times obey the Goel-Okumoto (1979) software reliability model with observed data being either obs
fZ  or obs

tZ . 
Based on obs

fZ  or obs
tZ , we are interested in the following problems: 

A1: How to predict the thr  failure time of the second software system;  
B1: How to predict the number of failures that will occur in the time interval ( ]20, t  for the second software 

system.  
C1: How to predict the ( )th,  1r r m≤ ≤  failure time ry  of the second software system supposing that the 

number of failures in ( ]20, t  for the second software system is m  but the exact occurrence times are unavaila-
ble. 
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Posterior and Predictive Distributions 
Let obsZ  represent obs

fZ  or obs
tZ . The joint density of obsZ  is therefore 

( ) ( )1
1 e

obs , e e
n

Ti
i

t
n nf Z

ββ α
α β α β

−
=

− − −∑
= .                              (2) 

Case 1: when the shape parameter β  is known, the following non informative prior distribution of α  is 
adopted 

( ) 1 ,     0π α α
α

∝ > .                                    (3) 

Thus, the posterior distribution of α  is given by 

( ) ( ) ( ) ( )1 e1 1
obs e 1 e

T nn Th Z n
βα βα α

−− −− − −= Γ −   .                           (4) 

Let y+  be the random variable being predicted. The posterior predictive distribution of y+  is then given as  

( ) ( ) ( )obs obs obs
0

, df y Z f y Z h Zα α α
∞

+ += ∫ .                            (5) 

Hence the Bayesian UPL of y+  with level γ  denoted as ( )
Uy β  must satisfy  

( )
( )

obs d
Uy

f y Z y
β

γ + +

−∞

= ∫ .                                   (6) 

3. Main Results for the Two-Sample Prediction 
Proposition 1 (for issue A1) 
The Bayesian UPL of ry  (i.e. the thr  failure time of the second software system) with level γ  when β  

is known is  

( ) ( ) ( ) ( ) ( )
( )

( ) 1

1

0

e 1 e
1 e d

2 e e

r rU

r

ry yy
nT

rr ny T
r n r n y

β β β
β

β β
γ β

−− −
− −

+− −

−
= Γ + Γ Γ −  

− −
∫ .                 (7) 

Proposition 2 (for issue B1) 
The probability that the number of failures ( )2N t  in the time interval ( ]20, t  for the second system does 

not exceed a pre-determined nonnegative integer m , when β  is known is 

 ( )
( )

( )
( )

2

2 20

1 e 1 e1

2 e e 2 e e

k nt Tm

k nt tT Tk

n k
k

β β

β ββ β
γ

− −

− −− −=

− −+ − 
=  

 − − − −
∑ .                    (8) 

Proposition 3 (for issue C1) 
Given that the number of failures in ( ]20, t  for the second software is m , the Bayesian UPL of 
( ),  1ry r m≤ ≤  with level γ  is ( )

Uy β  satisfying the equation 
( )

( )2

1 e

1 e

U
m

y

mt

ββ

β
γ

−

−

 − 
 =

−
.                                  (9) 

4. Data Simulation 
In this section, two software failure data sets are generated from the Goel-Okumoto (1979) software reliability 
model. The two data sets are simulated using the same model and parameters. The simulated data is used to illu-
strate the methodologies developed for the two sample Bayesian predictive analyses. The simulation procedure 
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was as follows. The Goel-Okumoto (1979) model is as given in Equation (1). 
The values of 100α =  and 0.0010741β =  were fixed. A value of T  from the set  

3 3 4200,500,10 ,5 10 ,10S  = ×   was selected. The study used T = 200. The simulation used in the study is for 
illustrative purposes only. Nevertheless, there is a practical interpretation to the choices of ,  α β  and T . Case 
studies e.g. [8] have shown that a software fault density at the system testing stage is frequently on the order of 
five bugs per 1000 lines of code. The choice of α = 100 could be thought of as symbolizing a practically large 
software system that is on the order of 20,000 lines of codes. The choices for β  and T  together imply that 
most of the failures will be discovered during the simulated test period. Following the forgoing discussion, the 
following steps were used to simulate two data sets from the Goel-Okumoto (1979) software reliability model: 

Step 1: 0,  0t I= = . 
Step 2: Generate a random number U . 

Step 3: 1 logt t U
λ

= − , if t T> , stop. 

Step 4: Generate a random number U. 
Step 5: If ( )U tλ λ≤ , set 1I I= + , ( )S I t= . 
Step 6: Go to step 2. 
In the above steps, ( )tλ  is known as the intensity function and λ  is such that ( )tλ λ≤ . the last value of 

I  represents the number of events time T , and ( ) ( )1 , ,S S I  are the event times. The above procedure of 
simulation is referred to as the thinning algorithm since it ‘thins’ the homogeneous Poisson points. It is the most 
efficient simulation procedure in the sense that it has the fewest number of rejected events times when ( )tλ  is 
near λ  throughout the interval [9]. Using the above procedure, the following two data sets were generated. 
The first data set is assumed to be the software failure times from the first software and the second data set is 
assumed to be the failure times from the second software. 

Software one: 8.9345, 27.0177, 34.5816, 54.8606, 83.5715, 111.4006, 139.8851, 157.4743, 181.0868, 
182.8410. 

Software two: 2.3159, 16.2530, 20.5721, 23.3416, 42.8030, 46.7417, 61.0926, 63.8807, 75.1330, 80.7768, 
97.3435, 117.9091, 129.3157, 138.0590, 169.3410, 172.7516, 186.0293, 193.1918, 198.5999. 

5. Maximum Likelihood Estimation 
Suppose the observation of the failure times occurred in the time interval ( ]0,T  where T = 200, and n  faults 
were observed at the failure times 1 20 nt t t T< < < < < . The joint density of the failure times is as in Equa-
tion (2). Taking the log-likelihood function of Equation (2) gives 

( )
1

log log 1 e
n

T
i

i
L n n t βα β β α −

=

= + − − −∑ .                       (10) 

Differentiating L  with respect to α  and β  and equating to zero gives 

( )1 e 0TL n β

α α
−∂

= − − =
∂

                                (11) 

1
e 0

n
T

i
i

L n t T βα
β β

−

=

∂
= − − =

∂ ∑ .                            (12) 

Solving Equation (11) and Equation (12) we obtain 

ˆˆ
1 e T

n
β

α
−

=
−

                                         (13) 

ˆ

ˆ
1

e
ˆ 1 e

Tn

i T
i

n nTt
β

ββ

−

−
=

= +
−

∑ .                                   (14) 

A necessary and sufficient condition for Equation (13) and Equation (14) to have a unique and positive solu-

tion ( )ˆˆ ,α β  is that 
1

2
n

i
i

t n T
=

<∑ , [10]. That is, the ML estimates of α  and β  will exist only and only if  
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two times the mean failure time is less than T . In most cases, the precision in the difference ˆ1 e Tβ−−  in the 
denominator of the second part in the RHS of Equation (14) will be poor since ˆe Tβ−  will always be very close 
to unity. This brings a numerical difficulty in finding the root of Equation (14). An alternative form of Equation 
(14) that overcomes this difficulty is  

( )1

1

ˆ ˆ

!

n

i j
i

j

n nTt
T

j

β β= ∞

=

= +∑
∑

.                                  (15) 

A numerical procedure known as the Newton Raphson method can be used to solve Equation (13) and Equa-
tion (15). The Newton Raphson method requires choosing of initial values of α  and β . Consequently, α = 95 
and 0.0012β =  were chosen as the initial values. There is no any other explanation to the choosing of the ini-
tial values other than the fact that they are very close to the values α = 100 and 0.0010741β =  that were used 
during the simulation of the two software failure data sets in Section 4.6. Consequently, the ML estimates 
ˆ 102.756α =  and ˆ 0.001022177β =  for software one were obtained.  

6. Real Example for Two-Sample Bayesian Prediction 
Here, we use the two software data sets simulated in Section 4.6 to illustrate the developed propositions in Sec-
tion 4.4 for two sample Bayesian prediction problems. Assuming that the two software systems were observed 
in the time interval ( ]0,200 , and their successive failure times are given by:  

Software one: 8.9345, 27.0177, 34.5816, 54.8606, 83.5715, 111.4006, 139.8851, 157.4743, 181.0868, 
182.8410. 

Software two: 2.3159, 16.2530, 20.5721, 23.3416, 42.8030, 46.7417, 61.0926, 63.8807, 75.1330, 80.7768, 
97.3435, 117.9091, 129.3157, 138.0590, 169.3410, 172.7516, 186.0293, 193.1918, 198.5999. 

The two software failure times are simulated from the same Goel-Okumoto (1979) software reliability model. 
The three issues in the two sample prediction in chapter three are addressed as follows: 

Issue A2: First, we assume that the failure times of the second software were not observed. Based on the fail-
ure data of software one, the maximum likelihood estimate of β  is given by 0.001022177. When β  is 
known to be 0.001022177, and from Equation (7), the Bayesian UPL for the 15th  failure time of the second 
software with level 0.90γ =  is ( ) 33.737Uy β =  such that 

( ) ( ) ( ) ( ) ( )
( )

( ) 1

1

0

e 1 e
1 e d

2 e e

r rU

r

ry yy
nT

rr ny T
r n r n y

β β β
β

β β
γ β

−− −
− −

+− −

−
= Γ + Γ Γ −  

− −
∫ . 

Issue B2: if 0.001022177β = , then from Equation (8), the probability that the number of failures in the time 
interval ( ]0,200  for the second software not exceeding a pre-determined nonnegative integer 16m = , is 

0.9157γ = . 
Issue C2: suppose that the number of observed failures of the second software during ( ]0,200  is 15m = . 

Based on the failure data of the second software, if 0.001022177β = , then from Equation (9), the Bayesian 
UPL for 15y  with level 0.90γ =  is 199.00Uyβ =  

7. Discussion 
Several issues may arise during development testing of a software system especially when the Goel-Okumoto 
(1979) software reliability model has been used to model the failure process of the software system. This paper 
has provided solutions to three issues associated closely with software development testing process. Bayesian 
approach with non-informative prior has been used to address the three issues. Explicit solutions to the issues 
have been obtained. These solutions may prove useful to software engineers in determining when to modify, 
debug and terminate the software development testing process. 

Non-informative prior has been used in this paper to develop the methodologies to the said three issues. 
However, informative priors may also prove useful in deriving the methodologies. We leave this open for future 
research. Further, this paper has only derived the methodologies for known shape parameter β . It may be in-
teresting to derive solutions for the same problems for the case when the shape parameter β  is unknown. The 



A. O. Akuno et al. 
 

 
747 

procedures presented in this paper can also be extended to other NHPPs such as the Musa-Okumoto process, the 
delayed S-shaped process and the Cox-Lewis process. 
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Appendix (Proofs of Proposition 1-3) 
The following identity is used in proving some of the propositions. The identity is given without proof. 

( ) ( ) ( ) ( )
( )

1
; ,

d d !
m

m
D m a b

F t F t F b F a m= −  ∫                         (A.1) 

where m  is any positive integer, a  and b  are two real numbers ( ),  a b F t<  is an increasing and differen-
tiable function, and ( ) ( )1 1; , , , :m mD m a b t t a t t b = < < < <   . 

Proof of Proposition 1 
We know that given ( )N t n= , the n  failure times 1 2, , , nx x x  have the same distribution as the order 

statistics corresponding to n  independent random variables with density ( )
0

e e d
t

u uf u uβ βαβ αβ− −= ∫ , 

0 u t≤ ≤  which reduces to ( ) ( )
e

1 e

u

t
f u

β

β

β −

−
=

−
. This implies that ( ) ( )

e
1 e

x

t
f x

β

β

β −

−
=

−
. This is to say that 

( )( ) ( )
( )

1

1
1 1

1

e e, , ! ! !
1 e 1 e

n
i

i i
x

x nn n

n i t n
ti i

i

x x N t n n f x n n
β

β

β
β

β β =
−

−

−
−= =

=

∑
 

= = = −  −
∏ ∏

∏
  . Consequently,  

( ) ( )
( )

1

11

1 2 1

1

e, , , 1 !
1 e

n
i

i

n

x
n

n n n
x

i

x x x x n
β

β

β
−

=
−

−

−
−

=

∑

−
−∏

  .                          (A.2) 

The joint density of ( )1, , nx x  is also given by Equation (2). Equation (2) divided by Equation (A.2) yields 
the density of nx  and we have  

( )
( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )

11

1 1

1 1

11 e1 e

1
1 1

1

11 e1

e e 1 ee e,

1 ! e 1 e 1 ! e

                  1 ! e e 1 e .

nn xnixni i ni

n n
i i

i n i

xn
n n

x nx xn nn n

n
nx x

xn n

i

nx x

f x

n n

n

ββ

β

β αβ βα

β β
β

αβ β

α βα βα β

β β

β

−−
==

− −

= =

−

− −− −− −− −

−− −
−− −

=

−− −− − −

∑∑

∑ ∑

−
= =

− − −

= − −  

∏        (A.3) 

Replacing nx  by ry , for the second system, we have the density of ry  being given as 

( ) ( ) ( ) ( ) 11 e1
, e e 1 e

yr
r r

ry yr
rf y r

βαβ βα β βα
− −− −− − −= Γ −   .                  (A.4) 

From Equation (5) and Equation (A.4) we have  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )
( )

obs

11 e 1 e1 1

0

1 2 e e1 1

0
11

e e 1 e e (1 e ) d

1 e 1 e e e d

1 e 1 e

2 e e
e

2 e e

y Tr
r r

y Tr
r r

r

r

r

r

r

ry yr n T n

r ny yT r n

r ny T

ry T
y

r ny T

f y Z

r n

r n

r n

r n

β β

β β

α αβ β β

αβ ββ

β β

β β
β

β β

βα α α

β α α

β

− −

− −

∞ −− − − −− − − − −

∞− − − −− − −− + −

−− − −

− −
−

+− −

= Γ Γ − −  

= Γ Γ − −  

= Γ Γ − −  

− −Γ +
⋅

− −

∫

∫

( )
( )

( ) ( ) ( ) ( ) ( )
( )

2 e e1

0

11

e d

1 e 1 e e .
2 e e

y Tr

r r

r

n

r n

r ny yT
r ny T

r n

r n
r n

β βα

β ββ

β β

α α

β

− −
+

∞
− − −+ −

−− − −−
+− −

Γ +

Γ +
= Γ Γ − −  

− −

∫

              

(A.5) 
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From Equation (6) and Equation (A.5), we have 

( ) ( ) ( ) ( ) ( )
( )

( ) 1

1

0

e 1 e
1 e d

2 e e

r rU

r

ry yy
nT

rr ny T
r n r n y

β β β
β

β β
γ β

−− −
− −

+− −

−
= Γ + Γ Γ −  

− −
∫ .            (A.6) 

Equation (A.6) implies the formula in Equation (7) . 
Proof of Proposition 2 
The study is interested in predicting the number of failures (denoted by ( )2N t ) of the second system occur-

ring in the time interval ( ]20, t . Obviously,  

( ) [ ] ( ) ( )2
2

1 e1
2Pr , ! 1 e e ,     0,1,

tktkN t k k k
βαβα β α

−− −− − =  = − =   .             (A.7) 

For any level γ , the Bayesian Upper prediction limit for ( )2N t  is Nu  satisfying  
( )2 obsPr N t Nu Zγ =  ≤   . 

Here, an equivalent problem is considered. For any given positive integer m , we want to compute the proba-
bility that ( )2N t m≤  i.e. 

( ) ( )2 obs 2 obs
0

Pr Pr
m

k
N t m Z N t k Zγ

=

=  ≤  =  =    ∑ .                    (A.8) 

When β  is known, from Equation (A.7) and Equation (4) we have 
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∫ . (A.9) 

Rearranging Equation (A.9) we obtain 

( )
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∑ .                (A.10) 

Equation (A.9) implies the formula in Equation (8) . 
Proof of Proposition 3 
First, we want to find the conditional density of ry  given ( )2N t m= , from Equation (2),  
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1 e
1 2, , ; e e

m
ti

i
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m m
mf y y N t m

ββ α
α β

−
=

− − −∑
= = .                  (A.11) 

After integrating Equation (A.11) with respect to 1 1, , ry y −  we obtain 
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−
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Further integrating Equation (A.12) with respect to ( )1, ,r my y+  , yields 
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. (A.13) 

Therefore, the conditional density of ry  given ( )2N t m=  is 
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Which is independent of α . When β  is known, Equation (5) can be re-written as 

( )( ) ( )( ) ( )( )2 obs 2 2 obs
0

, , , dr rf y N t m Y f y N t m h N t m Yα α α
∞

= = = =∫  

where ( )( ) ( )( )2 2,r rf y N t m f y N t mα= = =  is given by Equation (A.14) and  
( )( ) ( )2 obs obs,h N t m Z h Zα α= =  is given by Equation (4). Hence ( )( ) ( )( )2 obs 2,r rf y N t m Z f y N t m= = = .  

Given ( )2N t m= , the Bayesian UPL of ry  with level γ  is ( )
Uy β  such that  
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15) 
If r m= , Equation (A.15) becomes 
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∫ .                (A.16) 

Solving the integral part of Equation (A.16), we obtain 
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1 e

1 e
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Thus, the Bayesian UPL of my  with confidence level γ  is ( )
Uy β  that satisfies Equation (A.17). 
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