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Abstract 
We consider the problem of variable selection for the single-index random effects models with 
longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. 
The proposed method shares some of the desired features of existing variable selection methods: 
the resulting estimator enjoys the oracle property; the proposed procedure avoids the convex op-
timization problem and is flexible and easy to implement. Moreover, we use the penalized 
weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies 
are carried out to assess the performance of our method, and a real dataset is analyzed for further 
illustration. 
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1. Introduction 
With the increasing availability of longitudinal data, both theoretical and applied works in longitudinal data 
analysis have become more popular in recent years. Diggle et al. [1] provided an excellent overview of the lon-
gitudinal data analysis. To avoid the so-called “curse of dimensionality” in the multivariate nonparametric re-
gression with longitudinal data and to generate an association correlation structure between the repeated mea-
surements, we consider the following single-index random effects models with longitudinal data,  

( )T T
0 , 1, , , 1, , ,ij ij ij i ijY g X Z b i n j mβ ε= + + = =                          (1) 
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where 0β  is a 1p×  index coefficients vector associated with the covariates ijX ; ib  are independent 1q×  
vectors of random effects with mean zero and covariance matrix Φ , ( )g ⋅  is an unknown link function; ijε  
are independent mean zero random variables with variance 2 > 0εσ . Here Φ  is a positive definite matrix de-
pending on a parameter vector φ ; ijX  and ijY  are the observable random variables, and ijZ  are 1q×  
known fixed design vectors. We suppose that ib  and ijε  are mutually independent and follow gaussian dis-
tribution, and 0 1β =  with the first nonzero element of 0β  being positive to ensure identifiability. Pang and 
Xue [2] considered estimators of parameters and non-parameter for model (1). Yang et al. [3] considered simul-
taneous confidence band for the model (1). 

Since the single-index models are popular and efficient modeling tools in multivariate nonparametric regres-
sion, the single-index models have recently received much attention, including those from Carroll et al. [4], Xia 
et al. [5], Zhu and Xue [6], Wang et al. [7], and among others. Pang and Xue [2], Yang et al. [3] and Chen et al. [8] 
considered the single-index models for longitudinal/panel data. Further, random effects models have become 
very popular for the analysis of longitudinal or panel data, because they are flexible and widely applicable. Giv-
en the importance of the random effects models, it is not surprising that methodologies for random effects mod-
els have emerged in the extensive literatures, such as Zeger and Diggle [9], Ke and Wang [10], Wu and Zhang 
[11] and Field et al. [12], and among others. However, it has a lot of challenges for the studies and the applica-
tions of single-index models with longitudinal data when the random effects in the models exist. Pang and Xue 
[2] proposed an iterative estimation procedure to estimate the index parameter vector and the link function, and 
they proved the asymptotic properties of the resulting estimators. However, in practical application, we do not 
know which covariates X have significant effects on the corresponding variable Y. In this paper, we consider the 
problem of variable selection for the single-index random effects models with longitudinal data. 

Various penalty functions have been used in the variable selection literature for linear regression models. 
Frank and Friedman [13] considered the qL  penalty, which yields a “Bridge Regression”. Tibshirani [14] pro-
posed the Lasso, which can be viewed as a solution to the penalized least squares with the 1L  penalty. Zou [15] 
further developed the adaptive lasso. Through combining both ridge ( )2L  and lasso ( )1L  penalty together, 
Zou and Hastie [16] proposed the Elastic-Net, which also has the sparsity property, to solve the collinearity 
problems. Fan and Li [17] proposed the SCAD penalty method and proved that the SCAD estimators enjoy the 
Oracle properties. All these variable selection procedures are based on penalized estimation using penalty func-
tions, which have a singularity at zero. Consequently, these estimation procedures require convex optimization, 
which incurs a computational burden. To overcome this problem, Ueki [18] developed a new variable selection 
procedure called the smooth-threshold estimating equations that can automatically eliminate irrelevant parame-
ters by setting them as zero. In addition, the resulting estimator enjoys the oracle property in the sense that Fan 
and Li [17] suggested. Li et al. [19] focus on marginal longitudinal generalized linear models and develop a va-
riable selection technique. 

Motivated by the idea of Ueki [18] and Li et al. [19], an automatic variable selection procedure is developed 
for the single-index random effects models. There are two difficulties. One notable difficulty in our setting is 
that we have to treat the nuisance parameters Φ  and 2

εσ  involved in the working covariance matrix, which 
affect the final estimator of β . Computationally, we need to update the values of these nuisance parameters 
together with the main parameter of interest. We propose an iterative algorithm to implement the procedures in 
Section 2 and obtain the efficient estimator of β . The proposed method shares some of the desired features of 
existing variable selection methods: the resulting estimator enjoys the oracle property; the proposed procedure 
avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized 
weighted deviance criterion for a data-driven choice of the tuning parameters, see, Li et al. [19]. Simulation stu-
dies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustra-
tion. 

The paper is organized as follows. In Section 2, the iterative estimation procedure is given for model (1) and 
the asymptotic properties of the proposed estimator are established in Section 3. In Section 4 simulation studies 
are conducted to evaluate the performance of the proposed method, and a real data set is analyzed to illustrate 
the proposed method. 

2. Estimation Procedure 
Throughout this paper, let 0β  be the fixed true value of β  and let n →∞ , while the m is uniformly bounded. 



S. G. Yang, L. G. Xue 
 

 
232 

We partition 0β  into active (nonzero) and inactive (zero) coefficients as follows: let { }0 0: 0jA j β= ≠  and 
{ }0 0: 0c

jA j β= =  be the complement of A. Denote by 0s A=  the number of true zero parameters. 
Suppose that the sample comes from model (1). Let ( )T

1, ,i i imY Y Y=  , ( )T
1, ,i i imX X X=  , iZ =  

( )T
1, ,i imZ Z , ( )T

1, ,i i imε ε ε=   and ( ) ( ) ( )( )TT T
0 1 0 0, ,i i imG X g X g Xβ β β=  . Model (1) can be rewritten as  

( )0 , 1, , .i i i i iY G X Z b i nβ ε= + + = 
                              (2) 

It is easy to see that ( ) ( )0i i iE Y X G X β=  and ( ) T 2Cov i i i i m iY X Z Z Iεσ= Φ + ≡ Λ , where mI  is the m m×  
identity matrix and iZ  is m q×  known fixed design matrix. A naive idea to estimate 0β  is to minimize  

( ) ( ){ } ( ){ }T 1

1

1 n

n i i i i i
i

R Y G X Y G X
n

β β β−

=

≡ − Λ −∑                         (3) 

Since 0 1β =  means that the true value of 0β  is the boundary point on the unit sphere, ( )T
0ijg X β  does 

not have derivative at the point 0β . However, we must use the derivative of ( )T
0ijg X β  on 0β , when con-

structing the estimating equation for 0β . The “delete-one-component” method (see Zhu and Xue [6], Wang et 
al. [7]) is used to solve this problem. The detail is as follows. Let ( )T

0 1, , pβ β β=   and  
( ) ( )T

1 1 1, , , , ,r
r r pβ β β β β− +=    be a 1p −  dimensional parameters vector deleting the rth component rβ . 

Without loss of generality, we may assume that the true vector 0β  has a positive component rβ . Then, the 
true parameter ( )rβ satisfies the constraint ( ) 1rβ < . Thus, 0β  is infinitely differentiable in a neighborhood 
of the true parameter ( )rβ , the Jacobian matrix is 

( ) ( )T
1, , ,r pJ

β
γ γ=   

where ( )1 ,s s p s rγ ≤ ≤ ≠  is a ( )1p −  dimensional unit vector with s component 1, and 

( )( ) ( )1 2
1 .r r

rγ β β
−

= − −  

Based on the estimation procedure in Pang and Xue [2] and Yang et al. [3], we outline the iterative steps for 
estimating procedures for 0β , ( )g ⋅  and its derivative ( )g ′ ⋅ . 

Step 0: We first give a consistent estimator of 0β , which is denoted by β . 
Step 1: Estimation of the link function ( )g ⋅  and its derivative ( )g ′ ⋅ . Given the initial estimator β , we 

apply the local linear regression technique in Fan and Gijbels [20] to estimate the link function and its derivative. 
The estimators of ( )g ⋅  and ( )g ′ ⋅  are obtained by minimizing the weighted sum of squares 

( ){ } ( )2T T

1 1

n m

ij ij h ij
i j

Y a b X u K X uβ β
= =

− − − −∑∑    

with respect to a and b where ( ) ( )1
hK h K h−⋅ = ⋅ , ( )K ⋅  be a kernel function, and nh h=  is the bandwidth. 

Specifically, the local linear estimators of ( )g ⋅  and ( )g ′ ⋅  are defined as ( )ˆ ˆ;g u aβ =  and ( ) ˆˆ ;g u bβ′ =  for 
the initial estimator β . By some simple calculations, we have 

( ) ( )( ) ( ) ( )T 1
ˆ ˆ; , ; ; ; ,n ng u hg u S u V uβ β β β

−
′ =     

where ( ) ( ) ( )
( ) ( )

,0 ,1

,1 ,2

; ;
;

; ;

n n

n

n n

S u S u
S u

S u S u

β β
β

β β

 
 =
 
 

 



 

 and ( ) ( ) ( )( )T

,0 ,1; ; , ;n n nV u V u V uβ β β=    with 

( ) ( )
T

T
,

1 1

1; , 0,1, 2,
l

n m
ij

n l h ij
i j

X u
S u K X u l

n h
β

β β
= =

 −
= − =  

 
∑∑



   

( ) ( )
T

T
,

1 1

1; , 0,1.
l

n m
ij

n l h ij ij
i j

X u
V u K X u Y l

n h
β

β β
= =

 −
= − =  

 
∑∑



   

Step 2: Estimation of the variance components. To obtain the estimator of index parameter, we need to get 
the consistent estimators of the variance components. Suppose that the variance-covariance matrix for model (2) 
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is 
2 T 2 ,b m m mJ J Iεσ σΛ = +  

where ( )T1, ,1mJ =   is the m-vector of ones. Assume that the random effects ib  and the error ijε  are Gaus-
sian distributed, then the observation iY  have independent ( )( )0 ,iN G X β Λ  distributions. Based on the esti-
mator β  and the estimator ( )ˆ ,g u β , the log-likelihood function for 2

εσ  and 2
bσ  can be written as 

( ) ( ) ( ) ( ) ( ) ( ){ }222 2 2 T
2 2 2

1 1 1

1ˆ ˆ ˆ1 log log ; ,
n n m

b i i ij ij i i
i i jb

mn m n m Y g Y g X Y g
mε ε

ε ε

σ σ σ β β
σ σ σ= = =

− − − + − − − − − −
+

∑ ∑∑    

where 1
1

m
i ijjY m Y−

=
= ∑  and ( )1 T

1
ˆ ˆ ;m

i ijjg m g X β β−
=

= ∑   . The maximum likelihood estimators of 2
εσ  and 2

bσ  
are defined by 

( ) ( ) ( ) ( ){ }

( ) ( ) ( )

2
2 T

1 1

22 2

1

1ˆ ˆ ˆ; ,
1

1 1ˆ ˆ ˆ .

n m

ij ij i i
i j

n

b i i
i

Y g X Y g
n m

Y g
n m

ε

ε

σ β β β

σ β σ β

= =

=

= − − −
−

= − −

∑∑

∑

  

 

 

Then we can obtain the Λ ’s estimator ( ) ( ) ( )2 T 2ˆ ˆ ˆ .b m m mJ J Iεβ σ β σ βΛ = +    

Step 3: Estimation of index parameter. Based on the initial estimator β  and the estimator of iΛ , the esti-
mator ( )rβ



 of ( )rβ  can be obtained by solving the following estimating equation 

( )( ) ( ) ( ) ( ) ( ){ }T T 1
0 0

1

1ˆ ˆ ˆˆ, 0,r

n
r

n i i i i i
i

Q G J X G X Y G X
n β

β β β β−
∆

=

′= Λ − =∑   

where ( ) ( ) ( ){ }T T
0 1 0 0 0 0

ˆ ˆ ˆdiag ; , , ; .i i imG X g X g Xβ β β β β∆′ ′ ′=   

Motivated by the idea of Ueki [18] and Li et al. [19], we can use the following smooth-threshold estimating 
equations to estimate ( )rβ , 

( )( ) ( )( ) ( )( )*
1

ˆ ˆ, , 0r r
n npQ G I Q Gβ β β−= − ∆ + ∆ =                        (3) 

where ∆  is the diagonal matrix whose diagonal elements are ( ) ( )1, , 1i i p
δ

= −

, and ( )1pI −  is the 1p −  dimen-  

sional identity matrix. Note that 1iδ =  reduces to 0iβ = . Therefore equation (3) can yield a sparse solution. 
Unfortunately, we cannot direct obtain the estimator of ( )rβ  by solving (3), because (3) involves iδ , which 
need be chosen using some data driven criteria. For the choice of iδ , Ueki [18] suggested that iδ  can be cho-  

sen by ( )1ˆ min 1,i i

γ
δ λ β

+
=  , where ( ),λ γ  are two tuning parameters, which can be computed by a penalized  

weighted deviance criterion, see Li et al. [19]. Similarly, we can define the active set { }ˆ: 1iA i δ= ≠  which is 
the set of indices of nonzero parameters. Replacing ∆  in Equation (3) by ∆̂  with diagonal elements 
ˆ , 1, , 1i i pδ = −

, we propose the following modified iterative procedure for Aβ , 

( )
( )( ) ( )( )* * 1 *ˆ ˆ ˆ, , ,r

A

r r
A A n A n AJ B G Q G

β
β β β β−= +



                            (4) 

where ( )( ) ( )( ) ( )( ) ( )( )*
1 1

ˆ ˆˆ ˆ ˆ, , .r r
n A n Ap pB G I B G Iβ β− −= −∆ −∆ + ∆   Reset * *ˆ ˆ

A A Aβ β β= . Repeat (4) until convergence.  

We denote the final estimator of Aβ  by ˆ
Aβ . 

Step 4: Repeat step 1 to step 3 until convergence. Finally, instead β  with ˆ
Aβ  in ( )ˆ ;g u β , we obtain the  

final estimators of ( )g ⋅  and ( )g ′ ⋅ , which is denoted by ( ) ( )ˆˆ ˆ ;g u g u β=  and ( ) ( )ˆˆ ˆ ;g u g u β′ ′= , respectively. 

Remark 1: In Step 0, we need to choose a suitable initial estimator of 0β . For the numerical studies and real 
data analysis in Section 4, the initial estimator can be obtained using two steps. In the first step, we use inde-
pendent data ( ){ }, , , 1, ,ik ik ikY X Z i n=   to get estimators ( )kβ  for 1, ,k m=  . In the second step, we average  

( )kβ  over 1, ,k m=  ,then ( )
1

1

m

k
k

mβ β−

=

= ∑   is taken as the initial estimator. 

Remark 2: It is well-known that the convergence rate of the estimator ( )ĝ u′  is slower than that of the es-



S. G. Yang, L. G. Xue 
 

 
234 

timator ( )ĝ u  if the same bandwidth is used. This leads to a slower convergence rate than root-n for the esti-
mator β̂  of 0β . This motivates us to introduce another bandwidth 1h  to control the variability of the estima-
tor of ( )g u′ . 

Remark 3: We use following penalized weighted deviance criterion (see Li et al. [19]) to select tuning para-
meters ( ),λ γ : 

( ) ( ) ( ), , logPWD WSSE DF nλ γ λ γ= +  

where ( ) ( ),
1

ˆ1 1
p

i
i

DF λ γ δ
=

= ≠∑  denotes the number of nonzero parameters with ( )l ⋅  the indicator function, 

1

1

n
T

i i i
i

WSSE r r−

=

= Λ∑  with the deviance residual ( )i i ir Y g X β= −  . We can choose ( ),λ γ  by minimizing the 

( ),PWD λ γ . 

3. Asymptotic Properties 
In this section, we assume, under the regularity conditions, the initial estimator using the full model is consistent 
and asymptotically normally distributed by solving the GEE (see Liang and Zeger [21]). Following Fan and Li 
[17], it is possible to prove the oracle properties for the estimators, including n -consistency, variable selec-
tion consistency, and asymptotic normality. 

Theorem 1. Under mild regularity conditions, for any positive λ  and γ  such that 1 2 0n λ →  and 
( )1 2 0n γ λ+ → , there exists a sequence ,

ˆ
λ γβ  of the solutions of (3) such that  

( )1 2
, 0

ˆ
pO nλ γβ β −− = . 

Note 1: The mild regularity conditions in Theorem 1 are same with the conditions in Yang et al. [3] Theorem 
1. 

Theorem 2. Suppose that the conditions of Theorem 1 hold, as n →∞ , we have 
1) variable selection consistency, i.e. ( )0 1P A A= →  
2) asymptotic normality, i.e. 

( ) ( ) ( )0 0
0 0

1 T
, ,

ˆ 0, r r
A A

D
A An N J Jλ γ β β

β β − 
− → Ω 

 
 

where Ω  is the limit in probability of  

( ) ( ){ } ( ){ } ( )0 0
0 0

TT 2 2
1 1

1
r r

A A
i i A i i i AJ X G X G X G X J

n β β
β β− ′− Λ − 

 
 

as n →∞ . 
The proof of Theorem 1 and Theorem 2 can be obtained similarly to the proof of Theorem 1 and Theorem 2 

in Li et al. [19]. 

4. Numerical Studies and Application 
4.1. Numerical Studies 
In this subsection, we conduct simulation studies to illustrate the finite sample properties of proposed procedure. 
Throughout the simulation studies, we take Epanechnikov kern ( ) ( )20.75 1K t t

+
= −  for estimating the link 

function, and the bandwidth h is chosen by the cross validation (CV) method. 
For each case we repeat the experiment 100 times and applied the penalized weighted deviance criterion to 

select the tuning parameters. We consider the following example. 
For a single-index random effects model, 

( )2T
05 , 1, , , 1, , ,ij ij i ijY X b i n j mεβ σ ε= + + = =                         (5) 
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where ( )T

0 3 2,0,0.5,0,0β = , ijX  is a five-dimensional vector with independent uniform [0,1], ib  is a nor- 
mal variable with mean zero and variance 2

bσ , ijε  is a standard normal variable.  
For the simulations, we consider the number of subjects n = 50, 100 subjects and m = 3. For comparison, we 

Consider 0.5,1εσ = , and 1,1.5bσ = , respectively. Based on the experiment time M = 100, the simulation re-
sults are reported in Table 1. In the tables, values in the column labeled “Correct” denote the average number of 
coefficients of the true zeros, correctly set to zero, and those in the column labeled “Incorrect” denote the aver-
age number of the true nonzeros incorrectly set to zero. 

Table 1 and Figure 1 indicate the following simulation results: 
1) From Table 1, it is easy to see that “correct” increases to 3 (true number) as n increases. Therefore, the 

proposed method is able to correctly identify the true submodel. 
2) From Table 1, we find that “correct” increases to 3 as bσ  and the εσ  decrease, respectively.  
3) Figure 1 shows that the estimators of β  have asymptotic normality. 

4.2. Application to Real Data 
The data set comes from an epileptic study (Thall and Vail [22], Bai et al. [23], and Pang and Xue [2]). Two 
different treatments (placebo and antiepileptic drug progabide) were administered to 59 epileptics during the 
experimental period. Patients were randomized to receive either of the two treatments. The patients attended 
clinic visits every two weeks for four consecutive times and the number of seizures occurring over the previous 
two weeks was reported. For this dataset, the number of seizures in a two-week period (NS) is taken as the re-
sponse variable, the logarithm of age in year (LA), and the baseline seizure count (which is divided by 4 and 
then log-transformed, let BSC) are considered as the covariates. A scientific question here is whether the drug 
helps to reduce the rate of epileptic seizures. To illustrate the proposed method, we consider the following sin-
gle-index model, 

( )1 2 3 1 4 2 5 3 , 1, ,59, 1, 4.ij ij ij ij ij ij ijNS g LA BSC X X X i jβ β β β β ε= + + + + + = =                (6) 

 
Table 1. Variable selections for model (5) using our method. 

bσ  εσ  
50n =  100n =  

Correct Incorrect Correct Incorrect 

1 
0.5 2.96 0 2.99 0 

1 2.88 0 2.94 0 

1.5 
0.5 2.82 0 2.99 0 

1 2.71 0 2.95 0 

 

 
Figure 1. The hist plot about β1 (left) and β3 (right). 
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where 3 4 5 0β β β= = = , and kijX , 1, 2,3k =  are random number with independent uniform [0,1]. The esti-
mation procedure proposed in Section 2 is used to estimate the single-index model (6), the non zero estimated of 
the index coefficients (standard error of estimated) are 1̂β  = 0.8342 (0.0563), 2β̂  = −0.5515 (0.1287), and 

3 4 5
ˆ ˆ ˆ 0β β β= = = . Therefore, the proposed method is feasible in practical application. 

5. Concluding Remarks 
In this paper, we have done automatic variable select to parameters of index β  for single-index random effects 
model with longitudinal data. We further derive the asymptotic distributions for estimator of β  for single-in- 
dex random effects model. The proposed estimator has good asymptotic behavior and select number of zero pa-
rameters very close to the nominal level in our simulation study. A real data analysis illustrates the practical use 
of the variable select. The methodology in this paper is general and widely applicable, and therefore, we expect 
further research along these lines to yield deep theoretical results with interesting applications for other nonpa-
rametric or semiparametric models with random effects. 
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