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ABSTRACT 
Run count statistics serve a central role in tests of non-randomness of stochastic processes of interest to a wide 
range of disciplines within the physical sciences, social sciences, business and finance, and other endeavors in-
volving intrinsic uncertainty. To carry out such tests, it is often necessary to calculate two kinds of run count 
probabilities: 1) the probability that a certain number of trials results in a specified multiple occurrence of an 
event, or 2) the probability that a specified number of occurrences of an event take place within a fixed number 
of trials. The use of appropriate generating functions provides a systematic procedure for obtaining the distribu-
tion functions of these probabilities. This paper examines relationships among the generating functions applica-
ble to recurrent runs and discusses methods, employing symbolic mathematical software, for implementing nu-
merical extraction of probabilities. In addition, the asymptotic form of the cumulative distribution function is 
derived, which allows accurate runs statistics to be obtained for sequences of trials so large that computation 
times for extraction of this information from the generating functions could be impractically long. 
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1. Introduction 
1.1. Runs Tests for Non-Randomness 

A stochastic process generates random outcomes in time or space. Such processes occur widely in the physical 
and social sciences, as well as in purely practical human activities such as finance, manufacturing, and com-
merce. Despite their random occurrence—indeed, precisely because of it—the outcomes of a stochastic process 
will display ordered patterns which a statistically naïve observer may mistakenly interpret as predictively useful 
information. In recent years, controversial issues over the information content of time series have arisen in a va-
riety of disciplines such as nuclear physics [1] and econophysics (i.e. dynamics of the stock market) [2]. Al-
though it is not possible to prove with certainty that a particular process is random, there are various statistical 
tests to demonstrate within specified confidence limits that it is not random. Among these, nonparametric runs 
tests are especially useful, in part because of their ease of implementation and statistical power [3]. 

1.2. Exclusive Runs 
An exclusive run is an unbroken sequence of similar events, ordinarily of a binary nature. For example, a se-
quence of symbols aabbbaa comprises 2 runs of a’s of length 2 and 1 run of b’s of length 3. If the events a and 
b occur with fixed probabilities throughout the sequence, the stochastic process is of the Bernoulli kind, and the 
distribution theory of binary runs [4] can be used to test for non-randomness in permutational ordering of any 
such empirical sequence of outcomes. 
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It is not necessary for a stochastic process to generate binary events in order to be analyzed for runs. For ex-
ample, a sequence of n different observations 1 2, , , nx x x  of a continuous random variable will yield 1n −  
sequential differences that are either positive (+) or negative (–) and therefore again subject to binary runs anal-
ysis. The binary elements, however, are not Bernoulli variates since the probability of obtaining an element de-
creases with its position in the unbroken sequence. Nevertheless, one can test for non-randomness in permuta-
tional ordering with a different distribution theory [5].  

Although developed initially for testing quality control in manufacturing, exclusive runs and up-down runs 
have been employed in analysis of a variety of experiments to test the fundamental prediction of quantum me-
chanics that transitions between quantum states occur randomly [6,7]. A problematic issue in the counting of 
exclusive or up-down runs is that the length of a run can be changed by future events. Thus, in the succession 
aabbbaa, the second run of 2 a could change to a run of 3 a or 4 a if the next two trials resulted in ab or aa re-
spectively.  

1.3. Runs of Recurrent Events 
A third kind of runs analysis, based on Feller’s theory of recurrent events [8], was recently employed to examine 
certain quantum optical processes for evidence of non-random behavior [9]. A recurrent run of length t, as de-
fined by Feller, is a sequence of non-overlapping, uninterrupted successions of exactly t elements of the same 
kind. It is distinguished from the other two kinds of runs in that the concept of run length is so defined as to be 
independent of subsequent trials. For example, in the sequence aaaabaaaaaa, there are two runs of length 4 
[ ]| | |aaaa b aaaa aa , three runs of length 3 [ ]| | |aaa ab aaa aaa , and five runs of length 2 [ ]| | | | |aa aa b aa aa aa . 
(Analyzed in terms of exclusive runs, there would have been 1 run of a of length 4 and 1 run of a of length 6, 
provided the sequence ended at the 11th trial). In a sequence of Bernoulli trials, a recurrent run of length t occurs 
at the thn  trial if the thn  trial adds a new run to the sequence. Thus, the recurrent runs of length 4 occur at 
positions 4, 9, and the recurrent runs of length 3 occur at positions 3, 8, 11. 

The advantage of Feller’s definition is that runs of a fixed length become recurrent events, and the statistical 
theory of recurrent events can then be applied to testing empirical data sequences for permutational invariance 
over a much wider variety of patterns than just those of unbroken sequences of identical binary elements. For 
example, one may be interested in testing the recurrence of a pattern abab, which, in a quantum optics experi-
ment, might correspond to a sequence of alternate detections of left and right circularly polarized photons, or, in 
a series of stock price variations, might correspond to a sequence of alternative observations of rising and falling 
closing prices. Besides the application to runs, the same theoretical foundation may be applied to recurrent 
events in other forms such as return-to-origin problems, ladder-point problems (instances where a sum of ran-
dom variables exceeds all preceding sums), and waiting-time problems. 

The theory of recurrent runs, the relevant parts of which are examined in the following section, leads to gene-
rating functions from which the probability of a run of defined events of specified length can in principle be 
calculated exactly. As a practical matter, the extraction of these probabilities requires geometrically longer 
computation times with increasing sequence length. The availability of fast lap-top computers with large random 
access memory and of symbolic mathematical software of hitherto unparalleled ability to execute series expan-
sions and perform differentiation and integration provides the analyst with computational power unimaginable to 
the creators of the statistical theory of runs. I report here mathematical strategies for reducing significantly the 
computation time for the probability of the widely applicable case of k occurrences of runs of length t in a Ber-
noulli sequence of length n. 

2. Theory and Implementation of Recurrent Runs 
2.1. Probability Generating Functions 

Following Feller, I define the recurrent event E to be a run of successes of length t in a sequence of Bermoulli 
trials with p the probability of a single successful outcome and 1q p= −  the probability of failure. Consider the 
following random variables:  

( ) ( )number of trials "waiting time"  between 1  and  occurrence of E 1th th
kT k k = − +           (1) 

1
number of trials up to and including  occurrence of E

k
th

k j
j

S T k
=

= =∑                 (2) 
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number of occurrences of E in  trialsnN n= .                          (3) 

The distribution of the variable T is defined by 

( ) 0Pr with 0nT n f f= ≡ =                                (4) 

where nf  is the probability that E occurs for the first time at the thn  trial. The generating function of the 
probabilities of first occurrence is expressed by 

( )
0

n
n

n
F s f s

∞

=

= ∑ .                                    (5) 

The number of trials to the thk  occurrence of E is then characterized by the random variable kS  in (2), 
which is a sum of the waiting times of k independent trials, from which it is follows that the associated generat-
ing function takes the form  

( ) ( ) ( ) ( )
0 0

k
kk k n n

n n
n n

F s f s F s f s
∞ ∞

= =

 = = =      
∑ ∑                            (6) 

where 

( ) ( )Pr k
k nS n f= ≡                                      (7) 

is the probability that the thk  occurrence of E first takes place at the thn  trial.  
I leave to the cited literature the proof that the generating function (5) for runs of length t with individual 

probability of success p is given by 

( ) ( ) ( )
1

1
, ,

1

t t

t t

p s ps
F s p t F s

s qp s +

−
≡ =

− +
                               (8) 

from which the mean and standard deviation of the recurrence times follow by differentiation 

( ) ( ) ( )
1

d 1, 1
d

t

t
s

F s pp t q p
s qp

µ
=

−
= = = −                              (9) 

( ) ( ) ( ) ( ) ( ) ( )( )( )
22 1 22 1 2

2

1

d d d
, 2 1

d dd
t t

s

F s F s F s
p t qp t qp pq

s ss
σ

− − −

=

  
 = − + = − + − 
   

.          (10) 

For economy of expression, the parameters p, t will be suppressed in the arguments of ( ), ,F s p t , ( ),p tµ , 
and ( ),p tσ  unless needed to avoid ambiguity. In general, these parameters will be chosen and fixed at the 
outset of any illustrative applications. Note, too, that to obtain a statistical moment from a probability generating 
function (pgf), the derivatives are evaluated at 1s = , which leads to a sum of terms, whereas to obtain a proba-
bility the derivatives are evaluated at 0s = , which leads to a single term. 

For many applications the analyst’s interest is not necessarily in the recurrence time (i.e. number of trials) to 
the thk  occurrence of E, but in the probability that E occurs k times in a fixed number n of trials. The relation 
connecting the two variates is 

( ) ( )Pr Prn kN k S n≥ = ≤ .                                (11) 

The probability ,n kp  that k events E occur in n trials is then expressible as 

( ) ( ) ( ), 1Pr Pr Prn k n k kp N k S n S n+= = = ≤ − ≤                          (12) 

and serves in the construction of two pgf’s 

( ) ,
0

, k
n k

k
G z n p z

∞

=

= ∑                                     (13) 

and 

( )
( ) ( )

,
1

1
,

1

k

n
n k

n

F s F s
Q s k p s

s

∞

=

−  = =
−∑ .                               (14) 
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Note that the summation in (13) is over the number of occurrences, whereas the summation in (14) is over the 
number of trials. The second equality in (14) follows directly from Equation (11). Multiplying both sides of (13) 
by ns  and summing over n leads to the bivariate generating function 

( ) ( )
( ) ( )( ),

1 0

1
,

1 1
k n

n k
n k

F s
H s z p z s

s zF s

∞ ∞

= =

− ≡ =  − − 
∑ ∑                       (15) 

from which the probabilities ,n kp  are calculable by series expansion of both sides of the equality. 
A sense of the structure of the formalism can be obtained by considering the case of recurrent runs of length  
3t =  for a stochastic process with 1

2p = . Substitution of these conditions into Equation (8) for ( )F s  yields  

the following rational expression for the right side of Equation (15) and its corresponding Taylor-series expan-
sion  

( )
( )

( )
( )

2

3 3 2

2 3 4 5 6

2 2 4
,

2 4 8

1 7 3 13 1 31
8 8 16 16 4 4

s s
G s z

s zs s s

s s z s z s z s O s

− + +
=

+ + + −

     = + + + + + + + + +     
     

             (16) 

to order 6s . Recall that the powers of s designate the number of trials, and the powers of z designate the number 
of recurrences of runs of length 3. For a fixed power of s, the sum of the coefficients of the powers of z within 
each bracketed expression equal unity, as they must by the completeness relation for the probability of mutually 
exclusive outcomes. Note that the first three terms ( )0 1 2s s s+ +  are independent of z—i.e. contain only pow-
ers 0z —since there cannot be runs of length 3 in a sequence of no more than 2 trials. For 3 trials, the probabili-
ty of 0 runs of length 3 is 7/8 and the probability of 1 run of length 3 is 1/8. For 5 trials, however, the probability 
of 0 runs is 1/4 and the probability of 1 run is 3/4. This pattern persists: (a) to obtain a run of length t, the se-
quence of trials must be of length s t≥ , and (b) the greater the number of trials, the higher is the probability of 
obtaining longer runs. 

2.2. Moment Generating Functions 
It is not necessary to know the individual ,n kp  to determine the mean number of recurrent runs  

,
0

n n k
k

N kp
∞

−

= ∑                                      (17) 

which, for many applications in the physical sciences and elsewhere, is the experimentally observed quantity of 
interest. Multiplying both sides of Equation (17) by ns  and summing n over the range ( )1,∞  leads to the ge-
nerating function for the distribution of nN  

( ) ( )
( ) ( )( )1

1
 

1 1
n

n
n

F s
M s N s

s F s

∞

=

= =
− −∑ .                            (18) 

Starting from the relation 

2 2
,

0
n n k

k
N k p

∞

−

= ∑                                      (19) 

and following the same procedure that led to (18) yields the generating function for the distribution 2
nN  

( ) ( ) ( )
( ) ( )( )

2
2

2 2
1

 
1 1

n
n

n

F s F s
M s N s

s F s

∞

=

+
= =

− −
∑ .                            (20) 

From the generating functions (18) and (20) one can deduce the asymptotic relations for mean and variance 
1

nN nµ−≈                                         (21) 

and 

( ) 2 3var nN nσ µ−≈ .                                      (22) 
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2.3. Numerical Procedures 
The statistics (probabilities and expectation values) for any physically meaningful choice of probability of suc-
cess p, run length t, and number of trials n are deducible exactly from expressions (15) and (18) in the manner 
previously illustrated. For many applications, however, particularly where it is possible to accumulate long se-
quences of data as is often the case in atomic, nuclear and elementary particle physics experiments or investiga-
tions of stock market time series, the tests for evidence of non-random behavior are best made by examining 
long runs. Suppose, for example, one wanted the probability of obtaining the number of occurrences of runs of 
length 50 in a sequence of 100 trials. One approach, leading directly to all non-vanishing probabilities, would be 
to extract the 100th term  

( )100,50

14 31 2

1 1125899906842623 1 1
562949953421312 2251799813685248 2251799813685248

1.0000 2.3093 10 7.8886 10

p z z

z z− −

  = + +    
≈ + × + ×

 

from the series expansion of the bivariate generating function (15). Powerful symbolic mathematical software 
such as Maple or Mathematica permits one to do this up to a certain order limited by the speed and memory of 
one’s computer, but these calculational tools may become insufficient when one is seeking exact probabilities of 
runs in data sequences of thousands to millions of bits.  

Using complex variable theory, one can extract expressions for ,n kp  and nN  by evaluation of contour 
integrals 

( ) ( )

( )
( ) ( )( )

( ) ( )( ) ( )

1
,

2

1 1

1

0

1 d
2 i

11 dd
2 i 1 1

1 d 1 1
! d

k
n k n

C

n k
C C

n
k

n
s

p P

F
F

s F s F s
n s

ξ ξ ξ

ζ ξζ
ζ ζ ξ ζ ξ

− +

+ +

−

=

=
π

− =  π − − 

  = − −   

∫

∫ ∫



 

                        (23) 

and similarly 

( ) ( ) ( ) ( )( ) ( )111
1

0

1 1 dd 1 1
2 i ! d

n
k

n n
C s

N M s F s F s
n s

ξ ξ ξ
−−− +

=

  = = − −   π  
∫                (24) 

where C is the unit circle and the generating function ( )F s , given by Equation (8), specifies the single-event 
probability p and run length t. Contrary to first impression, however, the execution of expressions (23) or (24) 
for ,n kp  or nN  directly by differentiation, instead of by a series expansion of the corresponding generators 
up to the order that yields the desired ,n kp  or nN , is not computationally economic. The computer, in fact, 
executes the series expansion of the generator much more rapidly than it performs symbolic differentiation. 

Because the generator ( )1M s  [Equation (18)] is univariate, one can take advantage of the rapidity with 
which symbolic mathematical software executes a series expansion to obtain exact values nN  for very long 
sequence lengths by the following simple procedure: 

1) For given p and t, express ( )1M s  as a rational function ( ) ( )g s h s  of s. 

2) Convert ( ) ( )g s h s  to a power series 
0

j
j

j
N s

∞

=
∑ . In Maple this can be done by the command  

( ), ,convert FormalPowerSeries s
 where the ellipsis ( )  represents either the expression to be converted or 

the Maple equation number of that expression. 

3) Extract the single desired term nN . In Maple this can be done by filtering the sum: 
n

j
n j

j n
N N s

=

= ∑ .  

Alternatively, one can convert the series generated to order ( )1O n +  to a polynomial of degree n, and use the 
command lcoeff to extract the leading coefficient of the polynomial.  

As an illustration, consider the calculation (by means of Maple) of the exact mean number of runs of length 
4t =  in a sequence of 1 million trials with probability of success 0.5p = . Following the foregoing steps, we 

have 
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1) ( ) ( )
( ) ( )( ) ( )( )

4

1 4 3 2

1
21 1 2 4 8 1

F s sM s
s F s s s s s s

= =
− − + + + − −

 

2) ( )( ) ( )1
0

, , j
j

j
convert M s FormalPowerSeries s s

∞

=

→∑   

3) ( )
n

j n
nj

j n
evalf expand s N s

=

  
→     

∑   

where ( ) j  is to be replaced by the actual j th  numerical element in the sum obtained in step (2). The arrow, 
inserted by the author, symbolically points to the form of the output. Extraction of this element for the specified 
conditions led to 1,000,000 33,333.258N =  in a fraction of a second. In Maple, the command evalf calls for nu-
merical evaluation of expressions; omitting this command results in an exact fraction, which for a sequence 
length of 1 million is too unwieldy to be useful. Use of the command lcoeff yields the same result, but executes 
more slowly for large n. 

The procedure described above for converting the rational expression of s into a formal power series in s did 
not work with the bivariate generator ( ),H s z , which involved a product of z with a power of s (depending on 
run length t) in the denominator, and required, for the conversion, solution of the roots of a high-order (>2) al-
gebraic equation. Maple did return, however, the recursion relation for the coefficients of the formal power se-
ries. An alternative procedure to isolate the values ,n kp  for fixed n, which still relied on the computational 
speed of series expansion and worked well for sequence lengths in the thousands, is the following: 

1) For given p and t, express ( ),H s z  as a rational function of s and z. 
2) Generate a series expansion of ( ),H s z  to order n and 1n + . 
3) Convert the series expansions into polynomials ( )1nP +  and ( )nP . 
4) Subtract one polynomial from the other to obtain an expression of the form 

( ) ( )
2

,0 ,1 ,21 ,

n
t

n
t

n
n n nn n n

P P p p z p z p z s
 
 

+  
 

 − → + + + +  
  

where 
n
t

 
  

 is the largest integer k such that kt n≤ . The coefficients ,n kp  are given as exact fractions. 

5) Evaluate the set { },n kp  as floating-point numbers, if desired. 
As an example, the procedure led in under 10 seconds to the full set { }1000, 0, ,200kp k = 

 for the probability 
of k occurrences of runs of length 4 in a sequence of 1000 trials. The calculations described in this section were 
performed with a laptop computer (Intel-based Mac Powerbook) running Maple 16.  

One final procedure, particularly suitable when only selected probabilities of the full set { },n kp  are desired, 
is to obtain these probabilities directly from the generating function ( ),Q s k  in (14). As in the previous exam-
ples, this can be accomplished in either of two ways: (1) by evaluating the leading coefficient of the polynomial 
in the desired degree n, or (2) by filtering the power series for the thn  term. As an example, consider the prob-
ability 100,4p  for obtaining 4 runs of length 4t =  in a series of 100 trials with probability of success 0.5p = . 
The generating function then takes the form 

( ) ( )
( )

( )

16 3 2

54 3 2

2 2 4 8
, , , ,4,0.5,4

2 4 8 16

s s s s
Q s k p t Q s

s s s s

+ + +
= = −

+ + + −
 

In Maple, method (1) proceeds as follows: 

1) 
( )

( )

16 3 2

54 3 2

2 2 4 8
, ,

2 4 8 16

s s s s
convert FormalPowerSeries s

s s s s

 + + + −  + + + − 

 

2) ( )
100

100

100
0.2007906348

k
evalf expand s

=

   →  
  
∑ 

 

where the ellipsis is to be replaced by the thk  term produced in step (1). In using Maple to execute method (2), 
one proceeds in a single step once the rational expression ( ),4,0.5,4Q s  has been obtained: 

( )( )( )( )( ),4,0.5,4 , 0,101 , 0.2007906348evalf lcoeff convert series Q s s polynom= → . 
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Note that the series must be expanded to 1n +  terms in order to obtain the coefficient of ns , since the sum-
mation index begins at 0. 

3. Generating Function of Cumulative Probability 
For many applications in the physical sciences and elsewhere, the full set of probabilities { },n kp  provides more 
information than is desirable or usable. Moreover, because ,n kp  for large k may be very small and the variance 
relatively large, the more observationally stable statistic is the probability of obtaining k or more occurrences of 
the specified event, or in other words, the complementary cumulative probability (ccp) 

( )Pr n nk nj
j k

N k P p
∞

=

≥ ≡ = ∑                                   (25) 

introduced in Equation (11). Experimental situations calling for preferential usage of a cumulative probability 
distribution over a probability function abound in the physical sciences, as, for example, in the analysis of frag-
mentation [10] and other stochastic processes leading to a power-law distribution. 

The generating function for the ccp is derivable from ( ),Q s k  by summing over the recurrence index k 

( ) ( ) ( )
1 1

, ,  
1

k
n n

nk
n n j k

F s
C s k P s Q s j s

s

∞ ∞ ∞

= = =

 
≡ = =  − 
∑ ∑ ∑ .                       (26) 

(It is understood that ( )F s , and therefore ( ),C s k , are also functions of p and t). Thus, one can calculate 
( )Pr nN k≥  directly from the generator (26) by use of the methods previously described. A modern laptop run-

ning Maple can return results for ( )Pr nN k≥  within minutes for sequence lengths n on the order of many 
1000’s.  

4. Asymptotic Distributions 
One can show by application of the Central Limit Theorem (CLT) to relation (11) that for sufficiently large 
number of trials n and number of occurrences k, the number nN  of runs of length t produced in n trials is ap-
proximately normally distributed with mean and variance given by relations (21) and (22). The approximation, 
whose relative accuracy improves in the limit of increasing n, is actually quite good even for modest values of n, 
as shown in Table 1 for 100n = . Expansion of the generating function ( )1M s  yielded the exact mean value 
as an integer or fraction, which was then expressed as a floating-point number to three significant figures for 
comparison with the Gaussian approximation. It is to be noted from the Table that the Gaussian approximation 
overstates the mean values, and that the absolute error Gauss Exact

, ,n k n kp p −  , in contrast to the relative error 
( )Gauss Exact Exact

, , ,n k n k n kp p p −   increases with run length and number of trials. 
The Gaussian approximation, however, does not work well in estimating the cumulative probability nkP  for 

large n and long runs. However, one can obtain substantial improvement by taking account of the asymptotic 
behavior of ( ),p tµ  and ( ),p tσ , and the equivalence in Equation (11). Expansion in probability p for fixed 
run length t of expressions (9) and (10) yields the series 

( )
( )

( )
( ) ( )

0
1 1,

,
t tp t O p

p p p
p t c t O p

µ

σ
− − + −

 → + + + + 
− +  

                       (27) 

in which the constant ( )c t  is orders of magnitude smaller than the leading terms. Thus, in practical terms, 
( ),p tµ  and ( ),p tσ  are virtually equal for long runs, as illustrated in Table 2 for 0.5p = . 
Recall that ( ),p tµ  and ( ),p tσ , which were derived from the generating function ( ), ,F s p t , are respec-

tively the mean number of trials to the first occurrence of event E, which is a run of length t. The equivalence of 
the mean and standard deviation suggests that the asymptotic distribution of the random variable T  in Equation 
(1) is exponential [11] ( )E λ  with parameter 1λ µ−= . Then the random variable kS  in Equation (2),  

which is a sum of k independent exponential random variables 
1

k

j
j

T
=
∑ , follows a gamma distribution  

( ),Gam kλ  with cumulative probability function 

( ) ( )
1

1
0

1Pr e d
n k x

kS n x x
k

µ− − −≤ ≈
Γ ∫                            (28) 
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Table 1. Comparison of exact and Gaussian mean numbers of runs for n = 100 trials with p = 0.5. 

Run Length t Mean Number of Runs 
(Exact) 

Mean Number of Runs 
(Gaussian Approximation) 

1 50 50 

2 16.556 16.667 

3 7.041 7.143 

4 3.258 3.333 

5 1.562 1.613 

6 7.611 (−1) 7.937 (−1) 

7 3.738 (−1) 3.937 (−1) 

8 1.842 (−1) 1.961 (−1) 

9 9.098 (−2) 9.785 (−2) 

10 4.496 (−2) 4.888 (−2) 

11 2.222 (−2) 2.443 (−2) 

12 1.099 (−2) 1.221 (−2) 

13 5.433 (−3) 6.104 (−3) 

14 2.686 (−3) 3.052 (−3) 

15 1.328 (−3) 1.526 (−3) 

16 6.561 (−4) 7.630 (−4) 

17 3.243 (−4) 3.815 (−4) 

18 1.602 (−4) 1.907 (−4) 

19 7.916 (−5) 9.537 (−5) 

20 3.910 (−5) 4.768 (−5) 

40 2.819 (−11) 4.547 (−11) 

60 1.820 (−17) 4.337 (−17) 

 
Table 2. Asymptotic mean and SD of S1 . 

Run Length t ( )0.5,tµ  ( )0.5,tσ  

1 2.00 1.41 

5 62.00 58.22 

10 2046.00 2037.47 

20 62.09715 10×  62.09713 10×  

30 92.14748 10×  92.14748 10×  

 
where ( )kΓ  is the standard gamma function equal to ( )1 !k −  for integer k.  

By virtue of equivalence (11), Equation (28) also yields a closed-form asymptotic relation for the sought-for 
cumulative probability distribution ( )Pr nN k≥ .  

Consider, for example, the probability of 1 or more runs of length 20 in 2000 trials with individual probability 
of success 0.5. A comparison of the results of (a) Equation (28), (b) the cumulative Gaussian distribution with 
mean and variance given by relations (21) and (22), and (c) the exact calculation obtained from the generating 
function (26) 
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( )
( )
( )

4
2000 Gamma Dist

1
2000 Gaussan Dist

4
2000 Exact Generator

Pr 1 9.532 10

Pr 1 1.588 10

Pr 1 9.451 10

N

N

N

−

−

−

≥ = ×

≥ = ×

≥ = ×

 

supports the distribution (28). If the number of trials is increased to 106, the Gamma and Gaussian asymptotic 
distributions lead to comparable results 

( )
( )
( )

6

6

6

10 Gamma Dist

10 Gauss Dist

10 Exact Generator

Pr 1 0.3793

Pr 1 0.3004

Pr 1 0.3793

N

N

N

≥ =

≥ =

≥ =

 

but the former is still superior to the latter when compared to the probability calculated from the exact generat-
ing function. 

The relation (28), by which one can calculate the cumulative probability ( )Pr nN k≥  for large values of n, 
also allows one to calculate the individual probabilities nkp  as a function of number of occurrences k through 
the identity 

( ) ( ) ( )
1

1
0

11 1  d
n k x

nk n n
xp P N k P N k x e x

k k
µ− − − = ≥ − ≥ + ≈ − Γ  ∫                 (29) 

5. Conclusions 
The theory of recurrent runs provides a statistical basis for rejecting the hypothesis that a series of observations 
(in time or space) are random. This is a matter that often arises in experimental investigations in atomic, optical, 
nuclear, and elementary particle physics, as well as in other sciences, finance, and commerce, which may entail 
a very large number—perhaps in the thousands to millions—of trials or observations.  

In this paper theoretical and numerical methods based on different generating functions were derived and in-
vestigated to determine (a) the probability nkp  for k recurrence runs of length t in n Bernoulli trials, (b) the 
complementary cumulative probability ( )Prnk nP N k= ≥ , and (c) the mean number of runs nN .  

The methods reported here can be implemented on modern laptop computers running commercially available 
symbolic mathematical software, such as Maple (which was the application used by the author). Computation 
times for application of these methods to data sequences up to millions of trials could range from seconds to 
minutes.  

To compute runs statistics for sequences of intermediate to very long trial numbers, the asymptotic distribu-
tion for the number of trials up to and including the thk  occurrence ( )1n t k≥ ≥    of a specified run length t 
was derived and found to be a Gamma distribution ( )( )1, ,Gam p t kµ −  to excellent approximation. In the limit 
of very large (technically, infinite) n and k, the Central Limit Theorem (CLT) predicts an asymptotic distribution 

( )Pr nN k≥  of Gaussian form. Both the Gamma and Gaussian asymptotic distributions give comparable results 
for ( )Pr nN k≥  under these circumstances, but the Gaussian approximation is less accurate and fails entirely 
for values of n and k for which the CLT does not apply. 
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