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ABSTRACT 

Geographically weighted regression models with the measurement error are a modeling method that combines the 
global regression models with the measurement error and the weighted regression model. The assumptions used in this 
model are a normally distributed error with that the expectation value is zero and the variance is constant. The purpose 
of this study is to estimate the parameters of the model and find the properties of these estimators. Estimation is done by 
using the Weighted Least Squares (WLS) which gives different weighting to each location. The variance of the meas-

urement error is known. Estimators obtained are . The prop-

erties of the estimator are unbiased and have a minimum variance. 
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1. Introduction 

The measurement error is the error appeared when a re-
corded value isn’t exactly equal to the true value in terms 
of a measurement process, so that the true value of the 
explanatory variables is represented by a value that is 
obtained through a measurement process that isn’t nec-
essarily correspond to the true value. 

[1] says that the measurement errors affect the slope of 
the regression curve. [2] say that the measurement errors 
can lead to bias in the regression estimator and also lead to 
a model that is not built right or not representative of the 
population. The presence of the measurement error causes 
biased and inconsistent parameter estimates and leads to 
erroneous conclusions [3]. In addressing these issues, we 
use the measurement error models. 

There are many researches that have been discussed 
about parametric regression models with the measure-
ment error, including [2,4]. Nonparametric regression 
models with the measurement errors have been devel-
oped by [5]. They discussed a nonparametric regression 
function estimator which is constructed to reflect the fact 
that there are errors in variables. The result of their study 

shows that the convergence rates of all possible estima-
tors have a lower bound possessed by the kernel estima-
tors. In addition, [6] have conducted a study to estimate 
the parameters in the measurement error model with the 
modified spline method. 

Some researches have been done on the nonlinear re-
gression model with the measurement errors such as [7] 
in the logistic regression model of the development of 
heart disease. In their study, they introduced a bias-ad- 
justed estimator. [8] conducted a study of the measure-
ment error in the generalized linear model (GLM). The 
results of the computational methods offered an informa-
tive plot, called the measurement error trace which 
graphically illustrates the effect of the measurement error 
on the estimated parameters. [9] estimated the parameters 
of the proportional hazard models. 

According to [10], spatial data are prone to the meas-
urement error in the covariates, so that the research for 
spatial regression models with the measurement errors 
begins to develop, because in practice there are variables 
that can’t be measured directly or can’t be measured pre-
cisely in accordance with the true value as well as the 
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spatial effect. [10] used a model of the conditional 
auto-regressive (CAR) in the study of spatial linear mixed 
model. The results of their research show that the naive 
estimators of the regression coefficients are attenuated 
while the naive estimators of the variance components 
are inflated, if the measurement error is ignored.  

Beside CAR, there are several ways to analyze the 
spatial data. One of them is the geographically weighted 
regression model [11]. The geographically weighted re-
gression model (GWR) is a development of the classical 
linear regression model. In the linear regression model only 
valid parameter estimators are produced globally, whereas 
in the GWR model it produced the model parameter es- 
timators that are local to each observation location. 

Based on the problems and the development of the re-
search before, in this case, we are interested in examining 
the GWR model with the measurement error. So that, the 
purpose of this study is to determine the parameter esti-
mators β and to examine the statistical properties of the 
resulting on the GWR model with the measurement error. 

2. Model 

GWR Model is a regression model of global develop-
ment of the basic idea which is taken from the nonpara-  

metric regression [12]. This Model is a locally linear 
regression that generates a local model parameter esti-
mates to each point or the region where the data is col-
lected. 

GWR Model can be written as follows [11]: 
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  (2.1) 

with  ,i iu v  states the point of coordinates (latitude, 
longitude) region  i  is the value of a random vari-
able and xi is the value of a fixed variable which is 
known and does not contain errors. This means that xi 
can be observed directly. 

.i Y

If xi can’t be observed directly, it will be observed 
variables zi. In this case, there has been a measurement 
error of the xi. Measurement error is referred to as an 
error on the variables xi. Measurement error models are: 

i iz x ui                   (2.2) 

where i  is a random variables u  20, u . The observed 
random variables  called indicator variables, and un-
observed variables 

iz

ix  referred to as latent variables. 
So that from Equations (2.1) and (2.2) the regression 

model becomes: 
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3. Estimation 

The first step from this model approach is forming a 
weighting matrix for each observation (location). Weight- 
ing matrix is used to estimate the parameters in the loca- 

 ,i iu v . Suppose the weight for each location  

 ,i iu v  is  ,j i iw u v , 1,2, ,j n  , then the location  

parameter  ,i iu v  allegedly by adding the element 
weighting  ,j iw u vi  in Equation (2.1). 

 

          0 1 1, , , , ,ij i i i ij i i i i i i p i i p iw u v y w u v u v u v x u v x .                           (3.1) 
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 is the element of the 
i-th row of the matrix . Then the value of y at the loca-
tion of the observation ,i iu v  can be written as fol-
lows: 

       , , ,T
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We let   *,ij i i i iw u v    then 

    * , T
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,  β  
If ix  can’t be directly observed or experienced ix  

measurement error, then the Equation (3.1) becomes: 
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In Equation (3.2) it is assumed that *  has mean 0 and constant variance  2 . 
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Means      2
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2 2 2
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From Equation (3.3) with 
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The parameter estimation of geographically weighted 

regression models with the measurement error for each 
location is 
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4. Statistical Properties 

After obtaining the estimators  ˆ ,i iu v  it will look for 
the properties of the estimator in Equation (3.5). From 
Equation (2.1), weighted regression with measurement 
errors obtained: 
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which can also be written as 
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In matrix notation, the regression Equation (4.1) is 
* Y Zβ ε                (4.2) 

Estimating the parameters obtained from the weighted 
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From the above Equation we can see that  

    ˆ , ,i i i iE u v u vβ β , 

so that the estimator  ˆ ,i iu vβ  is a biased estimator for 
 ,i iu vβ . 
[13] found that the instrumental variable method pro-

vided unbiased estimates in linear models. To prove the 
unbiasedness, we use a linear model with  covariates p

1 2, , , px x x . Suppose V  is the matrix containing the 
instrumental variables  and , i.e. 1V 2V  1 11  V V V

nt. There-
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where “1” indicates the vector of ones which is needed 
for the intercept. According to the definition of instru-
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To obtain the parameter esti ates 
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Since 

uasi” normal Equation by pre-multiplying both sides of 
Equation (4.2) with TV , and hence, we obtain 

*T T TV V Zβ V ε           Y
* 0T V ε , Equation (4.3) above becomes 
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Despite the fact that it is sometimes difficult to find 
va

e whether 

strumental variable technique are 
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riables serving purely as instrumental variables [14], 
this technique is a good option to overcome the problems 
of measurement error [13]. In addition, [15] proposed an 
instrumental variable technique as a method to estimate 
the reliability coefficient of covariates that are difficult to 
measure. 

To prov  ,i iu vβ  is an efficient estimator 
is 
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5. Summary 

In this paper, we
urement error  2

u  is known. Assumptions used in this 
model are the s normally distributed with that ex-error
pected value is zero and the variance is constant. Geo-
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graphically weighted regression models with the meas-
urement error use the instrumental variable method. V  
gives the unbiased estimation in the linear model, with 
terms * 0T V ε . V  and *ε  are independent. T  
properties of estimators of geographically weighted re-
gression m he measurement error are an effi-
cient estimator if 

he

odels with t
TCC  should be as small as possible. 
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