Open Journal of Statistics, 2013, 3, 417-421
Published Online December 2013 (http://www.scirp.org/journal/ojs)
http://dx.doi.org/10.4236/0js.2013.36049

o5 Scientific
(> )
+* Research

Estimating the Parameter s Geogr aphically Weighted
Regression (GWR) with M easurement Error

Ida Mariati Hutabarat™? Asep Saefuddin® Anik Djuraidah? | Wayan Mangku®

'Departement of Mathematics, Cenderawasih University, Jayapura, Indonesia
Departement of Statistics, Bogor Agricultural University, Bogor, Indonesia
Departement of Mathematics, Bogor Agricultural University, Bogor, Indonesia
Email: ida_mariati@yahoo.com, asaefuddin@gmail.com, anikdjuraidah@gmail.com, wayan.mangku@gmail.com

Received October 18, 2013; revised November 18, 2013; accepted November 25, 2013

Copyright © 2013 Ida Mariati Hutabarat et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In accordance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of the
intellectual property Ida Mariati Hutabarat et al. All Copyright © 2013 are guarded by law and by SCIRP as a guardian.

ABSTRACT

Geographically weighted regression models with the measurement error are a modeling method that combines the
global regression models with the measurement error and the weighted regression model. The assumptions used in this
model are a normally distributed error with that the expectation value is zero and the variance is constant. The purpose
of this study is to estimate the parameters of the model and find the properties of these estimators. Estimation is done by

using the Weighted Least Squares (WLS) which gives different weighting to each location. The variance of the meas-
urement error is known. Estimators obtained are ,l;’(ul.,vi )= (ZTW(u. v,)Z—(n-p)Z, )71 Z"W (u,,v,)Y . The prop-
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erties of the estimator are unbiased and have a minimum variance.
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1. Introduction

The measurement error is the error appeared when a re-
corded value isn’t exactly equal to the true value in terms
of a measurement process, so that the true value of the
explanatory variables is represented by a value that is
obtained through a measurement process that isn’t nec-
essarily correspond to the true value.

[17 says that the measurement errors affect the slope of
the regression curve. [2] say that the measurement errors
can lead to bias in the regression estimator and also lead to
a model that is not built right or not representative of the
population. The presence of the measurement error causes
biased and inconsistent parameter estimates and leads to
erroneous conclusions [3]. In addressing these issues, we
use the measurement error models.

There are many researches that have been discussed
about parametric regression models with the measure-
ment error, including [2,4]. Nonparametric regression
models with the measurement errors have been devel-
oped by [5]. They discussed a nonparametric regression
function estimator which is constructed to reflect the fact
that there are errors in variables. The result of their study
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shows that the convergence rates of all possible estima-
tors have a lower bound possessed by the kernel estima-
tors. In addition, [6] have conducted a study to estimate
the parameters in the measurement error model with the
modified spline method.

Some researches have been done on the nonlinear re-
gression model with the measurement errors such as [7]
in the logistic regression model of the development of
heart disease. In their study, they introduced a bias-ad-
justed estimator. [8] conducted a study of the measure-
ment error in the generalized linear model (GLM). The
results of the computational methods offered an informa-
tive plot, called the measurement error trace which
graphically illustrates the effect of the measurement error
on the estimated parameters. [9] estimated the parameters
of the proportional hazard models.

According to [10], spatial data are prone to the meas-
urement error in the covariates, so that the research for
spatial regression models with the measurement errors
begins to develop, because in practice there are variables
that can’t be measured directly or can’t be measured pre-
cisely in accordance with the true value as well as the
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spatial effect. [10] used a model of the conditional
auto-regressive (CAR) in the study of spatial linear mixed
model. The results of their research show that the naive
estimators of the regression coefficients are attenuated
while the naive estimators of the variance components
are inflated, if the measurement error is ignored.

Beside CAR, there are several ways to analyze the
spatial data. One of them is the geographically weighted
regression model [11]. The geographically weighted re-
gression model (GWR) is a development of the classical
linear regression model. In the linear regression model only
valid parameter estimators are produced globally, whereas
in the GWR model it produced the model parameter es-
timators that are local to each observation location.

Based on the problems and the development of the re-
search before, in this case, we are interested in examining
the GWR model with the measurement error. So that, the
purpose of this study is to determine the parameter esti-
mators f and to examine the statistical properties of the
resulting on the GWR model with the measurement error.

2. Model

GWR Model is a regression model of global develop-
ment of the basic idea which is taken from the nonpara-

metric regression [12]. This Model is a locally linear
regression that generates a local model parameter esti-
mates to each point or the region where the data is col-
lected.

GWR Model can be written as follows [11]:

Y =5, (u[,v[)+,81 (u[,v[)x] + 5, (u[,v[)x2 4. o0
+ﬂp(ui,vi)xp+gi;i=l,2,--~,n. .
with (u,,v;) states the point of coordinates (latitude,
longitude) region i. Y, is the value of a random vari-
able and x; is the value of a fixed variable which is
known and does not contain errors. This means that x;
can be observed directly.

If x; can’t be observed directly, it will be observed
variables z;. In this case, there has been a measurement
error of the x;,. Measurement error is referred to as an
error on the variables x;. Measurement error models are:

zZ, =X, +u, (2.2)

where u, is a random variables (0,07 ). The observed
random variables z, called indicator variables, and un-
observed variables x, referred to as latent variables.

So that from Equations (2.1) and (2.2) the regression
model becomes:

Y =5, (ui,vl.)wtﬂ1 (u,.,v,.)(z1 —u1)+,6'2 (ul.,v,.)(z2 —u2)+-~-+ﬂp (u,.,vl.)(zp _”,;)+5i-
=f, (ui,vl.)+/)’l (u,.,vi)z1 +...+/)’p (ui,vl.)zp +(—ﬂ1(u,.,vl.)u1 —-~-—ﬂp (ul.,v,.)up +£I.).

3. Estimation

The first step from this model approach is forming a
weighting matrix for each observation (location). Weight-
ing matrix is used to estimate the parameters in the loca-

tion (u,,v;). Suppose the weight for each location
(w,v,) is w,(u,v,), j=12,---,n, then the location

parameter (u,,v;) allegedly by adding the element
weighting w; (u,,v,) in Equation (2.1).

w; (u,.,v,.)y,. =w, (u[,v,.){,ﬁ’o (u,.,v,.)—i-ﬁl (u,.,v,.)x1 +o+ B, (u,,vl.)xp +5l.}. 3.1

Suppose X, = (1, xl.l,xl.z,---,xip) is the element of the
i-th row of the matrix X. Then the value of y at the loca-
tion of the observation (u,,v,) can be written as fol-

lows:

W (ui,v,.)yi =w; (ui,vi)XiTﬂ(ui,vi)-i-wij (u v.)gl.
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Welet w, (u;,v,)s, =& then

gi*:Wij(ui’vi){yi_xiTﬁ(ui’vi)}’ (3.2)

If x, can’t be directly observed or experienced ux;
measurement error, then the Equation (3.1) becomes:

Wi (ui’vi)yi =Wy (”i’vi)ﬂo (ui’vi)+{ﬂl (”i’Vi)(Zl _”1)+ﬂ2 (ui’vi)(ZZ _”2)+"'+ﬁp (ui’vi)(zp _”p)}"'wij (ui’vi)gi
=Wy (“i»vi){ﬂo (uiavi)"'ﬂl (uiavi)zl +”'+ﬁp (“i:vi)zp}+""zj (ui’vi)(_ﬁl (ui’vi)ul _”'_ﬂp (ui’vi)up +8i)

v, = w!./.(u,,v,.){ﬂo (u,.,v,.)+ﬁl (u[,v,.)z1 +, (ui,v,.)22+-~+ﬂp (u,.,v,.)zp} +e,

5

In Equation (3.2) it is assumed that &  has mean 0
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Vi =Wy (ui’vi)(zirﬁ(ui’vi))+gi**’ & = Wi (u,,v,.)(—uﬂ(u,,v,.)+5,.*)

and constant variance (62) .
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Means E[ (u;,v; )(yl. —xl.Tﬂ(ui,vl. )):|2 =07, so that

E[wy (w0) (5 =2 B )| = E[ o, (o) (3 =57 B o) = (1)) |
E[( (V= XB(u.) uﬁ(u[,v[))rW(u,.,v,.)((Y—Xﬂ(u[,v[))—uﬂ(u[,v,))}
[(y XB(u,)) W (w0,) (¥ = XB(u,.v, )} 28 (2, ) E[ W (1,3, (¥ = X B ()]
B[ (139, )0 W (1,39, ) 1,3,
= E[w, (u,) (3, =7 Bluo)) |+ E (W (,9,) B (.,
)

2

o =c"+p" (;,v,) 2,8 (u,v, (3.3)
where
2., :diag[O GO ,apr
From Equation (3.3) with
Y, -Z B(u,v
MSE = o = (v, (uv,) (%))
n—p
obtained
o’ =0 =B (u.,v,)Z,.B(u;.,v,)
o)
. A . ( (Y Z ,B u;, v ))2 . .
6*=6"-p" (ui’vi)zuuﬂ(ui’vi) -p (uiavi)zuuﬁ(uiavi)
-P
- 2 4 R
:(”_p) ]Z(Wij(ui’vi)<y;_Zirﬂ(ui’vi))) -p" ui,vi)Euuﬁ(ui,vi) (3.4

=(n—p)f1 [(Y—Zﬂ(u,,v,))T W(ul.,v,)(Y—Zﬂ(u,,v,.))J—,[;’T (4,9, )2 B (157,
=(n—p)f1 (YTW(u,,vi)Y—2ﬂT (u,,vi)ZTW(ui,v,)Y—ﬂT (u,,v,.)ZTW(u,,v,.)Z,B(ul.,vl.))+,BT (u,.,vl.)Elm[i'(u,,vi)

If Equation (3.4) derived to [;’ ! (u,, , v,.) and the result equated to zero then obtain parameter estimators

%z(ﬂ—p)1(0—2ZTW(ul.,vi)Y+2ZTW(ul.,vl.)Zﬂ(ui,vi))—2Zuuﬁ(ul.,vi)

0==2Z"W (u,,v,)Y +2Z"W (u,,v,) ZB(u;,v,)—2(n— p)Z,. 8 (u;,v,)
ZTW(ui,v,.)Zﬁ(u[,v[)—(n—p)ZWﬂ(ui,vi):ZTW(u,.,v,.)Y

(ZTW(ui,v,.)Z—(n—p)ZW),B(u,.,v,.)=ZTW(ui,v,.)Y

(ZTW(ui,vi)Z—(n—p)EW )71 (ZTW(ul.,vl.)Z—(n—p)ZW)ﬂ(ui,vi):(ZTW(u,,v,.)Z—(n—p)Euu )71 ZTW(ul.,v,.)Y

/)’(u,.,v,.)=(ZTW(ui,v,.)Z—(n—p)EW )_] Z'W (u,v,)Y
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The parameter estimation of geographically weighted
regression models with the measurement error for each
location is

ﬁ(ui’vi)

| 3.5
<ZTW(u‘ v.)Z—(n—p)EW)i Z'W (u,,v,)Y (-5

(A

4. Statistical Properties

After obtaining the estimators /3 (u,,v,) it will look for
the properties of the estimator in Equation (3.5). From
Equation (2.1), weighted regression with measurement
errors obtained:

v =5 (”i»"i)"'ﬂl(”iavi)zl +5 (uﬂvi)ZZ e
+8, (ui,vl.)zp -5 (ul.,v,.)u1 -5 (ui,vi)u2 -
—ﬂp (ui,vl.)up +&
which can also be written as

vi=5 (”[’Vi)+/81 (ui’vf)zl T

4.1
+ﬂp (”iaV,-)Z,, + gi*
where
& =& - B (v, )u, = By (u,v,)u, =
—,Bp (ui,vl.)up
In matrix notation, the regression Equation (4.1) is
Y=Zf+¢ 4.2)

Estimating the parameters obtained from the weighted
ﬁ’(ui,vi) = (ZTW(u,.,vl.)Z)i1 Z'W (u;,v,)Y
= (ZTW(u,.,vl.)Z)i1 ZTW(ul.,vl.)(Zﬁ’+g*)

=(2'W (w,.v)Z) Z'W (u,v,) 2P

H(Z7W (uv,)2) Z'W ()€
=B+(Z'W (w.0)Z) Z'W (u,v,)e
From the above Equation we can see that
E(B(u.v,))# B(w.v,),

so that the estimator f(u,,v,) is a biased estimator for
Blu.v,).

[13] found that the instrumental variable method pro-
vided unbiased estimates in linear models. To prove the
unbiasedness, we use a linear model with p covariates
Xy Xyst s X, Suppose V' is the matrix containing the
instrumental variables ¥, and V,, ie. V=(1 V| V),
where “1” indicates the vector of ones which is needed
for the intercept. According to the definition of instru-
mental variables [2], V and & are independent. There-
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fore,
Viet=0
To obtain the parameter estimates f , we create a
“quasi” normal Equation by pre-multiplying both sides of
Equation (4.2) with ¥, and hence, we obtain

Vy=v'zp+v's 4.3)
Since V& =0, Equation (4.3) above becomes
Vy =v'zp

Therefore, the unbiased estimates [, obtained by the
instrumental variable technique are

p=(v'z) vy

Despite the fact that it is sometimes difficult to find
variables serving purely as instrumental variables [14],
this technique is a good option to overcome the problems
of measurement error [13]. In addition, [15] proposed an
instrumental variable technique as a method to estimate
the reliability coefficient of covariates that are difficult to
measure.

To prove whether f(u,,v,) is an efficient estimator
is

Var[ﬁ’(ui,vi)]

- Var[(ZTW(ui,vi)Z—(n ~p)%.) ZTW (u,y, )Y}

270

=(2'W (w,v)Z~(n-p)%,,) Z'W (u,v,)Var(¥)

270

Cz(ZTW(ui,vi)Z—(n—p)Zw )_] Z'W (u;,v,)

270

|CC T| should be as small as possible so that f(u;,v,)
efficient estimator.

5. Summary

In this paper, we assume that the variance of the meas-
urement error of) is known. Assumptions used in this
model are the errors normally distributed with that ex-
pected value is zero and the variance is constant. Geo-
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graphically weighted regression models with the meas-
urement error use the instrumental variable method. V'
gives the unbiased estimation in the linear model, with
terms V¢ =0. V and & are independent. The
properties of estimators of geographically weighted re-
gression models with the measurement error are an effi-
cient estimator if |CC T| should be as small as possible.
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