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ABSTRACT 

We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract 
the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least 
squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal pa-
rameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can 
effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is compu-
tationally cheap and practical with high accuracy. 
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1. Introduction 

The reconstruction of signals from color noises is a gen-
eral problem in data processing. Effective solutions to 
this problem have a wide range of applications in 
many fields, such as radar signal processing, image en-
hancement, speech coding and data mining. Usually, 
different strategies are applied for different scenarios and 
assumptions. The parameter estimation of signals with 
autoregressive (i.e., AR) noises is a class of typical prob-
lems. 

The approaches can be raised from several perspec-
tives. Firstly, as far as the parameters estimation of the 
AR model is concerned, Harry H. Kelejian et al. [1] dis-
cussed the estimation of the autoregressive parameter in 
a widely considered spatial autocorrelation model. They 
suggested a generalized moment estimator that is com-
putationally simple irrespective of the sample size. Sas-
cha Korl et al. [2] considered this problem from a 
graphical-model viewpoint. In particular, they demon-
strate joint estimation of AR coefficients, innovation 
variance and noise variance. Wing-Keung Wong et al. [3] 
presented the way of estimating parameters in AR mod-
els with asymmetric innovations. Jinfang Liu et al. [4] 

raised a self-tuning weighted measurement fusion Kal-
man filter to estimate the parameters for single channel 
autoregressive moving average signals with colored 
noise when the model parameters and noise statistics are 
unknown. 

Secondly, for the noise removal and signal extraction, 
the simplest approach is to ignore the coloring of the 
noise and use methods such as least squares that assume 
white noise. This approach is obviously inappropriate. 
Mihalis Samonas et al. [5] used a self-consistent restora-
tion peak preserving algorithm to eliminate the high level 
additive colored Gaussian noise. David Kozel et al. [6] 
proposed a spectral subtraction algorithm for reducing 
colored noise from noise-corrupted speech, however with 
a limitation of the requirement of a favorable signal to 
noise ratio as with all spectral subtraction algorithms. 
Jesper Højvang Jensen et al. [7] derived the signal am-
plitude and noise covariance matrix estimator with col-
ored Gaussian noise and extended the existed single- 
sinusoid algorithm to multiple sinusoids. The method 
does not consider the estimation of the noise covariance 
matrix and the sinusoid amplitudes as two separate tasks, 
but rather estimates them jointly. 

In addition to the above two types of methods, the 
most effective way is apparently to derive the AR pa-*Corresponding author. 
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rameters and the true signal parameters simultaneously. 
This is difficult to perform in the general case. In this 
contribution, as for a wide class of signals which are 
form-invariant under the autoregressive operators, we 
propose a method of parameters separation and then use 
the idea to give the estimates of both the AR and the sig-
nal parameters. This approach can solve the above prob-
lem and improve the estimation accuracy of the true sig-
nal. 

2. Problem Description 

2.1. Signal-Noise Model 

Consider the observation  y t  satisfies the following 
model 

     y t t e X t                  (1) 

     B e t t                     (2) 

where
  

       1 2, , , rt x t x t x tX   ,  

 1 2, , , r

   β . 

 t X  is the true signal component of  y t , and 
 is the noise in  e t  y t . Suppose the noise is the sta-

tionary correlated autoregressive  AR p  model, i.e., 

     B e t t  ,   11 p
pB B      B , 

where B is a one-step backward operator, and  

         1 1 pB e t e t e t e t p        , 

 t  is zero-mean white noise. Assume we have the 
observation data  of T  instants. 
Now the problem is how to give the accurate estimation 
of the unknown parameters 

      1 , 2 , ,y y y T

β  and  , p1 2, ,


  φ  
for the model (1) and (2). 

The vector form of model (1) is as following. 

 Y Xβ e                   (3) 

where       1 , 2 , ,X X X X T      is a known 
 column-full-rank matrix, which is usually called 

the design matrix in linear regression analysis, and  
T r

      1 , 2 , ,y y y T


 Y , 

      1 , 2 , ,e e e T


 e . 

As e is a stationary correlated noise, the least squares 

estimates   1

LSE
 

β X X X Y  will no longer possess 

the favorable properties as usual. In this case, the weighted 
least squares estimates 

  11 1
WLSE

   Σ Σβ X X X Y  

should be used, which requires the knowledge of the co-

variance matrix  cov  ee .Σ However, e   not ob-
servable in practice, thus the solution to  is rather 
difficult. To solve this problem, we need to find another 
way. Signals and noises can usually be expressed as pa-
rametric models, thus it can be summed up as parameter 
estimation issues of the signal-noise models. In the fol-
lowing part of this paper, we will give the estimates of 
both the AR and the signal parameters for a wide class of 
signals which are form-invariant under the autoregressive 
operators. 

 is
Σ

2.2. The Form-Invariant Signals Under  Φ B  

For , we impact the autoregressive operator 1t p 
 B on both sides of (1) at the same time and get 

        B y t B t t    X β           (4) 

where

  
       

    

1

1
1

1 1

r

i i
i

r

i p i
i

B t B x t

x t x t p



.i  





  

     



 

X β

 

In the procedure of the above transformation, if the 
true signal  tX β  satisfies the following property: 

       
1

s

i
i

B t z t t


  X β Z α         (5) 

where
  

        1 2, , , st z t z t z t Z , 

 

      1 2

,

, , , , , ,s        



 

α α φ β
 

is the vector function of ,φ β , and the design matrix  

      1 , 2 , ,Z p Z p Z T
    Z


  

made up by the transformed  remains the charac-
teristics of column-full-rank, then we call 

 tZ
 tX β  as 

the form-in-variant signal under the function of  B . 
Here the design matrix remains column-full-rank under 
 B  is the key factor, which will be shown clearly in 

the following section. One of an important special case 
for Equation (5) is that: 

     B t t X β X α            (6) 

That is, the design matrix remains completely the same 
under the impact of  B . 

Now we give a few examples of the form-invariant 
signals. 

A. Polynomial signal 
Assume   0 1

r
rt t t     X β , then  
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             

   

0 0 0 0 1 0

0 0 1 0 0

,

p pr r r i
i li i

i i j i j i
i i j i j l

pr i r i
li l i l l i l

i i j i i l
i l j i l

B t B t t j t C t j

t C t j C t b

    

  



     

 

    

             
  

            
    

     

    

X β

 

where 

    0
1 1

,1 , 1
p p

l

l j
j j

b j l r b j 
 

         , 

Let 

 

0 1 2 1
0 0 1 1 2 2 1 1

0 1 2 1
1 0 2 1 1 2 1

0 1
1 0 1

0
0

0

ˆ

r r
r r r r
r r
r r r r

r r

r

C b C b C b C b C b

C b C b C b C b

C b C b

C b


 
 
  



 
 
 
  
 
 
 
 




A A φ  

 
B. Trigonometric function signal    

   
0 1, , , ,ˆ

1, , , ,ˆ

r

rt t t





   







A φ β α

X
 Suppose 

   2 1 2
1

cos sin ,

, ,

r

k k k k
k

i j

t t

i j

   

 




 

 

X β t

t

ri

 
Then we have      B t t X β X α , Therefore, 
 tX β  is the form-invariant signal satisfying Equation 

(6). then 
 

   

 

2 1 2
1 1 1

2 1 2
1 1

1 cos sin cos

sin 1 cos sin

p pr

k i k k i k k
k i i

p p

k i k k i k k
i i

B t i i t

i i t

      

      


  


 

    
       

     
    

        
     

  

 

X β

X α

 

where 

  1 1 2 1 2 1 2
0 1 0 1

, cos sin , , cos sin
p p p p

i i r i r r i
i i i i

i i i


           
   

 
      

 
   α α φ β  

 
so  tX β  is a form-invariant signal which satisfies 
Equation (6). 

therefore,  tX β  is another form-invariant signal sat-
isfying Equation (6). 

Finally, we can come to the statement that the mixed 
signals composed of the signals above linearly (e.g.,  

C. Exponential function signal 

Suppose ,  
1

k
r

t
k

k

t e


 X β 4
3

5 6
1

cos t
k k

k

t e t   


  ) are also form-invariant. Be-  

     
1 1

1 k k

pr
i t

i k
k i

B t e e X t  

 

 
    

 
 X β 

,t

, sides the signals we mentioned above, there is also plenty 
of other form-invariant signals satisfying Equation (5) or 
Equation (6) in practice. where 

 

1
1

1 1

,

1 , , 1 r

p p
t

i r i
i i

e e


   

 



   
     

  
 

α α φ β 3. Parameters Estimation 

 



 3.1. The Estimation of Parameter  φ

From the discussion above, for the form-invariant signal 
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 tX β , the linear model (1) becomes the following 
equation under the autoregressive operator :  B

        
   

B y t B t t

t t





   

 

X β

Z α
          (7) 

The vector form of Equation (7) is  

  Y Mφ Zα ε                        (8) 

where 

     
     

     
 
 

 

 
 

 

 
 

 

1 1

1 2
,

1 2

1 1

2 2
, ,

y p y p y

y p y p y
M

y T y T y T p

z p y p p

z p y p p

z T y T T






 
    


  
     

               
    
        




   


  
Z Y ε

1

2
,



 

 








 

Since the design matrix  of the form-invariant sig-
nal remains column-full-rank after the transform of 

, the least squares solution “in form” of Equation 
(8) is: 

Z

 B

  
1

ˆ  
α Z Z Z Y Mφ          (9) 

The solution is called “in form” because  in 
 is unknown. And the residual sum of squares is 

φ
Y Mφ

     RSS RSS
    φ Y Mφ I H Y Mφ   (10) 

where   1 


H Z Z Z Z . Note that  RSS φ  is a 
quadratic function of , so there exists the unique  
satisfying 

φ φ̂

      ˆRSS min
   

φ
φ Y Mφ I H Y Mφ    (11) 

The solution to Equation (11) is: 

    
1

ˆ  
  φ M I H M M I H Y       (12) 

The above procedure to get  actually involves twice 
the solution to the minimum of least squares residuals, 
therefore Equation (12) is also called the two-step least 
squares estimate of . 

φ̂

φ

3.2. The Estimation of Parameter β 

After the acquisition of the estimate  of , from 
Equation (4), we can regard the estimation of 

φ̂ φ
β  as the 

parameter estimation of the following linear model: 

     
       

1

1

ˆ ˆ1

ˆ ˆ1

p

p

y t y t y t p

X t X t X t p

 

  

    

      



 t
 (13) 

The vector form of Equation (13) is  

ˆ  Y Mφ Vβ ε                 (14) 

where
 0 ˆ V X Gφ ,  1 2, , , p G X X X , 

    

     

1 2

1 2

1 1 r

k

r

x p k x p k x p k

x T k x T k x T k

      1 
   
    


   


X , 

0,1, ,k p  . 

From Equation (14), the estimation of the parameter 
β  is 

  
1ˆ ˆ 

β V V V Y Mφ             (15) 

Furthermore, from Equation (15) and (14) we have 

   
  0

ˆ ˆ 



 

    

V V β V Y Mφ

V M φ X Gφ β ε
        (16) 

thus 

   
1 

    β V V V M φ G φβ ε  

Equation (16) illustrates that the estimation error 
ˆ  φ φ φ  of  and  impose “approximately” lin-

ear influences on the estimation error 
φ ε

ˆ  β β β  of β , 
and it is “approximately” because  includes .  V φ̂

4. Simulation 

We take the sample points at  and two 
simulation models. 

 1, 2, , 200t  

Model I (trigonometric function signal): 

   
  

0.4cos 0.64π

0.7sin 1.14π

y t t

t e t



  
           (17) 

Model II (mixed signal): 

 
  

0.00110.4e 0.013

1.7cos 1.2π

t


y t t

t e t

 

 
            (18) 

where the model of  e t  is an AR(4) model as 

    
   

2.0 1 1.43 2

0.436 3

e t e t e t

e t t
   

  
         (19) 

Table 1 lists the estimation results of β  by using the 
method proposed in this paper and the least squares esti-
mate (LSE) respectively. Table 2 illustrates the estima-
tion results of  by using our method, and the least 
squares estimate of the AR parameters of Equation (19) 
when pure AR model is applied. Table 1 shows that the 
method proposed here can obtain a much better estima-
tion of 

φ

β  than by using LSE. The results in Table 2 give 
a demonstration that the estimates of  by our methods 
are close to the LSE of  in pure AR models. In sum- 
mary, the method proposed in this paper is satisfactory. 

φ
φ
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Table 1. The estimation of β . 

Model I Model II 
 

1  2  1  2  3  

True value 0.4 0.7 10.4 0.013 −1.7 

Estimation by the  
method in this paper 

0.396 0.712 9.83 0.01303 −1.713

Estimation by least  
squares method 

0.441 0.737 9.24 0.01335 -1.674

 
Table 2. The estimation of φ . 

 1  2  3  

True value 2.0 −1.43 0.436 

Estimation by the method  
in this paper for model I 

1.97 −1.54 0.551 

Estimation by the method  
in this paper for model II 

2.02 −1.54 0.554 

Estimation by the pure  
AR model 

2.02 −1.53 0.545 

5. Conclusion 

In this paper, a class of combined signal with AR noise is 
studied. The signal possesses the property of remaining 
form-invariant under the autoregressive operator. We 
proposed a parameter separation and two-step least 
squares method to separate the noise and signal and to 
give good estimates of each parameter. This method 
overcomes the difficulty with the conventional method 
for which the AR noise is unknown. It makes it easier to 
extract and estimate the true signal. It can provide good 
estimation effects for a wide class of signals and can be 
applied to the practical data analysis. 
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