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ABSTRACT 

The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions 
of the multinomial logistic model to ordinal response data. We propose fitting these models with a logarithmic link to 
allow estimation of different forms of the risk ratio. Each of the resulting ordinal response log-link models is a con- 
strained version of the log multinomial model, the log-link counterpart of the multinomial logistic model. These models 
can be estimated using software that allows the user to specify the log likelihood as the objective function to be maxi- 
mized and to impose constraints on the parameter estimates. In example data with a dichotomous covariate, the uncon- 
strained models produced valid coefficient estimates and standard errors, and the constrained models produced plausible 
results. Models with a single continuous covariate performed well in data simulations, with low bias and mean squared 
error on average and appropriate confidence interval coverage in admissible solutions. In an application to real data, 
practical aspects of the fitting of the models are investigated. We conclude that it is feasible to obtain adjusted estimates 
of the risk ratio for ordinal outcome data. 
 
Keywords: Ordinal; Risk Ratio; Multinomial Likelihood; Logarithmic Link; Log Multinomial Regression; Adjacent 

Categories; Continuation-Ratio; Proportional Odds; Ordinal Logistic Regression 

1. Introduction 

Several logit-link regression models have been proposed 
to deal with ordered categorical response data. Three of 
these are the adjacent categories model [1], the continua- 
tion-ratio model [2], and the cumulative odds model [3]. 
The last is referred to also as the proportional odds model 
[4]. The basis of each of these models is the discrete 
choice model [5] for nominal categorical outcomes that 
are also termed the multinomial logistic regression model 
[6].  

The purpose of this paper is to investigate the practi- 
cality of fitting the ordinal models with a logarithmic link 
in place of the logit link. We refer to the resulting models 
as the adjacent categories (AC) probability model, the 
continuation-ratio (CR) probability model, and the pro- 
portional probability (PP) model. Each is a constrained 
form of the log multinomial model [7], the log-link 
counterpart of the multinomial logistic model. The ordi- 
nal log-link models make it possible to directly estimate 
different but related forms of the risk ratio in prospective 
studies and the prevalence ratio in cross-sectional studies, 
overcoming thereby a limitation of logit-link models.  

Epidemiological research is grounded largely in assess- 
ment of average risk, and in that field the worth of the 
odds ratio as a measure of effect has long been ques- 
tioned [8,9] particularly for prospective [10] and cross- 
sectional [11] data.  

To describe the log-link models for ordinal data, we 
have adapted specialist terminology used for ordinal lo- 
gistic models. Several authors [6,12,13] have distin- 
guished “forwards” and “backwards” versions of the CR 
logit-link model, with the outcome categories taken in 
reverse order in the “backwards” version. For propor- 
tional odds models, O’Connell [14] distinguished bet- 
ween an “ascending” version for lower-ordered catego- 
ries versus higher categories, and a “descending” version 
for higher-ordered categories versus lower categories. Ac- 
cordingly, we distinguish “forwards-ascending” and “for- 
wards-descending” versions of the AC probability model 
and the PP model. The two versions of each model pro- 
duce coefficients that differ both in sign and magnitude. 
For the CR probability model, it is necessary to addition-
ally distinguish “backwards-ascending” and “backwards- 
descending” versions because the four possible versions 
each produce a different set of estimates. For brevity, we 

Copyright © 2013 SciRes.                                                                                  OJS 



C. L. BLIZZARD  ET  AL. 17

focus in what follows on the “forwards-descending” ver- 
sion of each model. The likelihoods of all versions are 
provided in Supplementary Materials that are available 
from the authors.  

The paper is organized as follows. We describe and 
estimate with example data the AC probability model in 
Section 2, the CR probability model in Section 3, and the 
PP model in Section 4. Three issues in fitting these mod- 
els are briefly surveyed in Section 5. The results of a 
simulation study of the performance of the three models 
are summarized in Section 6. An application to real data 
is given in Section 7, and the implications are summa- 
rized in Section 8.  

2. The Adjacent Categories Probability 
Model 

2.1. Log Multinomial Model  

Consider an ordinal response variable  with 
J ordered levels. Assume there are n independent obser- 
vations of Y and of K non-constant covariates  

1 2

1, 2, ,Y J 

, , , KX X X  and denote the observed data as  ,i ixy
 , , ,

 
for  where 1 2i i i iK1, 2, ,i   n x x x x . Denote 
the joint probabilities of occurrence of each of the levels 
of Y as: 

 Pr , 1, 2, , ; 1, 2,3, ,i ijY j i n j J      

A requirement of a probability model is that 

1j
, which identifies the probability of one 

category (say 
1

J

ij 
j  ) because jj 1i i 


. For an 

ordinal outcome, the most compelling choices for the 
identified category are the first  or last 

 

 1j   j J . 
In what follows, we consider a model in which the first 
outcome category is the identified category. 

Assume that the probabilities ij  depend on the ob- 
served values of the covariates, and have the exponential 
form    0expj i j   x x αi j  where 0j  and  

 1 2, , ,j j j jK  are parameters to be estimated. 
The log multinomial model for the final 

   α
1J   outcomes 

is:  

     0Pr expi i j i j iY j      x x x α j     (1) 

for  and  where 1, 2, ,i n  2,3, ,j J  1 0k   for 
 and hence . The 

linear predictor is: 
0,1, 2, ,k  K  10 i x α 1 1exp 

0 0 1 1 2 2j i j j j i j i jK iKx x x         x α   

The likelihood and log likelihood of the data under this 
model are given in Supplementary Materials. The model 
can be fitted with software that provides a procedure for 
maximizing the log likelihood with respect to the 

 parameters   1J K   1 jk  for  
 and .  2,3, ,j J  0,1,2, ,k K

Example data with J = 3 ordered outcomes and a sin- 

gle  1K   dichotomous study factor are presented in 
Table 1. Armstrong and Sloan [15] used these data to 
demonstrate logit-link ordinal regression models.  

For the example data, the log multinomial model for 
the final 1 2J    outcomes involves estimation of the 
joint probability    2Pr 2Y  x xi i i  of the “Mild” 
outcome among all subjects, and the joint probability 

   3Pr 3i iY  x ix  of the “Severe” outcome among 
all subjects.  

The results of estimating the model are shown at left in 
panel A of Table 3. The baseline risk estimates are 

   20ˆexp exp 1.897 0.15     for the “Mild” outcome 
and    30ˆexp exp 2.996   0.05  for the “Severe” 
outcome, and the relative risk estimates are  
    2 21ˆexp exp 0.288 1.33RR     for the “Mild” out-  

come and     3 31ˆexp exp 0.693 2.00RR     for the 
“Severe” outcome. The estimates can be verified from 
the data in Table 2, and the estimated standard errors are  
 

Table 1. Hypothetical example of ordinal response data. 

Exposed None Mild Severe Total 

Yes 70 20 10 100 

No 80 15 5 100 

 
Table 2. Component tables for forwards-descending ordinal 
probability models. 

A. Joint probabilities 

Exp. Not mild Mild Total 
Not  

severe 
Severe Total

Yes 80 20 100 90 10 100 

No 85 15 100 95 5 100 

 2

20 100
1.33

15 100
RR    3

10 100
2.00

5 100
RR    

B. Conditional probabilities 

Exp. None
Mild or 
Severe

Total Mild Severe Total

Yes 70 30 100 20 10 30 

No 80 20 100 15 5 20 

 2

30 100
1.50

20 100CondRR    3

10 30
1.33

5 20CondRR    

C. Cumulative probabilities 

Exp. None
Mild or 
Severe

Total 
None or 

Mild 
Severe Total

Yes 70 30 100 90 10 100 

No 80 20 100 95 5 100 

 2

30 100
1.50

20 100CumRR    3

10 100
2.00

5 100CumRR    
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comprise a set of    1J Kidentical to the values that can be calculated using a lin- 
ear approximation to the variance of the logarithm of the 
risk or relative risk [16]. 

1    parameters to be es- 
timated. This model can be estimated by fitting the log 
multinomial model (1) subject to  2J K 

ˆ j j 
 constraints 

on the slope parameters to require  for   2ˆ1r rα α
3, ,j J  .  2.2. Forwards-Descending AC Probability Model 

For the example data, the ratio constraint is  
 31 21ˆ ˆ3 1rThe particular assumption of the AC probability model is 

that the joint probabilities have a response to covariates 
that is log-linear in the coefficients and a multiple of 
category order. The forwards-descending AC probability 
model is: 

r    . The results of estimating the model 
are shown at right in panel A of Table 3. The constrained 
relative risk estimates are  and   exp 0.321 1.38

 exp 0.643 1.90 , which are plausible as fitted values 
to the unconstrained estimates ( 2 1.33RR   and  3RR   
2.00 respectively). The slope estimates in adjacent out- 
come categories increase by the additive factor 21ˆ r   
0.321 and, on the ratio scale, the relative risks increase 
by the multiplicative factor    exp 0.321ACRR 1.38 . 

     0Pr expr r
i i j i j iY j      x x x α r

j

J

     (2) 

for  and , and where the su- 
perscript r denotes a constrained estimate, and the inter- 
cepts 

1, 2, ,i n 

0
r

2,3, ,j  

j  and slopes:  1.38ACRR For brevity, we refer to the estimate 

  2 3 2 2ˆ ˆ ˆ ˆ ˆ, 2 , , 1 r
J J    α α α α α 

 as 
a “summary” relative risk when strictly it is not. It is in- 
stead the multiplicative factor relating relative risks in  

r r r r  

 
Table 3. Results of fitting forwards-descending versions of three ordinal response log-link models. 

Unconstrained model Constrained model 
Model and outcome 

Coeff. (SE) P-value Coeff. (SE) P-value 

A. Joint probabilities Log multinomial model AC probability model* 

Mild—all categories       

intercept −1.897 (0.238) <0.001 −1.918 (0.192) <0.001 

slope 0.288 (0.311) 0.355 0.321 (0.188) 0.088 

Severe—all categories     

intercept −2.996 (0.436) <0.001 −2.963 (0.358)‡ <0.001 

slope 0.693 (0.529) 0.190 0.643 (0.377) 0.088 

Log likelihood −141.469   −141.4781  0.892 

B. Conditional probabilities CR probability model† 

Mild/Severe—all categories      

intercept −1.609 (0.200) <0.001 −1.593 (0.184) <0.0001 

slope 0.405 (0.252) 0.107 0.379 (0.222) 0.088 

Severe—Mild/Severe     

intercept −1.386 (0.387) <0.001 −1.451 (0.268) <0.001 

slope 0.288 (0.466) 0.536 0.379 (0.222) 0.088 

Log likelihood −141.469   −141.493  0.825 

C. Cumulative probabilities PP model‡ 

Mild/Severe—all categories      

intercept −1.609 (0.200) <0.001 −1.609 (0.200) <0.001 

slope 0.405 (0.252) 0.107 0.405 (0.252) 0.107 

Severe—all categories     

intercept −2.996 (0.436) <0.001 −2.813 (0.294) <0.001 

slope 0.693 (0.529) 0.190 0.405 (0.252) 0.107 

Log likelihood −141.469   −141.670  0.526 

*Adjacent categories (AC) probability model estimated by fitting a log multinomial model for the final J − 1 = 2 outcomes subject to the constraint 
 31 21

ˆ 3 1c ˆ c   

31 21
ˆ ˆc c

. †Continuation-ratio (CR) probability model estimated by fitting a forwards-descending conditional probability mode subject to the constraint 

  . ‡Proportional probability (PP) model estimated by fitting a forwards-descending cumulative probability model subject to the constraint 31 21
ˆ ˆc c  . 
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adjacent categories. It does not represent a common rela- 
tive risk of advancing to the higher of adjacent categories, 
because that would require  

       1 1 2
r r r r
j i j i j i j i     x x x x

J

J

 

for  when, in general, these ratios are un- 
equal and differ for each covariate holding. 

3, ,j  

2.3. Assessment of Loss of Model Fit 

Three equivalent large-sample methods [17] are available 
to assess whether the constraints result in significant loss 
of model fit. Each has an asymptotic distribution that is 
chi-squared with degrees of freedom equal to the number 
of additional constraints imposed. Firstly, a test may be 
based on the likelihood ratio criterion [18]. Secondly, a 
test may be based on the efficient scores criterion [19]. 
Thirdly, a test may be based on the criterion proposed by 
Wald [20]. For a fully-constrained AC probability model 
in which the constraint is applied to each covariate, the 
null hypothesis for these tests is that  
for . It is possible to apply the constraints 
to a subset of the covariates in a partially-constrained 
model [21], and to test a composite hypothesis. Readers 
are referred to Rao [17] for details.  

  21j j  α α
2,3, ,j  

For the example data, the AC probability model with 
log likelihood −141.478 is a constrained version of a log 
multinomial model with log likelihood –141.469. A like- 
lihood ratio test with test statistic  

and one de- 
gree of freedom gives 

   2 141.478 141.469 0.019oG          
  2Pr 1 0.019   0.891 . The 

score and Wald statistics are identical in the first four 
decimal places. The results suggest that the effect of ex- 
posure has been summarized into a single relative risk 
without significant loss of model fit. 

3. The Continuation-Ratio Probability Mod-
el  

3.1. Forwards-Descending Conditional Model 

Consider ordinal outcome data arising from a hierarchi- 
cal sequence of binary events in which the probability at 
each stage is conditional on having reached that stage. 
McCullagh and Nelder [22] provide an example of in- 
semination of milch cows, and propose a model of the 
probability of impregnation of a cow at the  attempt 
after  unsuccessful attempts. This is the prob- 
ability of terminating at the  stage conditional on 
having reached that stage. O’Connell [14] provides an 
example of childhood proficiency in literacy in which 
mastery of any level of literacy requires mastery of all 
previous levels, and interest lies in the probability of 
success at a higher level. This is the probability of ad- 
vancing beyond the 

thj
 1j  

thj

 1
st

j   stage conditional on hav- 

ing reached that stage. Denote that probability as:  

 Pr 1 , 1, 2, , ; 2,3, ,i i ijY j Y j i n j J        

Assume that the conditional probabilities ij  depend 
also upon the observed values of the covariates, and have 
the exponential form   exp  0j i x xj  i jβ  where 

0j  and j j j jK  are parameters to be 
estimated. The forwards-descending conditional prob- 
ability model is:  

 1 2, , ,  β

     0Pr 1, expi i i j i j iY j Y j   j     x x x β  (3) 

for 1, 2, ,i n   and 2,3, ,j J   where 1 0k   for 
0,1,2, ,k K   and hence . The 

linear predictor is: 
 10 i x β 1 1exp 

0 0 1 1 2 2j i j j j i j i jK iKx x x         x β  

The likelihood and log likelihood of the data under this 
model are given in Supplementary Materials. The model 
can be fitted with software that provides a procedure for 
maximising the log likelihood with respect to its 
   1J K 1    parameters jk  for  and 2,3, ,j J 

0,1,2, ,k K  . An alternative approach to fitting the 
model is also described in Supplementary Materials.  

For the example data, the forwards-descending condi- 
tional probability model involves estimating the condi- 
tional probability    2Pr 2 1,i i i i  of a 
“Mild” or “Severe” outcomes among all subjects, and the 
conditional probability 

Y Y   x x

   3Pr 3 2,i i i i  of 
the “Severe” outcome among subjects with a “Mild” or 
“Severe” outcome. The component tables for the model 
are shown in panel B of Table 2.  

Y Y   x x

The results of estimating the model are shown at left in 
panel B of Table 3. The relative conditional risk esti- 
mates are   2 exp 0.405 1.50CondRR    and  
  exp 0.288 1.33 3CondRR . Those estimates and their 
estimated standard errors can be verified from the data in 
Table 2. 

3.2. Forwards-Descending CR Probability Model 

The particular assumption of CR probability models is 
that the conditional probabilities have a response to co- 
variates that is independent of the outcome category and 
log-linear in the coefficients.  

The forwards-descending CR probability model is: 

     0Pr 1, expc c
i i i j i j i jY j Y j   c     x x x β  (4) 

for 1, 2, ,i n   and 2,3, ,j J   where the super- 
script  denotes a constrained estimate, and intercepts 

0

c
c
j  and common slope coefficients 2 3

c c c
J  β β β  

comprise a set of    1 1J K    parameters to be es- 
timated of which only   1 2J     are unique. This 
model can be estimated by fitting the conditional prob- 
ability model (3) subject to  2J K   constraints on 
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the slope parameters to require 1
ˆ ˆc c

j jβ β  for 3, ,j J  . 
The superscript  is used here to distinguish this equality 
form of constraint from the ratio constraint used in the AC 
model. An alternative approach to fitting the model is 
described in Supplementary Materials. 

c

For the example data, the required parameter constraint 
is 31 21

ˆ ˆc c  . The results of estimating the model are 
shown at right in panel B of Table 3. The common slope 
estimate is 21 31 , and the common relative 
conditional risk estimate is 

ˆ ˆ 0.379c c  
  379 1.46

0.050oW

expCRRR

0.049o 

0. . 
It plausibly falls between the unconstrained estimates.  

The CR probability model with log likelihood 
−141.493 is a constrained version of the conditional pro- 
bability model with log likelihood –141.469. A likeli-
hood ratio test with statistic  gives  

. A score test provides an 
identical result. A Wald test with statistic 

G
  2Pr 1 0 0.825  .049

  
gives .   2Pr 1 0.050  0.824



Pri iY   

3, , J

4. The Proportional Probability Model  

4.1. Forwards-Descending Cumulative  
Probability Model 

One further way of partitioning the ordered response 
categories is to form  cumulative “splits” of the 
outcome data between category 1 and all higher categories, 
category 1 or 2 and all higher categories, and so on. This 
prompts a model of the cumulative probability of falling 
in category j or a higher category: 

 1J 

  Pr π
J

j   ijY j  

for  and . Assume that the 
cumulative probabilities ij

1, 2, ,i n  2,j 
  depend upon the observed 

values of the covariates, and have the exponential form  

   0π expj i j  x xi jγ   

where 0j  and  1 2, , ,j j j jK  γ    are parameters to 
be estimated. 

The forwards-descending cumulative probability model 
is:  

     0Pr πi i j j x x expi 

, , J

i j x γ

1 0k

Y j     (5) 

for  and  and where 1, 2, ,i n  2,3j     
for , and hence . The 
linear predictor is: 

0,1, 2,k  , K  i x 1 1γ10exp 

1 1 20 0 2j i j j j i j i jK iKx x x     x γ     

The likelihood and log likelihood of the data under this 
model are given in Supplementary Materials. The model 
can be fitted with software that provides a procedure for 
maximising the log likelihood with respect to the 
   1J K  1  parameters jk  for  and 

.  
2,3, ,j J

0,1, 2, ,k K 
For the example data, the forwards-descending cumu- 

lative probability model involves estimating the cumula- 
tive probability    2Pr 2 πi i i  of “Mild” or 
“Severe” outcomes, and the probability 

Y  x x
 Pr 3i iY  x  

 3π ix  of the “Severe” outcome. The component tables 
for the model are shown in panel C of Table 2. The re- 
sults of estimating the model are shown at left in panel C 
of Table 3. The relative cumulative risk estimates are 
  exp 0.405 1.502CumRR    and   3 exp 0.693CumRR   
2.00. Those estimates and their estimated standard errors 
can be verified from the data in Table 2.  

4.2. Forwards-Descending PP Model 

The particular assumption of the PP model is that the 
cumulative probabilities have a response to covariates 
that is independent of the outcome category and log-lin- 
ear in the coefficients. The forwards-descending PP 
model is: 

     0Pr π expc c
i i j i j iY j     x x x c

jγ      (6) 

where the intercepts 0
c
j  and common slope coefficient 

vectors 2 3
c c c

J   γγ γ   comprise a set of  1J    
 1K   parameters to be estimated of which only 
   21J    are unique. This model can be estimated by 
fitting the cumulative probability model (5) subject to 
 2J K 

c
 constraints on the slope parameters to require 

1ˆ ˆc
j jγ γ  for 3, ,j J  .  
For the example data, the required parameter con- 

straint is 31 21ˆ ˆc c  . The results of estimating the model 
are shown at right in panel C of Table 3. The common 
slope estimate is 21 31 , and the common 
relative cumulative risk estimate is 

ˆ ˆ 0.405c c  
  exp 0.405PPRR   

1.50.  
The PP model with log likelihood –141.670 is a con- 

strained version of the cumulative probability model with 
log likelihood –141.469. A likelihood ratio test with 

0.402oG   gives   2Pr 1 0.402 0.526  
0.397o

. A score 
test with statistic S   yields   0.397 

2

2Pr 1
0.38oW 

 
0.529. A Wald test with statistic  gives 

  2Pr 1 0.382 0.537 . 

4.3. Three Properties of a Fully-Constrained 
Cumulative Probability Model  

Firstly, the constrained value of the largest fitted cumula- 
tive probability at each set of covariate values,  2π

c
ix

1.609

, 
is identical to its unconstrained value . Compar- 
ing solutions to the constrained and unconstrained mod- 
els in panel C of Table 3, we see that  
and 21 21 , and hence that 

 2π ix

20 20ˆ ˆc 

 

ˆ ˆ 0.405c     2 1 2 1π πc x x . 
This remarkable result is a property of a fully-con- 
strained cumulative probability model. 

Secondly, the PP model (6) can be fitted as a log mul- 
tinomial model (1) estimated subject to an equality con- 
straint on the coefficients of each covariate (see Supple-
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mentary Materials). Hence the common slope estimate 

21 31  from the fully constrained cumulative 
probability model can be seen as a summary estimate for 
the unconstrained slope estimates 21

ˆ ˆ 0.405c c  

ˆ 0.288   from the 
log multinomial model. The PP model forces these joint 
probabilities to be equal. 

Thirdly, in a fully-constrained model, the fitted prob- 
abilities  π̂c

j ix
 

 are proportional in the sense that  

          1 2 1
1 1ˆ ˆ ˆ ˆπ π π πc c c c

j i j i j i j i x x x x 2  

and  
           1 1 2

1ˆ ˆ ˆ ˆπ π π πc c c c
j i j i j i j i x x x 2

1 x

J



To confirm that the three ordinal log-link regression 

 

for  where  and  denote distinct 
covariate holdings. These ratio equalities justify the de- 
scription of the fully-constrained cumulative probability 
model as a proportional probability (PP) model. 

3, ,j    1
ix  2

ix

5. Issues in Fitting the Models  

5.1. Starting Values 

A careful choice of starting values is required for the 
cumulative probability models. This is a consequence of 
the need to evaluate terms of the form  

  in the log likelihood. As starting 
values we use the estimates from the common-slopes log 
multinomial model, with intercept values derived from 
the recursive relation given previously.  

   1ln π πj i j i  x x

5.2. Non-Admissable Solutions 

Solutions to a probability model are not admissible if any 
of the fitted probabilities exceed unity and if the sum of 
the fitted probabilities exceeds unity. The functional 
form of the three ordinal models does not constrain the 
fitted probabilities to take admissible values, and hence 
non-admissible solutions can occur in the extremes of 
covariate space if the model-based probabilities are very 
high.  

5.3. Non-Convergence 

The log likelihoods for each model contain terms that 
cannot be evaluated if the fitted values of the probabili- 
ties, or their sums in the AC model, reach or exceed unity. 
This may prevent convergence to a solution. For model- 
based simulated data, the simple expedient of requiring 
evaluation of a term in the log likelihood only if its coef- 
ficient is non-zero eliminates almost all problems with 
convergence. Converged but non-admissible solutions 
are produced instead. We take advantage of this to study 
non-admissible solutions in the next section. 

6. Simulation Study  

models produce estimates that match their theoretical 
values on average and without excessive variation, and 
with estimated standard errors that provide appropriate 
confidence interval coverage, we repeatedly generated 
data from each probability model and fitted the ordinal 
models to each dataset. The simulations involved a single 
 1K   uniformly-distributed covariate X and a re- 

ariable Y having 3J   ordered levels with sponse v
 Pr 2 0 0.12Y x   ,  Pr 0 0.04Y x    and  3
     Pr Y j 1 1.1 0x Y j xPr     . We d - 

ples of size 
 rew sam

200n   and , an
of repl  to pro

he three ordinal log-link regression models 
pr

500n  d with an ade- 
quate number ications duce at least 10,000 
admissible solutions and at least 1000 non-admissible 
solutions in two settings. The settings used and methods 
of generating the data are described in the Supplementary 
Materials. The results are presented there as average 
percent relative bias, average percent mean squared error 
and average 95 percent confidence interval coverage. 
Additionally, the results of likelihood ratio, score and 
Wald tests of the constraint imposed in each model were 
recorded.  

Each of t
oduced estimates with minimal bias and mean squared 

error on average, and with 95 percent confidence interval 
coverage that was close to the nominal 95 percent. The 
summary model fit statistics were similar for each model, 
and the minor differences did not impart a clear advan- 
tage for any single model. Type 1 error rates were close 
to 5 percent but, particularly for the CR probability mod-
el, with a tendency to reject slightly too often. At larger 
values of the uniform covariate, for which the theoretical 
values from three probability models are most different, 
power to reject an incorrect model was moder- ate for 
each of the AC probability model and the PP model, and 
higher for the CR probability model. Bias and mean 
squared error were smaller, error rates on average were 
closer to 5 percent, and power in each setting was greater, 
in the larger datasets  500n   than in the smaller da-
tasets  200n  .  

The  compreceding ments refer to solutions for which 
th

7. Application to Real Data  

 on 189 births to 

e fitted values are admissible for a probability model. In 
non-admissible solutions that were deliberately engi- 
neered by allowing the uniform covariate to take large 
values, model fit was less satisfactory because bias was 
relatively high and confidence interval coverage was 
greatly reduced, and the tendency for each model to reject 
too often a correctly fitted model was more pronounced.  

The dataset consists of information
women seen in the obstetrics clinic at Baystate Medical 
Center in Springfield, Massachusetts. Hosmer and Le- 
meshow [6] used these data to demonstrate ordinal logit- 
link regression models. The ordered outcome consists of 
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tegories, we 
ch

J = 4 categorizations of birth weight (2500 g, 2501 - 
3000 g, 3001 - 3500 g and >3500 g). The principal study 
factor for this analysis is maternal smoking status during 
pregnancy. The data on birth weight category and ma- 
ternal smoking status are shown in Table 4. 

In respect of the ordering of outcome ca
ose to retain the natural ordering of the birth weight 

categories from lightest  1j   to heaviest  4j   
rather than reverse them as er and Lemesh  
did, and to fit forwards-descending models with the first 
category as the identified category. For log-link models, 
these decisions are important because reversing the or- 
dering of the outcome categories and/or modeling them 
in ascending order results in different models of the data.  

In respect of choice of modeling approach, the CR 

 Hosm ow [6]

probability model assumes the birth weight categories are 
the outcomes of a sequence of binary events when they 
arose from arbitrary categorization of an underlying con- 
tinuous response variable. The AC and PP models pro- 
vide poorer descriptions of the data in Table 4, however. 
The relative risk estimates are  2 1.13RR  ,  3 0.91RR   

and  4 0.49RR   for the 2501 - 3000 g, 3001 - 3500 g 
and >3500 g categories respectively. They suggest that 
the impact of maternal smoking is restricted mainly to 
the highest birth weight category, but the AC probability 
model requires the response to covariates to increase 
monotonically and multiplicatively with birth weight 
category whilst the PP model constrains it to be identical 
in each outcome category. 

The results of fitting the three models to the birth 
weight data are summarized in Table 5. Estimation re- 
sults are provided for a binary (0 = no, 1 = yes) covariate 
for maternal smoking (smoker). The common relative 
risk increase is  0.88ACRR  , the summary relative con- 
ditional risk is  0.81CRRR  , and the summary relative 
cumulative risk is  0.PPRR  80 . Also shown in Table 5 
are the results of adjusting for confounding factors in- 
cluding maternal age (age). In these models, only the 
coefficients of smoker are constrained. The adjustment 
has increased the estimated summary effect of maternal 
smoking in each model. The adjusted values are 
   and  0.74PPRR  . Reflecting  0.83AC RR , RR 0.76CR 

 
Table 4. Birth weight and maternal smoking during pregnancy. 

Birth weight (g) 
Maternal smoking status 

2500 2501 - 30 1 - 3500 >3500 
Total 

00 300

Yes 74 30 16 17 11 

No 29 22 29 35 115 

 
able 5. Estimation results for the binary covariate for maternal smoking status from three ordinal response log-link models 

ained model Constrained model 

T
applied to the low birth weight data. 

 Unconstr

 Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 

AC model†       

Unadjusted 0.122 ( .293) –0.093 .267) –0.717 .312)* –0.128 .055)* –0.256 .109)* –0.384 .164)* 

ood –2 ) 

A 0.024 (0.3207) –0. ) –1.04 (0.299)* –0.191 (0.050)* –0.572 (0.150)* 

ihood –2 ) 

C       

–0.229 .110) –0.157 .130) –0.331 .261) –0.214 ( .081)* –0.214 .081)* –0.214 .081)* 

ood –2 ) 

A –0.301 (0.093)* –0. ) –0.291 (0.260) –0.279 (0.077)* –0.279 (0.077)* 

ihood –2 ) 

PP       

–0.229 .110)* –0.386 .171)* –0.717 .312)* –0.229 .110)* –0.229 .110)* –0.229 .110)* 

ood –2 ) 

A –0.301 (0.093)* –0. )* –0.782 (0.329)* –0.301 (0.093)* –0.301 (0.093) 

ihood –2 9) 

0  (0 (0 (0 (0 (0

Log likelih –255.486 56.429 (P = 0.390

djusted‡ 110 (0.312 –0.381 (0.100)* 

Log likel –224.716 26.806 (P = 0.124

R model§ 

Unadjusted  (0  (0  (0 0 (0 (0

Log likelih –255.486 55.694 (P = 0.812

djusted‡ 191 (0.178 –0.279 (0.077)* 

Log likel –223.721 23.872 (P = 0.860

 model¶ 

Unadjusted (0 (0 (0 (0 (0 (0

Log likelih –255.486 57.219 (P = 0.177

djusted‡ 491 (0.200 –0.301 (0.093) 

Log likel –223.721 25.036 (P = 0.26

*D Adjacent categories probability ded covariates are linear predictors for maternal  the mother at the last 

  

enotes P < 0.05; †  model; ‡Ad age (age) and weight of
menstrual period (lwt), two binary indicators for race (1 = white, 2 = black, 3 = other), and binary indicators for presence of uterine irritability (ui) and history 
of premature labour (ptd); §Continuation-ratio probability model; ¶Proportional probability model. 
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the pronounced impact of maternal smoking in the high- advantage of doing so in simulated data is that the esti- 
est birth weight category, the AC probability model es- 
timate is less extreme that those of the CR model, and the 
CR probability model estimate is less extreme than that 
of the PP model. To simplify matters for demonstration 
purposes, non-linearity in the scale of the continuous 
covariates (particularly age) and statistical interaction 
between covariates (including between smoker and age) 
have been ignored. The resultant models had 6 or more 
covariates including continuous variables, and produced 
converged and admissible solutions. Non-convergence 
was an occasional problem only, and occurred with very 
complex models that involved higher-powered polyno- 
mials of continuous variables and/or product terms for 
statistical interaction.  

The likelihood ratio tests reveal that the constraints 
imposed to produce the summary estimates have resulted 
in substantially greater loss of model fit for the AC and 
PP models than for the CR model. If the subset 
 189n   of data analyzed here is representative of all 
d ted in the birth weight study, the loss of model 
fit would be statistically significant if the full dataset was 
two (AC probability model), three (PP model) or 20 (CR 
probability model) times larger in size. 

8. Discussion  

ata collec

In this paper, we proposed log-link alternatives to three 
logistic regression models for ordinal data, and demon- 
strated that it is possible to estimate these models with 
software that allows the user to specify the log likelihood 
as the objective function to be maximized and to impose 
constraints on the parameter estimates. In example data 
with a dichotomous covariate, the unconstrained models 
produced relative risk estimates and estimated standard 
errors that could be verified from the data, and the con- 
strained estimates were credible approximations to the 
unconstrained estimates. Models with a single continuous 
covariate performed well in data simulations, with low 
bias and mean squared error on average and appropriate 
confidence interval coverage in admissible solutions. 
Finally, the models were successfully fitted to a complex 
real-world dataset with an ordinal outcome for which one 
of the models provided a questionable theoretical expla- 
nation but a superior practical description.   

When the model-based probabilities were high, issues 
in fitting the ordinal response log-link regression models 
arose because the fitted probabilities are not restricted to 
values less than unity. The estimation algorithm may fail 
to converge or, if it does converge, the fitted values may 
not be admissible for a probability model. It is possible to 
write the algorithm in a manner that makes non-conver- 
gence a rare occurrence in model-based simulated data 
(less than 1 per 10,000 replications in our settings). The 

mation algorithm converges to a non-admissible solution, 
and this makes it feasible to study them. We found that 
the estimated coefficients of the inadmissible solutions 
had much greater bias on average, with estimated stan- 
dard errors that were too small, and 95% confidence in- 
terval coverage that was poorer in consequence. These 
findings caution against relying on the results of non- 
admissible solutions. 

Each of the three ordinal response log-link models we 
considered is a constrained version of the log multino- 
mial model. The constraints impose a simple linear rela- 
tion on the slope coefficients, and it is possible to test 
whether the unconstrained model provides a better de- 
scription of the data. We found that likelihood ratio, 
score and Wald tests of the constraints each had close to 
the correct type I error rates though they tended to be 
slightly conservative. The power of tests for each model 
to reject fits to data from any of the other ordinal re- 
sponse log-link models increased with the size of the 
maximum model-based probability, and was moderate to 
high when the maximum model-based probability was 
high. 

In our estimation procedure, the user has flexibility to 
place linear constraints on the coefficients of all, or some, 
of the covariates. This makes it possible to fit “partially- 
constrained” models in which the linear constraint is ap- 
plied to a subset only of the explanatory variables [21]. 
In the analyses of the birth weight data, which focused on 
the relationship between maternal smoking and birth 
weight outcome, it served no purpose to place restrictions 
on the other covariates, and to have constrained the coef- 
ficients of maternal age would have significantly reduced 
model fit.  

The ordered birth weight data provided opportunity to 
consider the choice of model, investigate the merits of 
the fitted models, and probe the interpretation of the es- 
timates in a real world setting. The modeling assump- 
tions underlying the CR probability model were unten- 
able for an outcome variable that arose from categoriza- 
tion of birth weight, because the birth weight categories 
did not truly arise as a hierarchy of binary events, but 
otherwise there was much to recommend this model. The 
constraint imposed in fitting the CR probability model 
produced far less loss of model fit than the constraints 
imposed in the other two models, and the summary esti- 
mate—a 24 percent reduction in the conditional prob- 
ability of higher birth weight outcomes for the infants of 
mothers who smoked during pregnancy—was interpret- 
able and plausible. Reasonably in the circumstances, it 
fell between the estimates from the AC and PP models.  

The limitations of this work should be kept in mind. 
Firstly, the results are based on a simple data example for 
a dichotomous covariate, a single set of data simulations 
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for a continuous covariate and a response with just three 
or

- 
atio for ordinal outcome data. Particu-
del-based probabilities are high, how- 

ard (CLB) provided by the National 
ouncil of Australia. 

Classifications Having Ordered Categories, Using Log-
Linear Models Log-Linear Models
for Odds,” Bio 1983, pp. 149-160. 

dered levels, and an analysis of a single real-world 
dataset in which issues with covariate scaling and statis- 
tical interaction were ignored. Secondly, results have 
been reported for the forwards-descending version of 
each model without investigation of the merits of the 
alternative versions. Thirdly, loss of model fit due to the 
imposition of constraints on the coefficients was investi- 
gated, but not the overall fit of the models. Fourthly, the 
variance estimates are taken from the inverse of the ob- 
served information matrix without thorough investigation 
of using the expected information matrix in its place, or 
of using an “information sandwich” to provide robust- 
ness to model misspecification. The non-robust estimator 
based on observed information provided confidence in- 
terval coverage for the ordinal response models that was 
about right, however. Fifthly, we used results based on 
maximum likelihood theory to compute Wald-type con- 
fidence intervals when the functional form of the log-link 
models does not satisfy theoretical assumptions about the 
parameter space required for distributional theory. Sixthly, 
our investigation of power was limited to a single type of 
model misspecification. It ignored other forms of depar- 
ture such as omitted covariates and an incorrect link 
function, and other issues including sample size and 
model complexity, that would be taken into account in a 
more complete investigation. Finally, we omitted a thor- 
ough comparison of the merits of “partially-constrained” 
and “fully-constrained” models, and of models with 
non-linear constraints [21]. These may be important in 
practice as a means of improving model fit when a linear 
constraint applied across some covariates is untenable.  

9. Conclusion 

The three ordinal response log-link models offer a prac- 
tical solution to the problem of obtaining adjusted esti
mates of the risk r
larly when the mo

 

ever, the models must be used with some care and atten- 
tion to detail. 
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