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ABSTRACT 

A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regres-
sion model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes 
which assume remove the stringent condition of bounded total variation of the regression function and need only second 
moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution 
of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to ap-
proximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate 
samples sizes. 
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1. Introduction 

Model building is a very important task. When consider-
ing observations  taken over time 
we may wish to consider the relationship between the Xi 
and the Yi by some regression model, either parametric or 
semiparametric, linear or nonlinear. However, if, after 
some point i = k, there is a change in the relationship 
between Xi and Yi, then a single regression model will be 
inappropriate and would fit the data poorly. For example, 
in Figure 1 below, the scatterplot on the left is that of a 
combined sample of 150 points. The middle scatterplot is 
that of the first 60 points while the right plot is that of the 
remaining 90 points. Without realizing that there was a 
change-point, one might wrongly propose a single re-
gression model, perhaps linear, with heteroscedastic er-
rors. Thus, it is important to determine whether such a 
change has occurred before the particular form of the 
model is postulated. If such a change has occurred, then 
two regression models should be used, one for the first k 
pairs and another for the remaining pairs. We will pro-
pose a number of tests designed to detect whether a 
change has occurred in a general nonparametric model. 
Change-point problems arise in many areas when obser-
vations (Xi, Yi) are taken over time i. 

  , : 1, 2,i iX Y i  

For example, the height of (or discharge from) a river 
as a function of upstream precipitation, or concentrations 

of heavy metals in storm-water runoff as a function of 
suspended sediment size. We refer to the book by Csörgő 
and Horváth [1] for more applications and important ref-
erences and to the papers [2-4] for other change-point 
problems.  

We say that the pair (X, Y) satisfies general regression 
model M(ϕ, ψ, F, ε) if  

       , P ,Y X X X x F x       

for all dx R , where ε is a mean zero, variance one 
random variable, independent of X. We write (X, Y)   
M(ϕ, ψ, F, ε). 

For a sequence   1 1, , , ,n n X Y X Y , consider the null 
hypotheses: 

   , , , , , 1,i i , ,X Y M F i n          (1) 

where ϕ, ψ > 0, and F are unspecified, the Xi are inde-
pendent and the εi are independent and identically dis-
tributed. Model (1) encompasses both linear and nonlin-
ear regression models and the case of heteroscedastic 
errors. We wish to test whether there is a change in the 
model as the observations are taken, without specifying ϕ, 
ψ or F, that is to test the null Hypothesis (1) versus the 
alternative: 

     
     1

, , , , , 1 ,

, , , , , 1

i i

i i

X Y M F i n

,X Y M F n i n

   

   

  

   
  (2) 
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Figure 1. Scatterplot of (Xi, Yi). 
 
for some , where [s] denotes the integer part of 
s. 

 0,1 

  1 1

( ) ( )
d d ; :d

D x D x
 ,F F D x v R v x       (3) 

for some dx R , using the usual partial order in . dR
The alternative Hypothesis (2) includes the case where 

only ϕ changes, that is, 1, 1F F  
F F

, for some 
, and when only F changes  0,1  1 1,  , for 

some .  0,1 
We will base our tests on the process 

          

     
   

[ ]

1

[ ]

1 1

1
,

1

ns

n iD x D x n
i

ns n

i i i iD x D x
i i

x s Y I X Y I X
n

ns
Y I X Y I X

nn




 


 


 

   



 








 

1 11 , dn s n x R     , 

and zero otherwise, where    iD xI X  is the indicator of 
the event 

   i iX D x X x      

and  

       1

1

n

i iD x D xn
i

Y I X n Y I X



  . 

βn can also be written as the difference of two means 

   
 

 
  

[ ]
( ) ( )

1 [ ] 1

ns n
i D x i i D x i

i i ns

Y I X Y I Xns
n w

n ns n ns  

  
     
  

advantage of βn is that we can use empirical process the- 

e next section, we state the main results related to 
th

2. Main Results 

 
Xi} and {εi},  are in- 

de
 {Xi} are independent and identically distrib-

ut

 (4) 

where 

    1/2
1w u u u  . 

Note that  

  ( )
d

X D x D x
EY I F  

  . 

We are considering the partial sums of the response 
variables Yi aligned according to the Xi-observations. The 

ory which has much better convergence properties, rather 
than trying to estimate the function ϕ directly with kernel 
or other curve estimation methods which require a large 
sample size. As will be demonstrated in the simulation 
study, our approach works well for moderate sample 
sizes. 

In th
e weak convergence of the above process as well as 

convergence of various related statistics. These results do 
not assume the stringent condition of bounded variation 
for the regression function ϕ and the variance function ψ 
and strong moment conditions on the error distribution, 
which were assumed in an earlier paper [5]. Section 3 
states the asymptotic results for the weighted bootstrap 
version of our statistics. This is needed since the 
asymptotic distributions of our statistics depend on 
unspecified functions. A new simulation study is con-
ducted in Section 4. Proofs of the results (different from 
those in [5,6]) are sketched in Section 5. 

Assume the following: 
(A1) The sequences { 1,2,i  
pendent. 
(A2) The
ed random vectors with distribution function F. 
(A3) The functions , : dR R   , with 0  , satisfy  

(A4) The {εi: 1 <

2  . 2d , dF F 
 i} are independe t and identically 

di
n

stributed with E({εi) = 0 and 2 1E  .  
(A5)  

0
dP t t


      . 

Conditions (A1)-(A5) are much weaker than those in 
[5] and [6] where ϕ and ψ needed to be of bounded total 
variation and εi required much higher moment conditions 
( E

p

i   ). While the conclusions in [5] and [6] may 
be  (weighted approximations), the requirement 
of bounded variation for ϕ and ψ limits their applicability. 

 stronger
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Here we dispense with this requirement. For example, we 
permit the case where the Xi have unbounded support and 
the regression relationship is polynomial (unbounded), 
provided Xi has finite moments of a suitable degree. 

For 

 1, , , 1, 2,i i idx x x i   , 

let  

 1 2 11 21 1 2, , d dx x x x x x    . 

The first main result is: 
umptions (A1)-(A5) and the 

nu
Theorem 1 Under Ass
ll Hypothesis (1), 

n , as ,D n     

in the space   0,1dD R 
 ,

, equipped with the uniform 
norm, where x s is mea

ction 
n-zero Gaussian process with 

covariance fun

  ,E x s x  
 

        

1 1 1 1

1 2 1 2

1 1 2 1 1 1 2 2 1 2

,

,

s

s s s s

H x x G x G x H x x

  

    

 

and where 

   

 

2
1 1( ) ( )

2
2 ( )

d ; d ;

d .

D x D x

D x

x F H x F

H x F

 



 



 


 
G

Corollary 2 Under the conditions of Theorem 1 and 
the null Hypothesis (1), 

 

  
  

0 1

1 2

0

2

0 1

supKS sup , ;

, d ;

sup , d ,

d

d

d

n D
sx R

n D R

n D Rs

x s

MC x s F ds

KC x s F

 

 



 

 

 


      (5) 

where  



 

  
  

0 1

1 2

0

2

0 1

sup sup , ;

, d d

sup , d .

d

d

d

n n
sx R

n nR

n nRs

KS x s

;MC x s F s

KC x s







 

 







 


 

F

       (6) 

Corollary 2 follows immediately from Theorem 1. 
A3) 

fo



Corollary 3 Under Assumptions (A1)-(A5) and (
r ϕ1 and F1, the test statistics defined by (6) are consis- 

tent against the alternative Hypothesis (2). 
Under the null Hypothesis (1),  ,n x s

n

  has mean 
zero for all x and s. The statistic KS ation (6) is 
a Kolmogorov-Smirnov type statistic expressing the 
largest deviation between the two means (before [ns] and 
after [ns]). Both statistics n

 in Equ

MC  and nKC  are Cramér- 
von Mises type statistics which meas the squared- 
integral distance between the two means. The statistic 

n

ures 

MC  is the mean (integral over s) such distance, while 

nKC
Un

 is the supremum of the squared-integral distance. 
der the alternative Hypothesis (2), when s < θ, the 

first part of Expression (4) has mean  

d
 D x

F , 

while the term after the minus sign has mean  

 D x

1 1dF , 

when s > θ. (see inequality (3)). 

3. Weighted Bootstrap Approximations  

ll as 

,

 independent sequences of independ nt and identi- 

Since the distribution functions of the Xi and εi, as we
the functional forms of ϕ and ψ, are not specified, the 
limiting distributions of all our test statistics will not be 
known. A weighted bootstrap is proposed here which 
will approximate these asymptotic distributions. 

Let  

   
1 2, , , 1,2, ,j jV V j m   

be m e
cally distributed random variables, independent of the {εi} 
and {Xi} sequences. We will consider the processes 

             1/2, ,j j j
n

ns
x , ,s n x ns x n

n
    

 
 

herwise, where 

 

for  

zero ot

1 11 , dn s n x R     , 

1, 2, ,j m  , and 

   

 
         

1 1 1

,

.

j x k

k k k
i iD xj j

i i iD x
i i

Y I X
YV I X V

k  

          
  



 

Theorem 4 Assume Conditions (A1)-(A5) hold and 
that (A4)-(A5) holds for the   j

iV sequences also. Then, 
under the null Hypothesis (1), along almost all sequences  

  , , 1,2,X Y i   , i i

given (X ,Y ), i i 1, 2, ,i n  ,  in the 
n D  j

space    , equippe0,dD R  m norm, 
for eac

1
h j, where

d with the unifor
 is a mean-zero Gaussian process. 

Under the conditions of Theorem 4, the same limiting 
distributions as found in Corollary 2 for statistics based 
on βn are obtained for each  j

n . Moreover, the statistics 
based on βn and  j

n , 1, ,j m2,  , are asymptotically 
independent. 

It is also important for the bootstrap process to have a 

em 5 If the conditions of Theorem 4 hold for the 

lim

functio

iting distribution under the alternative hypothesis. We 
obtain: 

Theor
ns ϕ1, F1 , then under the alternative Hypothesis 

Copyright © 2013 SciRes.                                                                                  OJS 



M. D. BURKE, G. BEWA 264 

(2), along almost all sequences   , , 1, 2,X Y i   , 
given (Xi,Yi), 1, 2, ,i n  ,  j

n 


i i
11

D   in the space 
 0,1dD R  , equippe th , for each 

is a mean-zero Gaussian process. 
d wi  the uniform norm

j, where 11  

4. Simulations 

 are omnibus tests in that we do not The proposed tests
specify the form of the regression function ϕ. In order to 
examine how these tests perform, we conducted simula-
tions for two quite different functions, ϕ(x) = 1 + x + βx2 
and ϕ(x) = 2 sin(βx). The Xi were generated from the 
uniform U(−3, 3) distribution and the errors εi were 
standard normals. In each case, 1000 simulations were 
carried out, each with m = 1000 weighted bootstrap sam-
ples. The level of the tests was α = 0.05 throughout. 
Theorem 3 allows us to choose any mean-zero, vari-
ance-one distribution for the bootstrap weights )( j

iV . We 
chose standard normal weights for the simulat since 
the limiting processes are Gaussian and normal bootstrap 
weights have been found to work well in simulations for 
goodness-of-fit types of statistics [7,8]. We use the per-
centile method. If h(βn) is one of the statistics in Corol-
lary 2, we reject the null hypothesis if  

ion 

 n nh c  , 
where cn(α) is the (1 − α)100-th percenti  

  
le uesof the val

j
n

cn(α)→ c

pothe

h  , 1,  2, ,j m  . Under the null hypothesis, 
(α s the (1 − α)100-th percentile of 

)(h  (Theorems 1 and 3). Under the alternative hy- 
sis, cn(α)→ c11(α), with c11(α), the (1 − α)100-th 

percentile of  11h   and h(βn) →P∞ (Corollary 3 and 
Theorem 4). 

The first po

), where c(α) i

wer study is for the alternative:  

,

2: 1 0.4 , 1 0.41

21 , 0.4

i i i i

i i i i

H Y X X i      n

n

where ψ does not depend on Xi and the change-point is at 

e rows correspond to the empirical level 
of

Y X X n i      
 

0.4n. The statistics KSn, KCn and MCn are defined by 
Equation (6).  

The first thre
 the tests under the null hypothesis (β = 0.4) with dif-

ferent choices for ψ, the standard deviation. The break-
point θ equals 0.4. The empirical level results are rea-
sonably good especially when n > 50, that is they are 
close to the level of 0.05. The empirical powers of the 
tests are in the subsequent rows for different β. 

As can be seen in Table 1, the power increases as β 
ge

the second simulation (see Table 2), we consider ϕ 
to

ts farther from 0.4 (the null Hypothesis). Understanda-
bly the power increases in n and decreases in ψ gets lar-
ger. 

In 
 be a sine function. We conduct our simulations for 

sample sizes n = 50, 100, 150. The first row of Table 2 is 
the empirical level of the test (β = 1, no change-point). 
Again the empirical level is good when n > 50. 

We take ψ = 1, but vary the location of the change- 

po

us in nature, the 
po

5. Proofs of the Main Results 

int θn. The power increases as β gets farther from 1 
(the null hypothesis). The power increases with the sam- 
ple size n. Except in a few instances, the power is great-
est when the change-point occurs in the middle (θ = 0.5) 
and decreases as θ is farther from 0.5. The exceptional 
cases are likely due to simulation error. 

Considering that our tests are omnib
wer results can be seen to be quite good. 

Proof of Theorem 1: For ,0d 1x R  s  , let 

2n        1 1
1

, ,n i i nD x
i

x s Y I X G x
[ ]ns

  


    

where 

          
[ ]

1 1
1

, ;
ns

n i iD x
i

x s X I X G 


   x

i       
[ ]

2
1

, .
ns

n i i D x
i

x s X I  


   X

The collection   :D x x R
quently,

d is a Vapnik-Cervo- 
nenkis class of sets. Conse  the collection of in- 
dicator functions  

  : d
D xI x R  

is a Donsker class of functions. For (fixed) ϕ and ψ, 

  : d
D xI x R   

and  

  : d
D xI x R   

are Donsker classes (Pollard [9]). By Giné and Zinn [10,  
11] (see also Corollary 2.9.3 of [12]),  

       1 21
,1 , ( ,n i iD xi

n x I X G x


  1/2 n  

where  

   2 d
D x

G x F  , 

converges in distribution to a vector of tight independent 

ean and covariance (j = 1, 2): 
Gaussian processes, η1 

and η2, each with zero m

          1 2 1 2 1 2j j j j jE x x H x x G x G x      

Consequently,  

    1/2
1 2,1 , ,1n nx x   n

converges in distribution to a vector of tight independ-
ent Gaussian processes  0

1 2,   with  0
2 0E x   and 

covariance 

    0 0
2 1 2 2 1 2E x x H x x    . 
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Table 1. Power when ϕ(x  1 + x + 0.4x2, ϕ1(x) = 1 + x + ψx2 and breakpoint θ = 0.4. 

 = 100 

) =

n = 30 n = 50 n 

β ψ K n n n n n n n K Cn MCn  S K C MC K S K C MC K S

0.4 1 0.038 0.051 0.044 0.051 0.057 0.054 0.046 0.043 0.050 

 2 0.040 0.047 0.053 0.047 0.060 0.063 0.052 0.049 0.048 

 3 0.043 0.040 0.046 0.056 0.048 0.050 0.056 0.049 0.048 

0.

0.

-0  1 

-0  1 

2 1 0.096 0.142 0.175 0.119 0.228 0.252 0.222 0.408 0.427 

 2 0.086 0.057 0.076 0.088 0.088 0.097 0.121 0.136 0.139 

 3 0.063 0.059 0.071 0.090 0.087 0.088 0.112 0.093 0.098 

0 1 0.264 0.309 0.387 0.448 0.596 0.644 0.708 0.916 0.933 

 2 0.159 0.120 0.163 0.257 0.261 0.293 0.454 0.488 0.510 

 3 0.104 0.068 0.092 0.169 0.154 0.166 0.287 0.266 0.280 

.2 0.465 0.383 0.517 0.748 0.768 0.807 0.974 0.986 0.988 

 2 0.297 0.197 0.275 0.481 0.438 0.470 0.802 0.778 0.784 

 3 0.202 0.137 0.167 0.300 0.241 0.269 0.539 0.485 0.502 

.4 0.663 0.443 0.591 0.916 0.826 0.888 1.000 0.998 0.999 

 2 0.474 0.301 0.396 0.698 0.549 0.614 0.950 0.920 0.925 

 3 0.292 0.175 0.219 0.476 0.384 0.415 0.801 0.697 0.722 

 
T . Pow  ϕ(x) (x), ϕ1  sin(β  ψ = 1 ifferen kpoint

  

able 2 er when  = 2 sin (x) = 2 x), and with d t brea s θ. 

n = 50 n = 100 n = 150

β θ K Sn KC MCn K Sn K C MCn K Sn K C MCn n n n 

1.0  0.052 0.048 0.046 0.056 0.051 0.051 0.051 0.046 0.045 

1.2 0.3 

0.  

1.  

1.  

1.  

2.  

0.050 0.053 0.051 0.068 0.077 0.076 0.078 0.079 0.087 

 4 0.054 0.063 0.060 0.075 0.087 0.091 0.079 0.089 0.096 

 0.5 0.057 0.059 0.061 0.075 0.090 0.094 0.081 0.093 0.102 

 0.6 0.058 0.055 0.054 0.065 0.073 0.071 0.086 0.092 0.098 

 0.7 0.053 0.054 0.058 0.069 0.073 0.080 0.069 0.066 0.067 

4 0.3 0.075 0.104 0.111 0.101 0.182 0.193 0.127 0.254 0.263 

 0.4 0.088 0.127 0.131 0.130 0.233 0.246 0.188 0.344 0.349 

 0.5 0.090 0.124 0.131 0.136 0.252 0.255 0.198 0.359 0.361 

 0.6 0.092 0.131 0.139 0.140 0.246 0.248 0.203 0.368 0.359 

 0.7 0.062 0.098 0.105 0.108 0.189 0.189 0.139 0.278 0.277 

6 0.3 0.109 0.148 0.170 0.174 0.331 0.345 0.259 0.489 0.476 

 0.4 0.121 0.190 0.215 0.243 0.405 0.425 0.382 0.597 0.598 

 0.5 0.125 0.219 0.222 0.263 0.448 0.455 0.416 0.640 0.638 

 0.6 0.115 0.193 0.197 0.254 0.423 0.429 0.383 0.603 0.592 

 0.7 0.092 0.150 0.159 0.188 0.349 0.340 0.285 0.495 0.484 

8 0.3 0.118 0.206 0.208 0.235 0.443 0.464 0.425 0.625 0.626 

 0.4 0.166 0.262 0.292 0.372 0.549 0.558 0.585 0.745 0.742 

 0.5 0.169 0.280 0.295 0.396 0.592 0.595 0.636 0.760 0.766 

 0.6 0.148 0.256 0.260 0.380 0.580 0.583 0.588 0.733 0.729 

 0.7 0.111 0.207 0.200 0.263 0.461 0.459 0.421 0.648 0.632 

0 0.3 0.127 0.225 0.238 0.297 0.484 0.488 0.527 0.695 0.679 

 0.4 0.181 0.295 0.307 0.437 0.626 0.628 0.692 0.806 0.810 

 0.5 0.204 0.319 0.327 0.506 0.659 0.661 0.765 0.822 0.815 

 0.6 0.190 0.284 0.319 0.446 0.622 0.620 0.705 0.802 0.790 

 0.7 0.143 0.223 0.234 0.312 0.497 0.495 0.514 0.699 0.674 
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 It follows that 1 2
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converges in distribution to Г0 

with respect to the  metric, where  
0 1 0
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       1/2, , ,1 ,n nx s n x s x
n

   
  

 
 

We obtain βn→D Г, as n→∞, where  

1

n
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  0 0, ,D x s s x      

and has covariance given in the statement of Theorem 1. 
Hence Theorem 1 is proven. 

By viewing α2n(x, [ns]) as a strong martingale and us- 
ing the functional central limit theorem for strong mar-
tin ogales by Ivan ff [13], one can drop the assumption 

 (A5) and get convergence in the Shorohod topology. (see
[14]).  

Proof of Corollary 3: Assume the alternative Hy-
pothesis (2). Then,  

     1/2 11 11[ ]
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If Condition (A3) holds for the functions  and F1, 
then under the alternative Hypothesis (2),  

in the space 

G  . 

ϕ1

1/2 11 11
n Dn    , 

  0,1dD R   with the uniform metric, 
w 11

Proof of Theorem 4: Let  

here Г  is a zero-mean Gaussian process. Strong con-
sistency of the statistics nKS, nKC, nMC follows. (See the 
proof of Theorem 4.1 in [5]). 

     i i iD xZ x Y I X . 

By the multivariate CLT, along almost all sequences, 

  , ,X i  ,  


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  [ ]1/2
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,
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is  
re

 a sum of iid random variables with mean zero and a
sulting covariance matrix having entries of the form 

   
 1 2

1 2

1 2

1

,
s s

i iD x x
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which converge, uniformly in (x1, s1) and (x2, s2),  
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Similarly, the corresponding conditional c variance of  o

    ,j x ns  

converges uniformly to 
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and the corresponding conditional covariance of 
    ,j x ns  converges uniformly to that of Г. 

ualities ([12], Lemma 3.6.7), By the multiplier ineq
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0
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where 

 

 1, , nR R  
utations of

is uniformly distributed on the set of 
all perm   1,2, ,n  and is independent of 
 , , n1Z Z . In ou r case,   is the collection of func-
tions 

  : d
D xI x R . 

Also,  
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.E





denotes (uniform) measurable cove with respect to all 
variables jointly. Using Theorem e proof

 3.6.13 in [12],  n(x, 1) is Donsker. It follows 
that ([12], Theorem 2.12.2)  x, s) is Donsker, and
Theorem 4 for (j) follows. 

s 

 

rs 
1, as in th  of 

 
Theorem

n(

Proof of Theorem 5: The proof is similar to that of 
Theorem 4 but where the limiting covariance of is that of 
11 instead of Г. 

6. Concluding Remark

In this paper, we have constructed test statistics using 

  : d
D xF I x R  , 

the lower orthants. It is clear (see 
sker classes of functions can be used. E

[12]) that other Don-
xamples are: the

of
half-spaces. The method of proof in
handle such classes. One can also ob ined weak con-

[2] M. Csörgő, L. Horváth and B. Szyszkowicz, “Integral
Tests for Suprema tion,” 
Statist, Decisio , pp. 365-377. 

 
 collection of the closed balls, or the collection 

 [5,6,15] could 
ta

not 

vergence of the weighted version of the process where 
the weight functions satisfy the Chibisov-O’Reilly condi-
tions (see [5,6], or [16], p. 462). 

The simulations show that our tests have good power 
considering the omnibus nature of the procedure. By 
avoiding curve estimation (e.g. using kernel methods to 
estimate ), we are able to provide practical tests for 
moderate sample sizes. 
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