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ABSTRACT

A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regres-
sion model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes
which assume remove the stringent condition of bounded total variation of the regression function and need only second
moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution
of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to ap-
proximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate

samples sizes.
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1. Introduction

Model building is a very important task. When consider-
ing observations {(X,¥):i=1,2,--} taken over time
we may wish to consider the relationship between the X;
and the Y; by some regression model, either parametric or
semiparametric, linear or nonlinear. However, if, after
some point i = k, there is a change in the relationship
between X; and Y, then a single regression model will be
inappropriate and would fit the data poorly. For example,
in Figure 1 below, the scatterplot on the left is that of a
combined sample of 150 points. The middle scatterplot is
that of the first 60 points while the right plot is that of the
remaining 90 points. Without realizing that there was a
change-point, one might wrongly propose a single re-
gression model, perhaps linear, with heteroscedastic er-
rors. Thus, it is important to determine whether such a
change has occurred before the particular form of the
model is postulated. If such a change has occurred, then
two regression models should be used, one for the first £
pairs and another for the remaining pairs. We will pro-
pose a number of tests designed to detect whether a
change has occurred in a general nonparametric model.
Change-point problems arise in many areas when obser-
vations (X, Y;) are taken over time i.

For example, the height of (or discharge from) a river
as a function of upstream precipitation, or concentrations
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of heavy metals in storm-water runoff as a function of
suspended sediment size. We refer to the book by Csorgd
and Horvath [1] for more applications and important ref-
erences and to the papers [2-4] for other change-point
problems.

We say that the pair (X, Y) satisfies general regression
model M(¢, v, F, ¢) if

Y=¢(X)+y(X)e, P[X <x]=F(x),

for all xeRY, where ¢ is a mean zero, variance one
random variable, independent of X. We write (X, ¥) €
M(g, w, F, ¢).

For a sequence(X,,Y,),---,(X,,Y,), consider the null
hypotheses:

(X..Y,)eM(pp,F,&),i=1--,n, (1)

27

where ¢, w > 0, and F are unspecified, the X; are inde-
pendent and the ¢; are independent and identically dis-
tributed. Model (1) encompasses both linear and nonlin-
ear regression models and the case of heteroscedastic
errors. We wish to test whether there is a change in the
model as the observations are taken, without specifying ¢,
w or F, that is to test the null Hypothesis (1) versus the
alternative:

(X,.Y,) e M (g, F.c), 1<i <[n6],
(Xl.,Yl.)eM(¢1,t//,F,g), [n6]+1<i<n,

oJS



262 M. D. BURKE, G. BEWA

w w °
1 ® Ne) o @ o
% ° ey
° o~ o B
<t 4 " F % @
° -
8 °
° e ° 5 0 J
S ".%0"0:&":0 h o oA *
> @° % % o8 ®o © - Ay ® 0o
o5 %4 % Wﬂut o . ° 8
- oo % 8 ° s *®
- E
& Al 2N N ° L g
s °® @° % ° A o ©
s o % - g
' % °
®
o 4
<+ 4 e ﬁ"—c
. T T T T T T T T T T T T T T T T T T T
-3 2 1 0 1 2 3 3 2 0 1 2 3 3002 1 1 2 3

Figure 1. Scatterplot of (X;, ¥;).

for some 6 e(0,1), where [s] denotes the integer part of
5.

[ #dF # [, #'dF' D(x)= (veR :v<x}, (3)

for some x e R?, using the usual partial order in R’ .
The alternative Hypothesis (2) includes the case where
only ¢ changes, that is, ¢=¢',F=F',6 for some
0 <(0,1), and when only F changes F # F',¢=¢', for
some 6¢€(0,1).
We will base our tests on the process

B, (X’S) = %([’f(}’[m) (X,.)— Y[D(X) (X)n )J

i=1

= %{ﬁi[xlz)(x) (Xi)__ _

-1 d
1-n,xeR",

IA

-1
n <s

and zero otherwise, where 7, (X;) is the indicator of
the event

[Xl. eD(x)} = [X,- < x]

and

YID(X) (X),, = ”_IZ:,YI-ID(X) (X.)-
[, can also be written as the difference of two means
WY, (X)) & Ydpy (X))
\/;W @ i* D(x) i) i* D(x) i 4
n ,z:;' [ns] ,-:[,,ZS;H (n —[ns]) @
where
1/2
w(u) = (u(l—u)) .
Note that

EYIyp = J'D(X)¢dF.

We are considering the partial sums of the response
variables Y; aligned according to the X;-observations. The
advantage of f, is that we can use empirical process the-
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ory which has much better convergence properties, rather
than trying to estimate the function ¢ directly with kernel
or other curve estimation methods which require a large
sample size. As will be demonstrated in the simulation
study, our approach works well for moderate sample
sizes.

In the next section, we state the main results related to
the weak convergence of the above process as well as
convergence of various related statistics. These results do
not assume the stringent condition of bounded variation
for the regression function ¢ and the variance function
and strong moment conditions on the error distribution,
which were assumed in an earlier paper [5]. Section 3
states the asymptotic results for the weighted bootstrap
version of our statistics. This is needed since the
asymptotic distributions of our statistics depend on
unspecified functions. A new simulation study is con-
ducted in Section 4. Proofs of the results (different from
those in [5,6]) are sketched in Section 5.

2. Main Results

Assume the following:

(A1) The sequences {X;} and {¢;}, i=1,2, -
dependent.

(A2) The {X;} are independent and identically distrib-
uted random vectors with distribution function F.

(A3) The functions ¢, : R* — R, with y >0, satisfy

[#2dF, [y dF <.

are in-

(A4) The {&: 1 < i} are independent and identically
distributed with E({e)=0and E&* =1.

(AS)
J.:1 /P[|g| > t]dt <.

Conditions (A1)-(A5) are much weaker than those in
[5] and [6] where ¢ and w needed to be of bounded total
variation and ¢; required much higher moment conditions
(E|£l.|p < ). While the conclusions in [5] and [6] may
be stronger (weighted approximations), the requirement
of bounded variation for ¢ and i limits their applicability.
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Here we dispense with this requirement. For example, we
permit the case where the X; have unbounded support and
the regression relationship is polynomial (unbounded),
provided X; has finite moments of a suitable degree.

For

X. :(_x’_]’...’

i x,'d)sizlszs'“9
let

:(xll AR e

X A X, s X /\xzd).

The first main result is:
Theorem 1 Under Assumptions (A1)-(A5) and the
null Hypothesis (1),

B, —p,as n— oo,

in the space D(R‘ x[O,l]), equipped with the uniform
norm, where T’ x,s) is mean-zero Gaussian process with
covariance function

ET (x,,8)T(x,s,)

=(s, A8y —5,5,)

><(H1 (x, AX,) =G (x)G, (x,)+H, (x, /\xz)),
and where

J‘D( )¢dF H( ) ID( )¢2dF;

w’dF.

Corollary 2 Under the conditions of Theorem 1 and
the null Hypothesis (1),

H, (x)

D(x)

KS, —, sup sup|F(x,S)|;

xeR? 0<s<1
C, -, j [(T ) dF ds; (5)
KC, -, sup_[ (x, s)) drF,
0<s<l1
where
KS, =sup sup|/5’n X,s |
xeR? 0<s<1
MC, = [ [ (B, (x.5)) dFds; (6)
KC, —supj xs))zdF.
0<s<1

Corollary 2 follows immediately from Theorem 1.

Corollary 3 Under Assumptions (A1)-(A5) and (A3)
for ¢' and F"', the test statistics defined by (6) are consis-
tent against the alternative Hypothesis (2).

Under the null Hypothesis (1), A, (x,s) has mean
zero for all x and s. The statistic KS, in Equation (6) is
a Kolmogorov-Smirnov type statistic expressing the
largest deviation between the two means (before [ns] and
after [ns]). Both statistics MC, and KC, are Cramér-
von Mises type statistics which measures the squared-
integral distance between the two means. The statistic
MC, is the mean (integral over s) such distance, while
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KC, is the supremum of the squared-integral distance.
Under the alternative Hypothesis (2), when s < 0, the
first part of Expression (4) has mean

drF
.[D(x) ¢ ’
while the term after the minus sign has mean
ldFl
[ ¢ dF"
when s > 6. (see inequality (3)).

3. Weighted Bootstrap Approximations

Since the distribution functions of the X; and ¢;, as well as
the functional forms of ¢ and y, are not specified, the
limiting distributions of all our test statistics will not be
known. A weighted bootstrap is proposed here which
will approximate these asymptotic distributions.

Let

VI(/),VZ(/),...,J' =1,2,-,m

be m independent sequences of independent and identi-
cally distributed random variables, independent of the {¢;}
and {X;} sequences. We will consider the processes

0 =2 (o) P20 |
for
n'<s<l-n',xeR?,

zero otherwise, where j=1,2,---,m, and

g(f) (xk)

_ (iY,VimID(x) (Xi)—{i V[m}ﬁ”%()()]

i=1

Theorem 4 Assume Conditions (A1)-(AS) hold and
that (A4)-(A5) holds for the{Vf’ ) sequences also. Then,
under the null Hypothesis (1), along almost all sequences

{(X,.%).i=1,2,-},

given (X,Y), i=12-n , AV, T in the
spaceD(R" x[O,%l), equipped with the uniform norm,
for each j, where | 'is a mean-zero Gaussian process.

Under the conditions of Theorem 4, the same limiting
distributions as found in Corollary 2 for statistics based
on f3, are obtained for each ﬂ Moreover, the statistics
based on g, and ,B 7) , j=12,---,m, are asymptotically
independent.

It is also important for the bootstrap process to have a
limiting distribution under the alternative hypothesis. We
obtain:

Theorem 5 If the conditions of Theorem 4 hold for the
functions ¢', F' , then under the alternative Hypothesis
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(2), along almost all sequences {(Xl.,Y,.),izl,Z,--},
given (X.Y), i=1,2,---,n, BY) >, T" in the space
D(Rd %[0, 1]) , equipped with the uniform norm, for each

Jj, where T'" is a mean-zero Gaussian process.

4. Simulations

The proposed tests are omnibus tests in that we do not
specify the form of the regression function ¢. In order to
examine how these tests perform, we conducted simula-
tions for two quite different functions, ¢(x) = 1 + x + fix*
and ¢(x) = 2 sin(fx). The X; were generated from the
uniform U(-3, 3) distribution and the errors g were
standard normals. In each case, 1000 simulations were
carried out, each with m = 1000 weighted bootstrap sam-
ples. The level of the tests was a = 0.05 throughout.
Theorem 3 allows us to choose any mean-zero, vari-
ance-one distribution for the bootstrap weights Vl,(j ). We
chose standard normal weights for the simulation since
the limiting processes are Gaussian and normal bootstrap
weights have been found to work well in simulations for
goodness-of-fit types of statistics [7,8]. We use the per-
centile method. If A(f,) is one of the statistics in Corol-
lary 2, we reject the null hypothesis if h( B, ) >c, (a) ,
where ¢,(a) is the (1 — a)100-th percentile of the values
h ,Sj) , j=1,2,---,m . Under the null hypothesis,
ci(a)— c(a), where c(a) is the (1 — a)100-th percentile of
h(T') (Theorems 1 and 3). Under the alternative hy-
pothesis, c,(a)— c''(a), with ¢''(a), the (1 — «)100-th
percentile of h(F”) and h(f,) —pwo (Corollary 3 and
Theorem 4).
The first power study is for the alternative:

H .Y, =1+X,+04X] +ye,, 1<i<0.4n
Y, =1+ X, + BX] +ye,,

i

04n<i<n,

where y does not depend on X;and the change-point is at
0.4n. The statistics KS,, KC, and MC, are defined by
Equation (6).

The first three rows correspond to the empirical level
of the tests under the null hypothesis (f = 0.4) with dif-
ferent choices for y, the standard deviation. The break-
point 8 equals 0.4. The empirical level results are rea-
sonably good especially when n > 50, that is they are
close to the level of 0.05. The empirical powers of the
tests are in the subsequent rows for different S.

As can be seen in Table 1, the power increases as 8
gets farther from 0.4 (the null Hypothesis). Understanda-
bly the power increases in n and decreases in y gets lar-
ger.

In the second simulation (see Table 2), we consider ¢
to be a sine function. We conduct our simulations for
sample sizes n = 50, 100, 150. The first row of Table 2 is
the empirical level of the test (f = 1, no change-point).
Again the empirical level is good when n > 50.

We take y = 1, but vary the location of the change-
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point On. The power increases as f gets farther from 1
(the null hypothesis). The power increases with the sam-
ple size n. Except in a few instances, the power is great-
est when the change-point occurs in the middle (6 = 0.5)
and decreases as 6 is farther from 0.5. The exceptional
cases are likely due to simulation error.

Considering that our tests are omnibus in nature, the
power results can be seen to be quite good.
5. Proofs of the Main Results

Proof of Theorem 1: For xe RY,0<s<1, let

[ns]
aﬂ ('x’s) = ZI(YLID(,\) (Xi)_ G] (x)) = aln + aZn’

where
a1 (1) = 31000, o, ()~ G ()

[ns]
a2n (X,S) = ;W(Xi)gi[D(x) (Xl )

The collection {D(x):xe Rd} is a Vapnik-Cervo-
nenkis class of sets. Consequently, the collection of in-
dicator functions

{ID(X) xe R"}

is a Donsker class of functions. For (fixed) ¢ and w,
{¢ID(X) ixe Rd}

and
{(//ID(X) ‘X€E Rd}

are Donsker classes (Pollard [9]). By Giné and Zinn [10,
11] (see also Corollary 2.9.3 of [12]),

a2 (aln (x’l)’Z?:1gf (w ID(X) (X,.)—Gz (X)),
where
G, (x)= .[D(x)‘//dF’

converges in distribution to a vector of tight independent
Gaussian processes, 77
and 7, each with zero mean and covariance (j = 1, 2):

En; (x1)77/ (xz):(H/ (% /\xz)_Gj (%)G, (xz))
Consequently,
n? (cxln (x,1), 05, (x,l))

converges in distribution to a vector of tight independ-
ent Gaussian processes (771,773) with En; (x)=0 and
covariance

En, (x1)77§ (x2)=H(x1 /\xz)'

oJS
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Table 1. Power when ¢(x) = 1 +x + 0.4¢%, ¢'(x) = 1 +x + yx® and breakpoint @ = 0.4.
n =30 n =50 n =100
s 174 KS, KC, MC, KS, KC, MC, KS, KC, MC,
0.4 1 0.038 0.046 0.051 0.044 0.043 0.051 0.057 0.050 0.054
2 0.040 0.047 0.053 0.047 0.060 0.063 0.052 0.049 0.048
3 0.043 0.040 0.046 0.056 0.048 0.050 0.056 0.049 0.048
0.2 1 0.096 0.142 0.175 0.119 0.228 0.252 0.222 0.408 0.427
2 0.086 0.057 0.076 0.088 0.088 0.097 0.121 0.136 0.139
3 0.063 0.059 0.071 0.090 0.087 0.088 0.112 0.093 0.098
0.0 1 0.264 0.309 0.387 0.448 0.596 0.644 0.708 0.916 0.933
2 0.159 0.120 0.163 0.257 0.261 0.293 0.454 0.488 0.510
3 0.104 0.068 0.092 0.169 0.154 0.166 0.287 0.266 0.280
-0.2 1 0.465 0.383 0.517 0.748 0.768 0.807 0.974 0.986 0.988
2 0.297 0.197 0.275 0.481 0.438 0.470 0.802 0.778 0.784
3 0.202 0.137 0.167 0.300 0.241 0.269 0.539 0.485 0.502
-0.4 1 0.663 0.443 0.591 0.916 0.826 0.888 1.000 0.998 0.999
2 0.474 0.301 0.396 0.698 0.549 0.614 0.950 0.920 0.925
3 0.292 0.175 0.219 0.476 0.384 0.415 0.801 0.697 0.722
Table 2. Power when ¢(x) = 2 sin(x), ¢*(x) = 2 sin(fx), and w = 1 with different breakpoints 6.
n =50 n =100 n =150
s % KS, KC, MC, KS, KC, MC, KS, KC, MC,
1.0 0.052 0.051 0.048 0.046 0.046 0.056 0.051 0.045 0.051
1.2 0.3 0.050 0.053 0.051 0.068 0.077 0.076 0.078 0.079 0.087
0.4 0.054 0.063 0.060 0.075 0.087 0.091 0.079 0.089 0.096
0.5 0.057 0.059 0.061 0.075 0.090 0.094 0.081 0.093 0.102
0.6 0.058 0.055 0.054 0.065 0.073 0.071 0.086 0.092 0.098
0.7 0.053 0.054 0.058 0.069 0.073 0.080 0.069 0.066 0.067
1.4 0.3 0.075 0.104 0.111 0.101 0.182 0.193 0.127 0.254 0.263
0.4 0.088 0.127 0.131 0.130 0.233 0.246 0.188 0.344 0.349
0.5 0.090 0.124 0.131 0.136 0.252 0.255 0.198 0.359 0.361
0.6 0.092 0.131 0.139 0.140 0.246 0.248 0.203 0.368 0.359
0.7 0.062 0.098 0.105 0.108 0.189 0.189 0.139 0.278 0.277
1.6 0.3 0.109 0.148 0.170 0.174 0.331 0.345 0.259 0.489 0.476
0.4 0.121 0.190 0.215 0.243 0.405 0.425 0.382 0.597 0.598
0.5 0.125 0.219 0.222 0.263 0.448 0.455 0.416 0.640 0.638
0.6 0.115 0.193 0.197 0.254 0.423 0.429 0.383 0.603 0.592
0.7 0.092 0.150 0.159 0.188 0.349 0.340 0.285 0.495 0.484
1.8 0.3 0.118 0.206 0.208 0.235 0.443 0.464 0.425 0.625 0.626
0.4 0.166 0.262 0.292 0.372 0.549 0.558 0.585 0.745 0.742
0.5 0.169 0.280 0.295 0.396 0.592 0.595 0.636 0.760 0.766
0.6 0.148 0.256 0.260 0.380 0.580 0.583 0.588 0.733 0.729
0.7 0.111 0.207 0.200 0.263 0.461 0.459 0.421 0.648 0.632
2.0 0.3 0.127 0.225 0.238 0.297 0.484 0.488 0.527 0.695 0.679
0.4 0.181 0.295 0.307 0.437 0.626 0.628 0.692 0.806 0.810
0.5 0.204 0.319 0.327 0.506 0.659 0.661 0.765 0.822 0.815
0.6 0.190 0.284 0.319 0.446 0.622 0.620 0.705 0.802 0.790
0.7 0.143 0.223 0.234 0.312 0.497 0.495 0.514 0.699 0.674
Copyright © 2013 SciRes. 0oJS
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Lastly, (see [12], Theorem 2.12.1)

n 2 (aln (x,s),a2n (x,s))

converges in distribution to a vector of tight Gaussian
processes (77/,75’) on D(R" x [0,1]) with zero means
and covariances

E771] ()51’51)7711 (XZ,SZ)

= (s, A8,)x(H, (x, Ax,) =G, (%) G (x,))

and
0 0
En (x,8)m (x2,8,) = (s, A8y H, (%, Ax,).
It follows that n™/’, converges in distribution to T
with respect to the uniform metric, where
=n +7n).

Since
puos) = () |

We obtain f,—p I, as n—o0, where
=, re (x,s)—sl"o (x,l)

and has covariance given in the statement of Theorem 1.
Hence Theorem 1 is proven.

By viewing ay,(x, [ns]) as a strong martingale and us-
ing the functional central limit theorem for strong mar-
tingales by Ivanoff [13], one can drop the assumption
(A5) and get convergence in the Shorohod topology. (see
[14]).

Proof of Corollary 3: Assume the alternative Hy-
pothesis (2). Then,

B,(x,5)= n"? (a;l ()C,S)—@wi1 (x,l)j

n
+7,(x.5),
where, for s <0,

R L L)

n n

L (x,5),

a, (x,5)=¢

and for s>46,

a, (x,5)=a,(x.0)+a,(x.s)-a,(x,0),

n

Copyright © 2013 SciRes.

and
G (x)=], P

If Condition (A3) holds for the functions ¢' and F',
then under the alternative Hypothesis (2),

-1/2 11 11
n'a, >, I,

in the space D(Rd x[O,l]) with the uniform metric,
where I''! is a zero-mean Gaussian process. Strong con-
sistency of the statistics "KS, "KC, "MC follows. (See the
proof of Theorem 4.1 in [5]).

Proof of Theorem 4: Let

Z,(x)= Yl (X,).
By the multivariate CLT, along almost all sequences,

{(X,-,Sl.),i:]’z’,”} ,

_ 12\ ns]
& (xs)=n" 30V Z,(x)
is a sum of iid random variables with mean zero and a

resulting covariance matrix having entries of the form
[(s1252)]

n71 Z Y;ZID(XleZ) (Xi)’

i=1
which converge, uniformly in (xy, s;) and (x,, s7),
(s1 /\sz)(H1 (xl /\xz)+H2 (xl AX, )) .
Similarly, the corresponding conditional covariance of
é’(/) (x,[ns])
converges uniformly to
(s1 /\sz)(H1 (x1 /\xz)—G1 (x1 /\xz)+H2 (x1 /\xz)) ,
and the corresponding conditional covariance of
B (x,[ns]) converges uniformly to that of T".
By the multiplier inequalities ([12], Lemma 3.6.7),

EV n—l/ZzI/;Zi
i-1

*
3

d

2 i ZR,-

i-ngy

1<i<n

< 2(110 - 1) n"? i"Z,. ||2EV (max
i=1

*
©

+2[{P(V, > 1)dr maxE,

0

>

Ry

where (R,--,R,) is uniformly distributed on the set of
all permutations of {1,2,---,n} and is independent of
(Z,,-+-,Z,). In our case, J is the collection of func-
tions

{ID(X) 1X eRd} .
Also,

oJS
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E|-

*
3

denotes (uniform) measurable covers with respect to all
variables jointly. Using Theorem 1, as in the proof of
Theorem 3.6.13 in [12], § .(x, 1) is Donsker. It follows
that ([12], Theorem 2.12.2) &,(x, s) is Donsker, and
Theorem 4 for 7 follows.

Proof of Theorem 5: The proof is similar to that of
Theorem 4 but where the limiting covariance of is that of
' instead of .

6. Concluding Remarks
In this paper, we have constructed test statistics using

F={I,,:xeR],

the lower orthants. It is clear (see [12]) that other Don-
sker classes of functions can be used. Examples are: the
collection of the closed balls, or the collection of
half-spaces. The method of proof in [5,6,15] could not
handle such classes. One can also obtained weak con-
vergence of the weighted version of the process where
the weight functions satisfy the Chibisov-O’Reilly condi-
tions (see [5,6], or [16], p. 462).

The simulations show that our tests have good power
considering the omnibus nature of the procedure. By
avoiding curve estimation (e.g. using kernel methods to
estimate ¢), we are able to provide practical tests for
moderate sample sizes.
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