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ABSTRACT 

We propose a new nonparametric method for assessing non-inferiority of an experimental therapy compared to a stan- 
dard of care. The ratio E R  of true median survival times is the parameter of interest. This is of considerable inter- 

est in clinical trials of generic drugs. We think of the ratio E Rm m  of the sample medians as a point estimate of the 

ratio E R  . We use the Fieller-Hinkley distribution of the ratio of two normally distributed random variables to de- 

rive an unbiased level-α test of inferiority null hypothesis, which is stated in terms of the ratio E R  and a 

pre-specified fixed non-inferiority margin δ. We also explain how to assess equivalence and non-inferiority using boot- 
strap equivalent confidence intervals on the ratio E R . The proposed new test does not require the censoring distri- 

butions for the two arms to be equal and it does not require the hazard rates to be proportional. If the proportional haz- 
ards assumption holds good, the proposed new test is more attractive. We also discuss sample size determination. We 
claim that our test procedure is simple and attains adequate power for moderate sample sizes. We extend the proposed 
test procedure to stratified analysis. We propose a “two one-sided tests” approach for assessing equivalence. 
 
Keywords: Right-Censored Data; Kaplan-Meier Estimate; Bootstrap Standard Error; Generic Drugs 

1. Introduction 

Non-inferiority and equivalence trials aim to show that 
the experimental therapy is not clinically worse than 
(non-inferiority) or clinically similar to (equivalence) an 
active control therapy. As the statistical formulation is 
one-sided, non-inferiority trials are also called one-sided 
equivalence trials. ICH E10 [1] is an authentic and offi- 
cial guidance document on the choice controls in non- 
inferiority clinical trials. The active control, which is also 
called a reference, is usually a standard of care. As noted 
in [1], most active-control equivalence trials are really 
non-inferiority trials intended to establish the efficacy of 
a new therapy. A non-inferiority trial is conducted to 
evaluate the efficacy of an experimental therapy com- 
pared to an active control when it is hypothesized that the 
experimental therapy may not be superior to a proven 
effective therapy, but is clinically and statistically not 
inferior in effectiveness. If the experimental therapy has 
a better safety profile, and/or easier to administer, and/or 
costs less, then non-inferiority trials are considered ap- 
propriate [2]. 

Confidence intervals on hazard ratios are used to as- 
sess equivalence and non-inferiority from survival data. 
The concept of hazard ratio is elusive. Clinicians find it 
hard to understand. Koch [3] says that though it is strai- 
ghtforward to construct confidence intervals on hazard 
ratios, it can be awkward to interpret. Wellek [4] pro- 
posed a log-rank test for equivalence of two survivor 
functions. According to Wellek, the survivor functions 
are considered equivalent if the absolute difference be- 
tween the two survival curves is less than a pre-specified 
margin  0   over the whole range of values of 
event-time. His test is carried out in terms of the regres- 
sion coefficient for a dummy covariate indexing the trial 
arms. Though Wellek’s paper is remarkable in its tech- 
nical content, the test procedure is not used in practice. A 
possible reason is that his definition of equivalence crite- 
rion is conceptually difficult for clinicians to understand. 
Moreover, this formulation of the problem requires that 
the survival curves belong to the same proportional haz- 
ards model. The proportional hazards assumption is often 
inappropriate. We would like to point out that if the pro- 
portional hazards assumption holds good, the tests for 
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non-inferiority (and equivalence) in terms of medians 
would be more attractive. 

Because the distribution of survival times tends to be 
positively skewed, the median is the preferred summary 
measure of the location of the distribution. Also, the me- 
dian is straightforwardly informative to the clinicians. 
Efron [5] said it very nicely—“The median is often fa- 
vored as a location estimate in censored data problems 
because, in addition to its usual advantage of easy inter- 
pretability, it least depends upon the right tail of the 
Kaplan-Meier curve, which can be highly unstable if cen- 
soring is heavy.” Simon [6] emphasizes the importance 
of confidence intervals on median survival times. He 
writes: “For exponential survival distributions, the hazard 
ratio equals the ratio of medians. Exponential survival 
means that the survival curve is a straight line on a semi- 
logarithmic scale (log survival probability over time). 
Because exponential distributions are good approxima- 
tions to the survival curves seen in many kinds of ad- 
vanced cancer, confidence intervals for the hazard ratio 
are often interpreted as confidence intervals for the ratio 
of medians.” Simon also explains how to calculate a con- 
fidence interval on the ratio of median survivals when the 
survival distributions are exponential. As a result, it has 
become a common practice in clinical trial study report- 
ing to give point and interval estimates for the median 
survival time. This motivated us to consider testing for 
equivalence and non-inferiority of an experimental ther- 
apy compared to a reference therapy in terms of their 
median survival times. As assessing non-inferiority in 
terms of the difference between median survival times is 
trivial, we focus on their ratio. 

Rubinstein et al. [7] were probably the first to consider 
the problem of testing the null hypothesis that the median 
survival times are equal against an alternative that the 
median survival time for the experimental treatment ex- 
ceeds that of the control arm. They assumed exponential 
distributions for survival data. Britsol [8] presents a mo- 
dification to Rubinstein’s procedure for situations where 
it is desired to show that the experimental treatment is 
not much worse than the control. As noted by Berger and 
Hsu [9], and Hauschke and Hothorn [10], testing for 
non-inferiority in terms of the ratio of the averages often 
reflects clinical rationale rather than the difference be- 
tween the averages. Bristol wants to test the null hy- 
pothesis that the ratio of medians is less than or equal to 
a fixed margin   against the alternative that the ratio 
exceeds  . To simplify the matter, he assumes that fail- 
ure times have exponential distributions. Bristol’s real 
interest is in testing the ratio hypothesis 0

1H  stated in 
(3.1) below in Section 3. However, he uses log transfor- 
mation of the ratio to derive an asymptotic test. We cir- 
cumvent this problem by introducing the Fieller-Hinkley 
(hereafter abbreviated as F-H) distribution on the ratio of 

two normally distributed random variables. Moreover, 
we don’t assume failure times to follow exponential or 
some other parametric distributions. 

2. One Sample Survival Model, Median 
Estimate and Standard Error 

We develop the tests under the frame work of a randomly 
right-censored survival model. We assume that 

1 2 n  are iid random variables with a continuous 
distribution function F, and that F has a density f and 
median 

, , ,Y Y YΛ

 . These variables represent the event-times of 
the subjects under observation. Associated with each i  
is an independent censoring variable i , which are as- 
sumed to be iid from a censoring distribution 

Y
C

H . The 
data consist of  pairsn  ,T d

iY
C

i i , where iT  is either an 
observed failure-time  or an observed censoring time 

i , and  d I Y C i i i . The basic quantity employed 
to describe time-to-event phenomenon is the survivor 
function    1S t F t 

 
. The median survival time es- 

 ˆinf : 0.5m t S t  , where  Ŝ t

 S t

m

  timate is given by 

is the product-limit estimate of . That is, the me- 
dian survival time is estimated from the product-limit 
estimate to be the first time that the survival curve falls to 
0.5 or below. The sample median  is asymptotically 
normally distributed with mean  . The variance 

 2 m m of  is mathematically intractable. The SAS 
lifetest procedure provides an estimate of survivor func- 
tion accompanied by survival standard error [11]. By de- 
fault, the SAS lifetest procedure uses the Kaplan-Meier 
method. It also produces a point estimate of the median 
  of F  and the 95% confidence interval-derived by 
Brookmeyer and Crowley [12]. Brookmeyer and Crow- 
ley obtained the confidence intervals by inverting a gen- 
eralization of the sign test for censored data. They did not 
need the standard error of the sample median. Obviously, 
the SAS lifetest procedure does not provide the standard 
error of the sample median . One form of the asymp- 
totic variance of median  is 

m
m

     
2

2 ˆ ˆvarm f S 


        ,     (2.1) 

 where Ŝ m
 2 m

   

     

 is found using the Greenwood’s formula 
[13]. A slightly different version of  is provided 
in [14]: 

22 1

2

0

d
1

1 1

m n f

F
F

F H



 



   
 
  

 

 (2.2) 

 


 2 m



As f is unknown, the variance  given either in 
(2.1) or (2.2) becomes useless in estimating the popula- 
tion median time   [15]. We propose to estimate the 
standard error of  using the Efron’s bootstrap [5], which m
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does not make any distributional assumptions. In a single 
sample setting, Efron’s bootstrap may be described as  

follows. We draw a bootstrap sample    1 2 2, , , ,Y C Y C      

 n

1

 , ,n nY C Λ  by independ t sampling  times with re- 
placement f

ly B times, 
obtaining

en
rom F and calculate the median  

 datam m  . We repeat this independent
 B medians: 1 2, , , Bm m m  Λ . An estimated 

variance of e sample m is  th edian time m  

   2

BOOT 1 1
ˆ

1
B

j j
m m B

B


 
    

    (2.3) 

 may set B  equal to 1000. This is called “model- 
fr

22 1 B j j 

One
ee” or the Efron’s bootstrap procedure II. The Univer- 

sity of Texas at Austin [16] has provided some introduc- 
tory SAS codes needed to resample a SAS dataset. 

Efron [5] states: the bootstrap estimate BOOT̂  given 
in (2.3) is a consistent estimate, but   in (2 ) or in 
(2.2) itself may be meaningless. There re, we assume 
that 2

BOOT̂ , which does not depend on either f or 

.1
fo

  is 
a viable substitute for  2 m . Thus, we work unde the 
notion that the sample m time m  is asymptotically 
normally distributed with mean 

r 
edian 

  d variance 2
BOOT̂ . 

We suppress the subscript BOO of the estimated vari- 
ance in (2.3). In fact, Keaney and Wei [17], among oth- 
ers, have used bootstrap to find the standard error of m . 

What is an indication of an unstable median or he y 

an
T 

av
censoring is a crucial question. As observed in [12], if 
the survival curve is relatively flat in the neighborhood of 
50% survival, there can be great deal of variability in the 
estimated median. It would be more appropriate to cite a 
confidence interval for the median. We propose a simple 
rule of thumb. If the upper limit of a 95% confidence 
interval on median is not available, one may conclude 
that median is unstable and/or censoring is heavy. There- 
fore, the proposed tests should work efficiently when the 
Brookmeyer-Crowley upper limit of a 95% confidence 
interval on median is available. This also minimizes the 
number of bootstrap samples whose Kaplan-Meier curv- 
es do not reach 0.5 survival probability. In addition, as- 
ymptotic normality requires that ˆ2m  . 

3. Null and Alternative Hypotheses 

Let ET  and RT  denote the times to event for the ex- 
ental and perim reference treatment groups, respectively. 

We use ES  and RS  to denote the survival functions, 
and E  and R  t denote the medians of o ET  and RT , 
respectively. Depending on the application one may test 

1 1: vs. :0 E R L A E R LH H           (3.1) 

Here 1L   and large median values point t
positive effect

o large 
s. For example, the null and alternative 

hypotheses in (3.1) are appropriate if non-inferiority as 
measured by the overall survival of patients is desired. In 

some other applications, small median values may point 
to large positive effects, in which case, for proving non- 
inferiority, one may test 

2 : 2
0 vs. :E R U A E R UHH          (3.2) 

where 1U  . For example, if duration of anemia (or 
time to response) is the clinical endpoint, it is appropriate 
to consider the null and alternative hypotheses in (3.2). 
Here 1

AH  and 2
AH  indicate that the experimental ther- 

apy is t inferi to the reference therapy. The lower 
and upper bounds 

 no or 

L  and U  defining non-inferiority 
are called non-infer ity mar ns. The selection of non- 
inferiority margin 

ior gi

L  (or U ) depends upon a combi- 
nation of statistical reasoning and clinical judgment. For 
a discussion on the choice of a non-inferiority margin, 
reference is made to ICH-E10 document [1]. For exam- 
ple, testing 

1 2H0 0: 0.8 or : 1.25E R E RH        (3.3) 

is of considerable interest in clinical trials of generic 
drugs. Henceforth, we assume that two independent sam-  

ple    ,1 ,2 , ,1 ,2 ,, , , , , , ,E E E n R R R nT T T T T TΛ Λ  of possibly  
E R

-censored event-times are given. Wright e use T  to 
represent the data. The sample size En  and Rn are 
sufficiently large. The censoring proportio , in eac arm, 
is moderate. That is, the trial is designed to have long 
enough follow-up time so that more than one half of the 
subjects in both arms had the event. Let ˆ

 
n h 

ES  and ˆ
RS  

denote the product-limit survival estimates and Em  a  nd

Rm  denote the median time estimates for the peri- 
ntal and reference groups, respectively. The sample 

medians 

 ex
me

Em  and Rm  are independently asymptotically 
normally tributed ith means dis  w E  and R , and vari- 
ances 2

1  and 2
2 , respectively. As mentioned in Sec- 

tion 2, e assum that the bootstrap variances 2
1ˆ w e   and 

2
2̂  given by (2.3) are the de facto variances of Em  and 

Rm
is n

, respectively. The proportional hazards assumption 
ot required. However, we assume that the each treat- 

ment group has survival curve that is not relatively flat in 
the neighborhood of 50 percent survival. We also assume 
that each median estimate is at least two times larger than 
its standard error. Then the ratio E RW m m  follows 
the F-H distribution that is briefly  the next 
section. 

described in

4. Fieller-Hinkley Distribution 

1Let X  and 2X  be normally distributed random vari- 
ables with means i , variances  2 1,2i i   and corre- 
lation coefficient  . Let 1 2X . FielW X ler [18] ob- 
tains the probability density function  g w  of W. 
Hinkley [19] derives the cumulative distribu function tion 
 G w  of W . We have not shown  g w  and  G w   
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here d  case y hasue to lack of space. As a special , Hinkle  
shown that as 2 2 ,     that is, as  2 0 1P X   , 

     

 

2 1

1 2

1 22

2 2
1 21 2

,

1
2

G w G w
a w

w w
a w

 


  

 w  
  


 
  

 
   
 

       (4.1) 

where   denotes the standard normal distribution 
n. Ifunctio n what follows, we consider the case where 

1X  and 2X  are statistically independent, and therefore, 
 set 0we   . Note that the argument in   may be 

written a    s 2 1 2w a w   , where  1 2 
func G

 . The 
probability density tion corresponding to  , when 

0  , is 

 
 

 
 

 

2 2
2 1 2 2

3
1 21 2

w w
g w

a w

   


  



 

  
, 0w

a w

  
  

 
, 

where   denotes the standard normal density function. 
 

sy me
The stribution G  is unimodal but not necessarilydi
mmetric. It has a dian equal to 1 2  . The super- 

script   in G  refers to W  being sitive valued 
random As the ratio f median survival times is 
always positive, we suppress the superscript. 

Koti used the F-H distribution to derive non

 a po
 variabl

-inferiority 
te

e.  o

sts under analysis of variance setting [20]. Koti also 
used the F-H distribution to derive tests for null hypothe- 
sis of non-unity ratio of proportions [21]. In this paper, 
his test procedure is extended to survival data analysis. 
We think of the ratio E RW m m  as a point estimate 
of the ratio E R   an  to use the distribu- 
tion G of the  to make inference on 

d we intend
 ratio W E R  . As 

usual, w  denotes an observed value of W . We gard 
the var nces 2

1

 re
ia   and 2

2  as nuisance parameters. In 
what follows,  replac 2

1we e   and 2
2  by their boot- 

strap estimates 2
1̂  and 2

2̂ , respectively. 

5. Test for the Lower Inequality 

ull hypothesis In this section we consider testing the n
1
0H  against the alternative hypothesis 1

AH , which are 
ed in (3.1). Under the null hypothesis stat

1
0 : E R LH    , the distribution function of 

E RW m m , the iven by  ratio of sample medians, is g

   
 

 

1
0

1 2

1 22

2 2
1 2

,
ˆ ˆ

1

ˆ ˆ

R LG w H
a w

w
a w

 

 

w  
   

  

 
  
 

      (5.1) 

uitively, 1
0Int H  should be reje vor of 1

Acted in fa H  
for large obser values of W . We reject 1

0ved H  in fa r 
of 1

A

vo
H  if W w , where 

   
 

1
0

1 2

1
ˆ ˆ
R Lw

P W w H
a w

 


 
 

      
. 

We need to find a cutoff point w  that satisfies the 
equation 

   1 2 1ˆ ˆ ,R Lw a w z              (5.2) 

where az  is the 100a-th percentile of the standard nor- 
mal distribution. The cutoff point w  satisfying (5.2) 
defines the rejection region for a given value of R . 
Note that L  is the median of W  for all R  and e 
cutoff poin

th
t Lw    for 0.5   To cons ct a test 

that has a significance level l an or equal to 
. tru

ess th   for 
all R , we proceed as follows. Calculate  100 1   
perc t confidence intervals on en E  and R , where 

 0.01,0.05 . Let  1 1,L U  an  2 2,L U  denote d 
these confidence intervals on E  and R , resp

wi

 

ectively. 
These confidence intervals should be as de as possible. 
Let 

 1 1 2 2, : ,E R E RL U L U            (5.3) 

We describe   in (5.3) as a rectangular parameter  

sp ace. Let  1 , :E R E L R w       λ , and  

1
ND  denote the domain of the line 1 . Here 1λ  repre-λ  

sents the parameter space under the simple null hypothe- 
sis 1

0 : E R LH    . We assume that 1
ND  is non- 

empt

Consi

y. 

der    1 2
R R  where both  1  and  2 R R  are  

in 1
ND  and 2) for some w and  w That satisfy (5.  1  2 . 

   

is, 

 
  

    
  

1 1 2 2

11 2
1 2 1 2ˆ ˆ ˆ ˆ

R L R Lw w
z

a w a w


   

   


 
  , 

and    1 2,w w L . It means that 
           1 1 2

1 2 1 2ˆ ˆ ˆ ˆL L a w        . 

Now 

2w a w w

   1 2ˆ ˆLw a w    increases as w increase

plies that  1w w
 

s. 

This im  2 and 
      2

1 2ˆR Lw a  

       

1 1

1 1 1
1 2

ˆ

ˆ ˆ .R L

w

w a w



   



 
 

Therefore, 
    

  
    

  
2 1

R w 1 1

1 1
1 2 1 2ˆ ˆ ˆ ˆ

L R Lw

a w a w

  

   

   
     
   

  

, and 

   



 
  

    
  

2 1 1 1

1 1
1 2 1 2

1 1
ˆ ˆ ˆ ˆ

R L R Lw w

a w a w

   

   

    
     
   

  

   (5.4) 


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This is graphically illustrated in Figure 1. Two F-H 
0 8L .distribution functions with    are shown

ure 1. The  solid line presents G  with 
10.27

 in Fig- 
graph in  re

R    other on presents G  with and the e re
12.0R  . Here we have used 1ˆ 1.42  , and 

2ˆ 2.787  . Note that in the upper half portion of Fig- 

ure 1, the distribution function 

 

 10.2RG w    runs  

distribution function 

7

below the  12.0 hat is, R . T
for each 

G w
x-coordinate L , the y-coordinate for G  

with 12.0R   is lower than the 27one for 10.R 
der may note 

. 
This is what is claimed in (5.4

 

Figure 1. Two DFs of W both with a median of 0.8. 
 

Usually, in designing a clinical trial, one aims to have 
a power over 0.5. Note that the power, for example, 

). The rea
that  1.51 10.27 0.95RG    , and 

 1.51 12.0 0.95.G     That is, R

 11.51 0.05,RG c    and 1

 1.51 0.05R   . 
Let 

21 G c
1R% denote the smallest R  in 1

ND  and  

   1 ,H 1G w 0 1RG w  % m (5.4), it follows that  

 1
1 1 1w G

. Then fro

   defines t  critical region. That is, re- 
1
0

% he

ject H  if 1 veW w % . The significance le l  

 1
1 0G w H  %  is les1 s than or equal to   for all  

1R R  % . Therefore, the rule that rejects 1
0H  for 

1%  W w is a level   test. 
T off p

Square b  
he cut oint 1w%  can be determined as follows. 

oth sides of Equation (5.2) with R  replaced 
by 1R%  and get a quadratic equation: 

2
1a w 1 1 , w

2 2 2 2
1 1 2 1 1 1ˆ , 2 ,

0b w c  here 

R L Ra z b       % %  and 
2 2 2

1 1 1 1ˆ2
L Rc z      % . 

The roots of the  equation are   quadratic

   2
1 1 11 1 1 14 2b a c a . The root that is smaller 

than 

Rw b   %

L  defines the critical region of the test. Alterna- 
tiv for tabulating 

 and find 1w% . 

-V

h

 

ely, one may use the SAS PROBNORM 

1G

5.1. p alue and Power of the Test 

T e p-value for the test is 

 
1

1 2

1
ˆ ˆ
R C L

L
Ca w


 

    
  

w  %
         (5.5) 

where C E Rw m m  is the observed ratio. The power of 
osed test is the probability that ththe prop

sis 1
0

e null hypothe- 
H , will be rejected when the alternative hypothesis 

1
AH , is true. We define the power function  

 , 1L L A R   r a given alternative ,A L%  fo    as 

 
 

1 1

1 2 1

1 , .
ˆ ˆ
R A

L A E R

w

a w

 
   

 
 

   
  

% %

%
   (5.6) 

 L
in (5.6) exceeds 0.5 only if 1 Aw % . For a given a , it 

adily follows that 10.5 , ,re    L a R L a R     %  for 
all 1R R % . Therefore, the power L  may be called 
the minimum power. 

5.2. The Test Is Un

Note that 

biased 

 
 

 
 

 

1
1

1

1 1

1 2 1

1 ,
ˆ ˆ

.

R L

1 2

1 ,
ˆ ˆ L

R A
A L

L A

w
w

w

w

a w

 
a

 

 

 

 
 

 





 

 
  



   
  



% %
%

%

% %

%
 

That is, the type-I error probability is at most   and 
the power of the test is at least  . Thus, the test is un- 
biased. 

6.

hy

 Test for the Upper Inequality 

Next, we discuss testing the null pothesis 2
0H  against 

the alternative hypothesis 2
AH , which are stated in (3.2). 

The null hypothesis 2
0H  should be rejec

2
ted in favor of 

AH  for smaller observed values of the ratio  

E RW m m . As under 2
0 : E R UH    , w et e s

   
 

2
0

1 2ˆ ˆ
R Uw

G w H
a w




 


   
  

.     (6.1) 

e need to fi  w  thatThat is, w nd a cutoff point  satis- 
fies the equation 

   2 1 2ˆ ˆ ,R Uw a w z     %   

wh

      (6.2) 

ere 2R%  is the smallest R  in   and  

E U R    . Let 2w%  denote the solution of (6.2) that 
is less than U . It follows that  2

2G w H 0 %  for all 

2R R  % . 

p-Value and Power of the Test 

The p-value for the test is 
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 
 

2R C Uw 


 
    

%
,            (6.3) 

1 2ˆ ˆU
Ca w   

where C E Rw m m  is th
function     

e observed ratio. The power 

U U 2,A R%  at ,R A UA E      , 
is given by 

 
 

2 2

1 2 1

,
ˆ ˆ E Ra w

R A
U A

w 
   




%
      (6.4) 

Note that


 

  


% %

 the power, for example, U  in (6.4) ex- 
only if 2wceeds 0.5 A%  a given a. For  , it readily 

 ,U a Rfo 0.5 U allows that  2, R  %       for all  

2R R  . Th% erefore, U  in (6.4) may be called the 
mi

uivale e
s 

censored survival 
model, Efron has considered using bootstrap to estimate  

nimum power. The test is unbiased. 

7. Bootstrap Eq nt Confidenc  
Interval

In one sample case, for randomly right-

the sampling distribution of   ˆn S t S t 
 is the sample size [5

 , where  

n ]. He has demonstrated that the  

sampling distribution of    ˆn S t S t    can be esti- 

mated by the distribution of    ˆ ˆb t S t  
Ŝ

ethod(s) of boot
otstrap estimate o

b   has the sa
tr

n S , where  
b  denotes the bootstrap Kaplan-Meier estimate. See 

[5,22] for details on the m strapping. Let 
ˆ bm  denote the Efron’s bo f the median. 

Then Efron has shown that m̂ m me dis- 
ˆibution under F  as does m   under F [5]. But we 

know that m is asymptotically normally distributed with 
mean   and variance 2

m . Therefore, it is reasonable 
to say that the bootstrap median estimate ˆ bm  is asymp- 
totically normally distributed  mean equal to the 
sample median m  and variance equal to 2ˆm

 with
  [14]. We 

use this result to formulate a confidence interval based 
method for assessing non-inferiority of ET  compared to 

RT . 
Let ˆ b

Em  be the median estimate based on a bootstrap  

sample  ,1 ,2 ,, , ,
E

b b b
E E E nT T TΛ  taken with replacement 

from  ,1 ,2 ,, , ,E E E nT T TΛ , and ˆ b

E
Rm  den e the median ot

es

taken with repl

timate based on a bootstrap sample  ,2 ,, , ,b b b
R R nT T TΛ  ,1 RR

acement from  ,
R

R R R n

above ws that b

,1 ,2, ,T T Λ

llo  ˆ

,T . By the  

 argument, it fo Em  is asymptotically 
normally distributed with mean Em  and variance 2

1̂ , 
and ˆ b

Rm  is asymptotically normall
mean 

y distributed with 

Rm  and variance 2
2̂ . Note ˆ b that Em  and ˆ b

Rm  
are independent. Therefore, the ratio ˆ ˆb b b

E RW m m  has 
the distribution function 

    
1 22

2 2
1 2 1 2

1ˆ , .
ˆ ˆ ˆ ˆ

R Em w m w
G w a w

a w   
 

      
   

  (7.1) 

That is, we plug in the sample estim 2
1,R

B

 



ates of ,E    
and 2

2  in  G w  of (4.1) to get an asymptotic distri- 
bution of the bootstrap ratio bW . Note that the distribu- 
tion function  ˆ

BG w  is completely specified. 
Equivalence between the two treatments is often tested 

by consists o
tru

 the confidence interval approach, which f 
cons cting a  1 2100   percent confidence interval 
for the parameter of interest and comparing the con- 
structed confi nterval with the pre-specif
va

dence i ied equi- 
lence range [9]. In this paper, we use the distribution 
 ˆ

BG w  in (7.1) to obtain a  100 1 2  percent confi- 
dence interval tio for the ra E R   for equivalence 
testing. A  100 1 2  percent confidence interval for 
the ratio E R   is given by 

      1 1ˆ ˆ, 1B BG G    T .      (7.2) 

The interval in (7.2) may be ed in two ways.  

One may t te 

 obtain

abula  ˆ, Bw G  using SAS PROBNORM  

and locate th nfidence limits. Alterne co atively, one may 
write down the quadratic equations of the t
(5.2) and
tio

ype shown in 
 (6.2) and solve them. See section 8 for illustra- 

n. If the constructed confidence interval   T  falls 
within the equivalen its  ,L Uce lim   , then the two 
groups are considered equivalent. In order to demonstrate 
non-inferiority, this interval should lie entirely on the 
positive side of non-inferiority margin. That is, if the 
confidence interval in (7.2) excludes the non-inferiority 
margin, then non-inferiority is de ted. 

8. Sample Size Determination 

In the current setting, the standard error of sample me- 
dian is not explicitly expressed in terms of the number of 
events. Therefore, we assume exponential 

monstra

model for 
ume that sample size calculation. That is, we ass ET  and  

RT  have exponential distribution with means 1
E
  and  

1
R
 , respectively. Let ˆ

E  and ˆ
R  represent the maxi-

mum likelihood estimates of E  and R , respectively 

The median time estimates are given by 

 
ˆln 2E Em    

and ˆln 2R Rm   [13]. Suppose that  E Er n  and 
 R Rn  are the numbers of observed event-tim . For r es

sim  th  plicity, we assume at E Rr r r  . The standard 

errors of Em  and Rm  are give  by n  1
ˆˆ ln 2 E r    

and  2
ˆˆ ln 2 R   describ

sample s
g 

r , respectively. We e the  

ize determination for the test for the upper in- 
equality. That is, we consider testin

2 2
0 : vs. : .E R U A E R UH H       
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   1 2w r w r% %  fo8.1. Power Approach 

We assume that Rm  is given. That is, ˆ
R  is known. To 

be consistent with 2
0H , we set E U Rm m . Therefore, 

we have 1 2ˆ ˆU   . The null distribution of W is given 
by 

     1 22 2 2
U Uw      

(8.1) 

he G
it d p e

0G w H r w
    

We note that t distribution function  in (8.1) is a 
function of r  and oes not ex pend on licitly d R  
or R . We fi d cut-off point 2w%  for a level n  the   test  

either by solving    1 22
U Ur w z w     or by  

tabulating G  in (8.1  ). The power   at 1RE   , as 
a function of r , is gi n byve  

   1 221 1r r w w      
% %        (8.2) 

W  calculate the optimal number of events r  p r arm, 



e e
r of 0.8 fo est of size 0.0

  2w r% , wh  
which yields a powe 5 by it- r a t
eration. We start with 30r  . Find 2w % ere 

 2
2 0G w H % . Next, we calculate the power r  give  

in (8.2). If the power is less than 0.8, we increase 
repeat the procedure. We note n t

n 

r , and 
he non-inferi-  that whe

ority margin 1.25U  , the required number of events 
per arm is 250r  . Similarly, for 1.5U

 
  , the number 

of events required per arm is 77r  . F  testing or
1
0 : 0  ve.8E R H rsus 1 : 0  e needs .8A E RH  , 

 per arm to achieve a power of 0.8 at 
on

1  eve25r  nts
1E R   . 

8.2. Bootstrap Confidence Interval Approach 

In this setting, the distribution function of E RW m m  
is 

     1 2
2 2 2ˆ ˆ ˆ ˆ

B E R E Rw r w w         
. Ĝ

To find an optimal samp use ˆle size, we BG  to find a 
 100 1 2  percent confidence interval. We set 

   1 2
2 2 2ˆ ˆ ˆ ˆ

E R E Rr w w z       

and solve for  

2 2 2ˆ ˆ ˆ 0.r     

The roots   

 2 2 2 2ˆ ˆ ˆ: 2E E R Ew z r w r w z     R R

of this quadratic equation are given by

   2 4 2w r B B AC A   % , where 

ˆ ˆ, 2 ,2 2 2ˆ ˆ
E EA z r R EB r      and 2 2 2ˆ ˆ

R RC z r   . 

Let    2
1w r B B  % 4 2AC A , and 

   2
2 4 2w r B B AC A   % . 

r 2r zNote that . Then the inter- 

val     1 2,w r w r% %  is a  100 1 2  confidence in- 

terval. The endpoints of the  confidence in rval 
ar d in terms of r . Next, w ose to find 
r

 desired te
e expresse e prop
 , an op  rtimal r satisfying  2 1w r w d % %  where d 

is a pre-specified constant. Ideally, the choice of d should  

depend on the width of  1,L L
  or  U U

1,   . Note  

th ence 



  2 1w r dw rat the differ  % %  is written as  
2 4 C AB A d    osed form e. A cl xpression for r   

is not available. We note that 0A   for 2r z . The 
optimal number of events per arm r  is the smallest  

 2zr   such that 2 4 0B AC A d  The value 

of r

   .  
  is found by a simple computer search. We have 

provided values of r  in 1 and  when Tables  2 below
0.025   and 0.05  , respective we 

have selected the pa
ly. In doing so, 

irs  ,E R   for which non-infe - 
n mak nse. 

ri

o

o

ion se- 
o treatment groups is used. In 
above test procedure to clini- 

ority (or equivalence) investigatio es se

9. Stratified Analysis 

In m st phase 3 studies, stratified randomization is 
adopted. That is, subjects are grouped according to co- 
variate values such as age group and baseline perform- 
ance status prior to rand mization and subjects are then 
randomized within strata. 

Within each stratum, a separate randomizat
quence to allocate subjects t
this section, we extend the 
cal trials, which consist of K  strata. Consequently, it is 
necessary to add a second subscript, 1, 2, ,k K Λ , eve- 
rywhere, except that 1 2k k L    is assumed constant 
for all k . We now consider testing the null hypothesis 

1
0 :K Ek Rk LH     for all 1,2, ,k KΛ  against the 

alternative hypothesis 1 :AK Ek Rk LH     for all k , 
and Ek Rk L    for some k . If we choose the simple 
null hypothesis 

1
0 1 1 2 1:K E R E RH EK RK L        Λ , 

to be the one containin y statement, we have g the equalit

1 1 2 1

.

E R E R

K K

1 1EK RK L

   

Ek Rk  



   Λ
 

That is, it is po sible to restate the null and alternative 
hypotheses in te

  
s

rms of the sums of strata medians. Let  

1 21 1
,

K K

Ek Rk      . Then our objective is t est o t

1 1
0 1 2 1 2: vs. :K L AK LH H            (9.1) 

Consequently, we set 1 21 1
,

K K
X Ek Rkm X m   , 

2 2
1

K

1 Ekv  2 2K  and 2 1 Rkv   . Now 1X  is normally 

stributed with mean 

 

di 1  and variance 2v  and 1 2X  is  
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Table 1. Optimal numbers of events r* per arm for α = 0.025 
and d = 0.45. 

R  (median) 

E  0.01 0.02 0.025
)7

0.03 
)23.1(  

0.0
)17.33( )13.86()69.3(  )34.7(  27.(

4 0.05 

0.01 158      

0.02 58 243  

  92 158 243 

0.05     103 158 

 1   

0.025  103 158 225   

0.03   112 158 276  

0.04  

 

Tab ts α  
an 0.45

 (media  

le 2. Op
d d = 

timal num ers of evenb  r* per arm for  = 0.05
. 

R n)

E  0.
)6(  )3(  

0.
( (  (

0.
)13.(

01 
9.3

0.02 
4.7

025
)27.7

0.03 
)23.1

0.04 
)17.33

05 
86

0.01 1  11      

0.02  1  172 

0.025  73 111 158   

  65 111 172 

0.05     73 111 

11    

0.03   73 111 195  

0.04  

 
normally d n istributed with mea 2  and varian 2 . ce 2v
Now let 1 2XW X e ratio W e F-H is- 
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However, this power may be low in some cases. Then 
one may use Table 1 or Table 2 for sample size deter- 
mination. 
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tion  testing f at 

In Fi we have pro raphical
of or equivalence 0.05  . 

Figure 2 contains the density functions of W for non- 
inferiority margin 0.8,1.0,1.25  . Here we ha

1ˆ 1.42
ve used 

, and 2ˆ 2.787    in all three cases. Note that 

1 1.51w %  and 2 0.67w %  are the cutoff points and the 
area marked by (1) and (2) represent the level of signifi- 
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0H  and 2
0H , respectively. The 

total area represented by (1) + (2) + (3) + (4) is the power 
of

11

 the equivalence test given in (10.2). 

. Concluding Remarks 

We deal with the ratio E R   directly, and therefore,  
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Figure 2. Overview of the equivalence test. 
 
our approach is easy for clinicians to understand. Exist- 
ing test procedures for assessing non-inferiority and 
equivalence require hazard rates under the two treatm
arms to be proportional. Our test proposed in this paper is 
free of this requirement and therefore, has wider applica- 
bility. 

The power definitions in (5.6) and (6.4) may be con-
sidered as alternative to the power definitions in [20,21]. 

It ma zel test

ent 

 

y be recalled here that the Mantel-Haens  
[23] is often called an average partial association statistic. 
Here we have a parallel situation. Note that the null hy- 
pothesis 1

0KH  in (9.1) may be written as  
1
0 :K E R LH    , where 

1
,

K

E Ek K    and  

1

K

R Rk K   . Therefore, the procedure in Section 9 

tes

 

ts the null hypothesis on the ratio of averages of strata 
medians. 
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