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ABSTRACT

In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent
random variables which are not required to be identically distributed. We found the sufficient conditions of strong law
of large numbers for the difference of random variables which independent and identically distributed conditions are
regarded. In this study, we consider the limit as mxn — oo which is stronger than the limit as m,n — o when m, n

are natural numbers.
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1. Introduction and Main Results
Let (Xi )ieN

that (X;),_,,

(SLLN) if there exist sequences of real numbers (a, )

be a sequence of random variables. We say
satisfies the strong law of large numbers

neN

Sh—@ ,
and (b,)  such that ”b L2250 as N—ow.

n

where S, =) X; and the abbreviation a.s. stands for
i=1
almost surely.

To study the strong law of large numbers, there is a
simple question come in mind. When does the sequence
(X;),. satisfy the SLLN? Many conditions of the se-
quence (X;)._, have been found for this question. The
SLLN are investigated extensively in the literature espe-
cially to the case of a sequence of independent random
variables (see for examples in [1-3]). After concepts of
dependence was introduced, it is interesting to study the
SLLN with condition of dependence.

A sequence (X;),_, of random variables is said to be
pairwise positively dependent (pairwise PD) if for any
a,beR and i#]j,

P(X;>a,X; >b)>P(X; >a)P(X; >b)

and it is said to be pairwise negatively dependent (pair-
wise ND) if forany a,beR and i#j,

P(X;>a,X; >b)<P(X; >a)P(X; >h).
Theorem 1.1-1.5 are examples of SLLN for a sequence

of pairwise PD and pairwise ND random variables.
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Theorem 1.1. (Birkel, [4]) Let (X;)_, be a se-
quence of pairwise PD random variables with finite

variances. Assume
1) sup E(|Xi —E(Xi)|) <o,

ieN
) $En0S)
i=1 1
-E
Then S, n(sn) 25 50 as N — oo,

Theorem 1.2. (Azarnoosh, [5]) Let (X;),_, be a se-

quence of pairwise ND random variables with finite
variances. Assume

1) supE(|X]) <o,
ieN

0 as n— oo,

Theorem 1.3. (Nili Sani, Azarnoosh and Bozorgnia,
[6]) Let (an )neN be a positive and increasing sequence
such that a, >© as n— o

Let (X;)._, be a sequence of pairwise ND random

ieN
variables with finite variances such that

0 E(|X,—E(X))])

1) sup| ) ————F | <,
neN | ji=1 a,
0 X.

2) Zw<oo.
i=1 ai

0JS
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Then 0 as n— oo,

In this work, we study the SLLN for a 2-dimensional
array of pairwise ND random variables. We say that

(Xi’ J)i o satisfies the SLLN if there exist double se-

quences of real numbers (am")mn N and (bmn)mn N
s ne ’ ne

0 as

mn am,n as.

such that m,n — oo  where

m n
=> Z X ;-
=1 j=1

In 1998, Kim, Beak and Seo investigated SLLN for a
2-dimensional array of pairwise PD random variables
and it was generalized to a case of weighted sum of
2-dimensional array of pairwise PD random variables by
Kim, Baek and Han in one year later. The followings are
their results.

A double sequence (Xi, i )i o

is said to be pairwise

positively dependent (pairwise PD) if for any a,beR
and (i, ])=(kI),

P(Xi,j >a, X, >b)2 P(X|,j >a)P(Xk§, >b)

Theorem 1.4. (Kim, Beak and Seo, [7]) Let
(Xi’ J)ij \ be a 2-dimensional array of pairwise PD

random variables with finite variances. Assume
1) sup E(‘X (Xi,j)‘)<oo,

i,jeN

Cov(X; ;. Xy )
2 ijgljzl kllgllgixj (|><J) =

Sm’n_E(Sm’n) 2> 50 as mxn— .
mxn

Theorem 1.5. (Kim, Baek and Han, [8]) Let (ai‘j )i o

Then

be a 2-dimensional array of positive numbers and

n m a
:ZZaiﬁj such that bm’n

i=1 j=1 m,n

m,n — co.
Let <Xi’j)i,jeN

—0 and b,, > as

be a 2-dimensional array of pairwise

PD random variables with finite variances such that
1) sup E(‘X (Xi,j)‘)<oo,

i,jeN
a;a,,Cov(X; ;. X, )

2) Z Z — < 0.

2
i, joix izt | kL kxl<ix bi,j

Wm,n -E (Wm,n ) as.

Then 0 as mxn-—o where

m,n
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D M:!

Observe that, for a double indexed sequence of real

number (a , the convergence as mxn-— o
MmN /m,neN

implies the convergence as m,n — « . However, a dou-

(=)™ (m+n)
ble sequence (am,n )m‘neN where ., =T

shows us that the converse is not true in general.
Our goal is to obtain the SLLN for 2-dimensional ar-
ray of random variables in case of pairwise ND.

A double sequence (XI J) is said to be pairwise

i,jeN
negtively dependent (pairwise ND) if for any a,beR
and (i, j)=(k,I),

P(Xi;>a,X,, >b)<P(X;;>a)P(X,, >h).

The followings are SLLNs for a 2-dimensional array
of pairwise ND random variables which are all our re-
sults.

Theorem 1.6. Let (a,) be increas-

neN

and (b,)

ing sequences of positive numbers such that a,,b, >e
which a, > as m—>o and b, > as n—oo.

Let (Xi,j )i‘jeN

meN

be a 2-dimensional array of pairwise

ND random variables with finite variances. If there exist
real numbers p,q such that

such that

m,neN

then for any double sequence (Cm . )

P 9
>a?2 xb? forevery mneN,

Sm’n -E (van ) a.s.
C

m,n

The next theorem is the SLLN for the difference of
random variables which independent and identically dis-
tributed conditions are regarded.

Theorem 1.7. Let(Xi,j)ij N

Cp,

0 as mxn— oo.

and (Y,;) = be 2-

i,jeN
dimensional arrays of random variables on a probability
space (Q, F, P). If

iip{x £Y, ; }

then

mxn iz j=1

as Mxn — oo.

0JS
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Corollary 1.8 and Corollary 1.9 follow directly from
Theorem 1.6 by choosing ¢,,, =(a, +b, ) and
Cnn =@, xb, where a =3m and b =3n withp=q=
4, respectively.
Corollary 1.8. Let (a,) . and (b,)  be increas-
b, >e

ing sequences of positive numbers such that a_,b,
which a, > as m—o and b, >0 as n—ow.

Let <Xi’j)i,jeN

meN

be a 2-dimensional array of pairwise

ND random variables with finite variances. If there exist
p,qe N such that

o » Var( X
sritl.,

1=l 5 .5
a? xb?

then forany k> p+q,

Smsn -E (Sm~” ) as.

( b)k 0 as mxn— co.
am+ n

Corollary 1.9. Let (Xi’ i )i o be a 2-dimensional ar-

ray of pairwise ND random variables with finite vari-
ances. If

then
Sm” B E(Sm”) a.s
. B =50 as mxn— oo.
81(mxn)
2. Auxiliary Results

In this section, we present some materials which will be
used in obtaining the SLLN’s in the next section.

Proposition 2.1. (Moricz, [9]) Let (/1“) be a

i,jeN
double sequence of positive numbers such that for all
i,jeN,
|+1] /,iij_o i, j+1 ﬂ,l’jZO
A ~ A~ Aijn A 20,

i+1, j+1 i+1, ] i, j+1
and 4 ; —>co as max{i, j} —oo.
Let (ai j)_ . be a double sequence of real numbers.

1 i, je

Assume that

1) 227<w

i=1 j=1 /4 j

2) Zﬂ,

<o for every ieN and Z—<oo for
k=1 N

every jeN. Then
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max {m,n} — co.

The following proposition is a Borel-Cantelli lemma
for a sequence of double indexed events

Proposition 2.2. Let (Ei, i )i o be a double sequence

of events on a probability space (€, F,P).Then

iiP(E”)«D: P{E, jiof=0

=1

where {E, ji.o.f= ﬁ[”.x,k j

k=1

™

Proof. Let LeR be such that L=)

i=1j

P(E.)

First note that
Lk | |

P(Es)s T P(E,)<I3P(E)

i=1 j=1 i,j,ixj<k =1 j=1

where L«/E J denote the greatest integer smaller than or
equal Jk and hence

i=l  j=1 i,jixj<k
k
<£1£2IZI§P(ELJ.):L
Therefore lllm > P( ) L and
%0, jlixj<k
P{Ei,ji.o}—hmP( U E \J<|llm > P(E,)
i,j.ixjk U4, jlixjzk
im $5p(E)) 3 P(ES)|-0
i=1 j=1 i,j,ixj<k-1

This completes the proof. O

3. Proof of Main Results

Proof of Theorem 1.6

Let mneN anddefine f(m)=|Ina,| and
g(n)=|Inb, .

Clearly, f and g are increasing whose facts
f(m)<Ina, <f(m )+1 and g( ) <Inb, < g(n)+1
Wthh imply that '™ <a, <e'™" “and
e <p <edM

Let £>0 be given. By using the fact that
Cov(X; ;. X, )<0 for (i,j)=(k,1) ([10],p.313), we
have

m n m n
Var(zzx JSZZVar( )

i=1 j=1 i=1 j=1

From this fact and Chebyshev’s inequality, we have

0JS
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» « Var(S © o ] MmN
SCZZ C(z mn)gczzcz ZZVar(XIJ)
m=1n=1 mn m=1n=1 Cpy ; i=1 j=1
00 00 0 0 1
SCZZVar(XU)chz
i=l j=1 m=in=j “mn
2 CHCR
SCZZVar(XIJ)ZZ —
i=1 j=1 m=i n:Jaman
2 ce 1
scééwr(xi,j)Ege(pf(m)+qg(n)) 3.0
Foreach i,je N, let
A ={56Nzef(s)“2ai}
B, :{teN TR ij}
and | =minA and j:minBj. Since ieA and

i €B;, we have i <i and ]<|j.From this facts and
(3.1), we have

o0 0 0 0 1
£CZZVar(XiJ) > > e
i=1 j=1 m:f(l)n:g(J)e( 2 j
£szvar(xi,j) z pm z an
i=1 j=1 m=f |)e7 n:g(j)e7
£CZZVar(Xi,j) 7 ||~ | (3.2)
o e2 Ne 2
Since T €A and iij,wehave e <e~i and
e (M) &
Lo L
eo(0) b,

From this facts and (3.2) together with our assumption
2), we have

Sm,n -E (Sm,n )
C

m,n

m=1n=1

By Proposition 2.2 with

Em,n = {|Sm’n _CE(Smﬁn) 2 8}’

m,n
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we have P{Em’ni.o.} =0 and this hold for every &> 0.
By using the same idea with Theorem 4.2.2 ([11], p. 77),
we can prove that

Sm’” -E (Sm’n ) as.
C

m,n

Proof of Theorem 1.7

0 as mxn— oo. O

Let Qozﬁ U {Xi’j iYi,j} By Proposition 2.2,

k=11, j,ixj=k
we have

P(Q))=1-P(Q)=1-P({X;; #Y, }io)=1.
Forevery weQ, we will show that
&1
jz:;ixj
forevery ieN,

i 1

=%

™M

(Xi; (@)=Y, (@) <, (3.3)

(Xi; (@)=Y, ()< (3.4)

and forevery jeN,
&1
Y—(Xij (@)=Y (o)) <o 3.5)

T ix]

From (3.3), (3.4) and (3.5), we can apply Proposition

2.1 with 4 =ix]j that
1 m n
X- ) _Y . a.s. 0
mxniz:;jz:;( b "J)—)

as max{m,n} —»o. We here note that a, , —a as
max {m,n} —> oo implies a,, —>a as Mxn—>o0. Hence

1 i 4 a.s.
mxn ;;(Xi’j _Yi’j)—m

as Mxn— oo.
To prove (3.3), (3.4) and (3.5), let @we Q. Then
there exists k, € N such thatfor i, jeN,

ixj2k, =X, (0)=Y,, (o). (3.6)
Thus for each w e QB,(XLj (a))) and

i,jeN
<Y‘vj (a)))i,jeN
This implies that (3.3) holds.
For fixed ie N, we can find a large j, € N such
that (3.6) holds for all j> j, which means that there

are only finitely many different terms of (Xi, J. (a)))

are different only finitely many terms.

i,jeN
and (Yi)j (a)))i’jEN . So for fixed ieN,
=01
ZT(XLJ (@)=Y (a))) <o
j=1 I X J
0JS
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Similarly, for fixed jeN,
1

Zf(xi,j (a))—Yi,j (a))) < o0,
i1 1X]
Now (3.4) and (3.5) are now proved and this ends the
proof. O
Remark 3.1. In case of M fixed and n— o, by con-
sidering the limit as mxn — o, we also obtain the
corresponding results for a case of 1-dimensional pair-
wise ND random variables.

4. Example

Example 4.1 A box contains pq balls of p different col-
ors and q different sizes in each color. Pick 2 balls ran-
domly.

Let )Zi’j,i =1,2,---,p and j=1,2,---,qbe a random
variable indicating the presence of a ball of the i" color
and the " size such that

2 {l,if the i™ color and the j" size of ball is picked,

ij = .
0, otherwise.

For i,jeN, let X;; be a random variable defined
by

| X ifl<i<pandl<j<q,
b 0, otherwise.

Proof. By a direct calculation, we have X;;’s are
pairwise ND random variables, i.e. for i, j,k,I € R that
(i,j)#(k,1) and a,beR,

P(Xi;>a, X, >b)<P(X;;>a)P(X,, >h).

Note that
pa-1_ 2
E(X i |=—"—=—
(%) Pa)  pg
2
2 4
and Var(X;|=—-
( vJ) pq (pq)Z
Hence,
© Var(X,J) m n Var(X,J)
= lim
;; (ixj m,n—>e gé (|><J)
2 4 G |
=| — — < 00
[pq (qu]g%(ixjf

By applying Theorem 1.6, for any double sequence
(Cm»“)m .., such that ¢ >81(mxn)’ for every m

m,n =

Copyright © 2013 SciRes.

Sm,n -E (Sm,n ) as.
C

m,n

ne N, we have 0 as mxn— oo
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