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ABSTRACT 

In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent 
random variables which are not required to be identically distributed. We found the sufficient conditions of strong law 
of large numbers for the difference of random variables which independent and identically distributed conditions are 
regarded. In this study, we consider the limit as m n   which is stronger than the limit as  when m, n 
are natural numbers. 

,m n 
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1. Introduction and Main Results 

Let  be a sequence of random variables. We say  i i N
X



 Xthat  satisfies the strong law of large numbers i i N

(SLLN) if there exist sequences of real numbers  n n N
a


  

and  such that  n n N
b


a.s. 0n n

n

S a

b


  as . 

where  and the abbreviation a.s. stands for  

n 

1

n


n
i

S  iX

almost surely.  
To study the strong law of large numbers, there is a 

simple question come in mind. When does the sequence 

i N
 satisfy the SLLN? Many conditions of the se- 

quence 
i N

 have been found for this question. The 
SLLN are investigated extensively in the literature espe- 
cially to the case of a sequence of independent random 
variables (see for examples in [1-3]). After concepts of 
dependence was introduced, it is interesting to study the 
SLLN with condition of dependence. 

 iX


 iX


A sequence 
i N

 of random variables is said to be 
pairwise positively dependent (pairwise PD) if for any 

 and i j , 

 iX


,a b R

     ,i j i jP X a X b P X a P X b      

and it is said to be pairwise negatively dependent (pair- 
wise ND) if for any  and , ,a b R i j

     , .i j i jP X a X b P X a P X b      

Theorem 1.1-1.5 are examples of SLLN for a sequence 
of pairwise PD and pairwise ND random variables. 

Theorem 1.1. (Birkel, [4]) Let 
i N

 be a se- 
quence of pairwise PD random variables with finite 
variances. Assume 

 iX

1)   sup ,i i
i N

E X E X


    

2) 
 

2
1

Cov ,
.

n
i i

i

X S

i

   

Then 
  a.s. 0n nS E S

n


  as  .n 

Theorem 1.2. (Azarnoosh, [5]) Let i i N
 be a se- 

quence of pairwise ND random variables with finite 
variances. Assume 

 X

1)  sup ,i
i N

E X


   

2) 
 
2

1

Var
.

n
i

i

X

i

    

Then 
  a.s. 0n nS E S

n


  as  .n 

Theorem 1.3. (Nili Sani, Azarnoosh and Bozorgnia, 
[6]) Let  n n N

a
  be a positive and increasing sequence 

such that  as  na  .n 
Let  Xi i N

 be a sequence of pairwise ND random 
variables with finite variances such that 

1) 
  

1

sup ,
n i i

n N i n

E X E X
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Then 
  a.s. 0n n

n

S E S

a


  as  .n 

In this work, we study the SLLN for a 2-dimensional 
array of pairwise ND random variables. We say that  

 , ,i j i j N
X


satisfies the SLLN if there exist double se-  

quences of real numbers    and , ,m n m n N
a

  , ,m n m n N
b

  

such that , , a.s.

,

0m n m n

m n

S a

b


  as  where 

  

,m n 

, ,
1 1

.
m n

m n i j
i j

S X
 

 
In 1998, Kim, Beak and Seo investigated SLLN for a 

2-dimensional array of pairwise PD random variables 
and it was generalized to a case of weighted sum of 
2-dimensional array of pairwise PD random variables by 
Kim, Baek and Han in one year later. The followings are 
their results. 

A double sequence  , ,i j i j N
X


 is said to be pairwise  

positively dependent (pairwise PD) if for any ,a b R  
and     , ,i j k l ,

     , , , ,,i j k l i j k lP X a X b P X a P X b      

Theorem 1.4. (Kim, Beak and Seo, [7]) Let  

 , ,i j i j N
X


 be a 2-dimensional array of pairwise PD 

random variables with finite variances. Assume 

1)   , ,
,
sup ,i j i j
i j N

E X E X
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2
, , 1 , ,
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 as  .m n 

Theorem 1.5. (Kim, Baek and Han, [8]) Let  , ,i j i j N
a

  

be a 2-dimensional array of positive numbers and  

 such that ,
1 1

n m

m n i j
i j

b
 

  ,a ,

,

0m n

m n

a

b
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,m nb 

, .m n 

Let  be a 2-dimensional array of pairwise 

PD random variables with finite variances such that 
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Then 
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 double indexed sequence of real 
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1 1

.
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Observe that, for a

number  , ,m n m n N
a


,

 , , a.s.

,

0
m n m n

m n

W E W

b




m n   the convergence as 

im

nce 

plies the convergence as ,m n  . However, a dou- 

ble seque  a , ,m n m n N
 where 

   
,m n

1
m n

a
m n





 

Our goal is t he SLLN - 

A double sequence 

m n
 

shows us that the conv
o obtai

ray of random variab

erse is not true in general. 
n t  for 2-dimensional ar

les in case of pairwise ND. 

 X is said to be p, ,i j i j N  airwise 

negtively dependent (pairwise ND) if for any 

 

,a b R  
and    , , ,i j k l  

    , , , , , .i j k l i j k lP X a X b P X a P X    

The 

b  

followings are SL
of pairwise ND ran
sults. 

LNs for a 2-dimensional array 
dom variables which are all ou - r re

Theorem 1.6. Let  m m N
a


 and  n n N

b
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ND ran nite va . If th st
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2 2
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The next theorem is the SLLN for the difference of 
random variables which independent and identically dis- 
tributed conditions are regarded. 

 m

Theorem 1.7. Let  , ,i j i j N
X


 and  , ,i j i j N

Y
  be 2-  

dimensional arrays of random variables on a probability 
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then 

ace (Ω, F, P). If 
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1
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Corollary 1.8 and Corollary 1.9 follow directly from 
Theorem 1.6 by choosing nd  

b where  with p = q = 

ing sequences of positive nu
 an

a 2-dim l array

 such 

 ,

k

m n m nc a b   
3a m and 3nb n

a

,m n

4, r . 
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Corollary 1.9. Let  , ,i j i j N
X


 be a 2-dimensional ar-  

ray of pairwise ND random va s with finite vari- 
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2. Auxiliary Results 

In this section, we present some materials which will be 
used in obtaining the SLLN’s in the next section. 

icz, [9]) Let 

 

Proposition 2.1. (Mór  , ,i j i j N



 be a  

and 

double sequence of positive numbers such that for all 
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This completes the proof. □ 

3. Proof of Main Results 

Proof of Theorem 1.6  
Let ,m n N  and define   ln mf m a     and  
  ln .ng n b     
Clearly, f and g are increasing whose facts  
   ln 1mf m a f m    and    ln 1ng n b g n    

  1f me   and  which imply that  f me  
g g n

ma
   1n

ne b e  . 
Let 0   be given. By using the fact that  
 , ,ov , 0i j k lX XC   for    , ,i j k l  ([10], p. 313), we 

From this fact and Chebyshev’s ineq

have 

 Va ar .
m n

, ,r V
m n

i j i jX X

    

1 1 1 1i j i j    

uality, we have 
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Remark 3.1. In case of m fixed and by con- 
sidering the limit as we the 
corresponding results for a case of 1-dime nal pair- 
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4. Example 

Example 4.1 A box contains pq balls of p different col- 
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,n   
 also obtain ,m n   
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D random variables. 
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By applying Theorem 1.6, for any double sequence

that n  for ever

n N  as .m n, we have     
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