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ABSTRACT

This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event
may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the
non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times
follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability
weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are de-
rived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results
show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone

marrow transplant data in [1].
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1. Introduction

Quantile regression analysis has received increasing at-
tentions in the recent literature of survival analysis.
Compared with conventional regression models such as
the proportional hazards (PH) model or the accelerated
failure time (AFT) model, quantile regression models
provide direct assessment of the covariate effect on dif-
ferent quantiles of the failure time variable. This model
also allows covariates to affect both location and shape
of the distribution. Let T be the failure T‘[ime of interest,
Z be a pxl vector and Zz(l,ZT . Consider the
following linear quantile regression model on h(T),
where A(-) is a known monotonic function, such that

& (h(1)2)=8(7)Z, (1)

where O0<y<l and &(Y|Z) is the (100xy) th
quantile of Y conditional on Z. Note that when we set
e, =h(T)- B, (¥)Z , model (1) is equivalent to
Pr(e,<0|Z)=y. Many papers for estimating f,(7)
without specifying the distribution of T |Z or ¢, have
appeared in the literature. [2-5] considered quantile re-
gression analysis under a fixed censoring mechanism in
which all the censoring times are observed. Independent
right censorship has been assumed by many papers in-
cluding [6-11].

In this paper, we consider semi-competing risks data
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[12] in which the failure time of a non-terminal event 7 is
subject to dependent censoring by a terminal event time
D but not vice versa. Consider an example of bone mar-
row transplantation for leukemia patients described in [1]
such that 7 is the time to leukemia relapse and D is the
time to death. One important risk factor is the disease
classification (i.e. ALL, AML low-risk, and AML high-
risk) which was determined based on patient’s status at
the time of transplantation. Here we assume that 7, the
time to a non-terminal event, follows model (1). Note
that [13,14] also considered quantile regression analysis
for competing risks data and left-truncated semi-com-
peting risks data respectively. They defined the quantiles
based on the crude quantity, namely the cumulative inci-
dence function Pr(7<¢,7<D). In contrast, the pro-
posed regression model (1) is defined based on the net
quantity Pr(T < t) which is not identifiable without
extra assumption on the dependence structure. There has
been some controversy over which quantity should be
used in presence of dependent competing risks. We be-
lieve that both quantities are important and not mutually
exclusive as they provide information on different as-
pects of the data. Here p,(y) measures the covariate
effect on T after separating the potential influence from
D. Such analysis is also useful in practical applications.
For example, a covariate may prolong D so that increase
Pr(7<#,T<D) but have no direct effect on the non-
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terminal event. The dependence between 7 and D com-
plicates the estimation of B,(y). We will adopt a
semi-parametric copula assumption to model their joint
distribution and apply the technique of inverse probabil-
ity weighting (IPW) to correct the bias due to dependent
censoring in the estimation procedure. The association
parameter in the copula model will also be estimated
using existing methods.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the data structure and model as-
sumptions. The proposed methodology for parameter
estimation and model checking is presented in Section 3.
The proofs of the asymptotic properties are given in the
Appendix. Section 4 contains simulation results. In Sec-
tion 5, we apply the proposed methods to analyze the
bone marrow transplant data in [1] and in Section 6, we
give some concluding remarks.

2. Data and Model Assumptions

Recall that 7 and D denote the time to a non-terminal
event and the time to a terminal event respectively such
that T is subject to censoring by D but not vice versa. In
presence of additional external censoring due to drop-out
or the end-of-study effect, one observes (X,Y,5,,6,)

such that X =TADAC, Y=DAC, §,=1(T<DAC),
8, =1(D<C), where A is the minimum operator and
I(-) is the indicator function. The covariate vectors can

~ ~ T
be denoted as Z(px1) and Z =(1,ZT) . The sample
Contains {(Xi,X,5X’_,51,I_,Zi)(i:1,~--,n)} which are ran-

dom replications of (X,Y,5,,5,,Z). We will assume
that (7,D) and C are independent given Z. The covari-
ate effect on T is specified by model (1) and the major
objective is to estimate g, (7/) based on semi-compet-
ing risks data.

To handle dependent censoring, we have to make extra
assumptions about the dependence structure between T
and D in the upper wedge. According to [15] who ex-
tended Sklar’s theorem to the regression setting, we con-
sider the following copula model

Pr(T>t,D>d|Z=z)= Coo) {ST‘Z (£):8y. (d)}, 2)

where 0<r<d<w,S, (¢) and S, (d) are the mar-
ginal survival functions of 7 and D, given Z =z, and
C, () is a parametric copula function defined on the
unit square. The association parameter « in (2) is
related to Kendall’s tau defined by

11
z’z4_”Ca (u,v)C, (du,dv)-1.
00
In particular, we will assume (T,D)|Z in the upper

wedge follows a popular subclass of copula models,
namely Archimedean copula (AC), in which the copula
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function can be further expressed as
C,(u,v)=¢,"{4,(u)+¢,(v)},0<u,v<1,  (3)

where ¢, is a non-increasing convex function defined
on (0,1] with ¢,(1)=0. Examples of Archimedean
copula include Clayton’s copula with

6, (5)=(s" 1)
and
C, ()= (e +ve 1)
and Frank’s copula with
4, (s)=log{l-a}-log{l-a'}

and

C,(u,v)= loga{1+(a“ —1)(ch —1)/(0:—1)} .

3. The Proposed Inference Methods

Our major objective is to develop an inference method
for estimation S, (y) but, in the mean time, employ
existing methods for estimating « based on semi-
competing risks data such as those proposed by [16] and
[17].

3.1. Estimation of g(y) for Discrete
Covariates

In absence of censoring, one can estimate f, (7) by
solving

n'I/Z[Z;:Zi(I{h(T)i <B'(r)Z}-7)=0.

Since T, is subject to censoring by D, AC,, it follows
that

:E[I{h(T,)sﬂoT(y)Zi}‘ZiJ =y,
where the reciprocal of the weight function is given by
H,(t)=Pr(6, =1|T=1,2)
=Pr(DAC>1|T=1,Z)
=Pr(C>1|Z)xPr(D>1|T=1,Z)
=Gy ()% Spr4 (1).

The above derivations yield the following estimating
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function for g, ()
)<B"(7)Z,}5,,
H,(

nl/zznlz{l{h(X' X) ‘ —yJ:O_

This is the so called inverse probability weighting tech-
nique for bias correction. Since H, (X;) needs to be
estimated, it is natural to modify the estimating equa-
tion as

2

where the estimated components in the weight can be
denoted as

x;r(Di >X|T=X,.Z =z).

Now we discuss estimation of the weight components.
We will first address the situation that Z takes discrete
values, and then briefly discuss possible modification for
continuous covariates. Since C is independent of 7" and
D given Z, Pr(C >x|Z :z) can be estimated by the

Sr.(x)= 3, {ZII(X <x,8

1.2, = 2)x{ g0 [ S0 (X) ] [ S0,

Kaplan-Meier estimator based on data

{(K1=8, )i =1m)} or {(X,,1-6,8, )(i=1,-n)]
with Z, =z. We will utilize some analytic properties of
the chosen AC model to derive an explicit expression of
Pr(D>x|T =x,Z,). Denote S, _(x)=Pr(T>xZ=z),
Sp. (x) = Pr(D > x|Z = z) and

Sy (x)=Pr(W =T AD>x|Z =z). It follows that

S (x):Pr(D>x|T=x,Z:z)

DTz

Frio (572 ()

¢(;(z) (SW,z (x)) '

We suggest to estimate SDT’z(x) by applying the es-
timators in [17] for quantities in the right-hand side of
the above expression. Specifically S, _(x) is the Kap-
lan-Meier estimator of Pr(T AD> x|Z z) based on

{(Xi»5u/,.)( n )},where 8, =1(T,AD,<C,)),

S, .(x) is the copula-graphic estimator

&
—
2
~—
L1
fp—
-

where the estimator & (z) is the root of the following estimating equation,

ftz(s,t)zPr(T>s,D>t|Z=z)

=zn:I(Xi >x,Y,>y,Z =z

i=1

where n_ = iI(ZI.

J=1

=z). Then

U,(b.7)=35 | hx)

M- bTZ_

X;
i=l
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a,(x) H (X,|

$ _ ¢;(z)(§T’Z(x_)).
%) (gw,z (x))

This estimator is then used in estimating Equation (4).
The Equation (4) may not be continuous so that an
exact solution may not exist. Here we define ﬁ (7/) as a
generalized solution as in [13,18]. By the monotonic
property of (4), the set of generalized solutions is convex.
Using the arguments in [13], the solution of (4) can be
reformulated as the minimizer of the following function,

®)

‘M »"> (2Z,7),

k=1

I=1 z[
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where M is a large enough positive value to bound

n —7Z.0 n
BT Nt and (7Y (22 from above.
; HZ] (X/) ;( ky)

We suggest using a re-sampling approach for variance
estimation since the analytic formula for the variance of
B(7) is complicated to calculate. Based on the non-
parametric bootstrap approach, we can sample replica-
tions (X,,’, Y.6,.,5, )(izl,---,n) from the original data.
Given a bootstrap sample, we can compute ﬁ"( }/). Re-
peating the re-sampling procedure B times, we obtain

{ﬁ; (7):b:1,-~~,B} and the variance of f(y) can be
estimated by

Il
>

struct the (1-a) confidence interval for B(y) as
ﬁ(y)iVﬂlﬁ)zm/z, where z,_,, =@ (1-/2),and ®(-)

is the cumulative distribution function of a standard
normal random variable. The bootstrap percentile method
suggests another way of constructing a (1-«) confi-
dence interval of g(y) with the formula

Lﬁ{Bxa/Z) (y)’ﬁ(Bx(l—a/z)) (}’)J 5 where ﬁ(’b) (}/)’ b= 1,---,B
are the order statistics of /;’; (y) for b=1,---,B.

3.2. Asymptotic Properties for Discrete
Covariates

We establish the uniform consistency and weak conver-
gence of the proposed estimator f(y) for ye[y,,7,],
a region that S, (y) is identifiable. We first state the
regularity conditions.

(C1) Denote the set of possible covariate Z values as
Z which is a compact set in R”"'. The probability
density function f,(z) for covariate Z is uniformly
bounded above and below on Z .

(C2) There exists a compact set .4 in the parameter
space for the copula parameter o such that all true
values of &(z) are interior points of A forall zeZ.

(C3) There exists v>0 such that Pr(C>v)=0,
Pr(C=v)>0, inf.s5,,(v)AS,.(v)>0 and
sup, S, (Vv)vS,, (v)<l.

cH1 /j’o(y) is Lipschitz continuous for ye[yL,yU];

2) The density f; (7)= —%ST’Z (¢) is bounded above

uniformly for ¢e O,V] and z e Z; 3) The copula gen-
erator function ¢,(u) has continuous derivatives ¢, (u),

b (u). 4 (u). ¢a(u)=%¢a(u) and ¢ (u) which

do not equal 0 forall e A and ue(0,1].
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(C5) inf, 5, eigmin A(b)=c,, for some p, >0
and ¢, >0, where A(b)=E[Z7?ZZ {h-l (bTZ)}}

Blp)={p R sinf, o= Bo ()< o

and u® =uu" for a vector u.

Condition C1 assumes the boundedness of covariates
and 1is satisfied for finite discrete covariates. This as-
sumption is only used to derive the asymptotic properties

of LSA’D‘T’Z for proving Theorem 1. Condition C2 assumes

that the true value of o is an interior point in the pa-
rameter space which is a common regularity condition.
Condition C3 is assumed to simplify theoretical argu-
ments similar to condition C1 in [13], and generally v
is the study end time in practical applications. Conditions
C4 1) and 2) assume the smoothness of coefficient proc-
esses, and the uniform boundedness on the density of 7,
which are standard for quantile regression methods.
Condition C4 3) imposes the smoothness requirement on
the copula generator function similar to the regularity
conditions in [17,19]. Condition C5 is similar to condi-
tion C4 in [13] which ensures the identifiability of
B, () and is needed for proving the consistency of
B(r).

Therefore with finite Z , we prove the following
result.

Theorem 1 If conditions C1-C5 hold, then

B(r)- (r)|——0,

lim, SUD oy 0]

and n”? { B(7)-B,( }/)} converges weakly to a mean-
zero Gaussian process.
The detailed proofs are presented in the Appendix.

3.3. Model Checking and Model Diagnosis

Motivated by the work of [20-22] in which complete data
are considered, we define the residual quantities as

e(r)=1[h(X,)< B 25, [H, (X,)-¥

for i=1,---,n and consider

L) =" Ea(Z)e ()

where ¢(-) is a known bounded weight function. Simi-
lar to the arguments in [13,23], ¢, (y) converges weakly
to a zero-mean Gaussian process if model (1) is specified
correctly and the covariate takes discrete values. There-
fore we propose the following test statistic

A >
Ge

g 4(Z)e(7)
7:1 =n 1/22 i)
i=1
where &, is an estimator of the standard deviation of
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¢,(7) which can be obtained by applying the bootstrap
approach mentioned earlier. Thus, we have that 7, con-
verges to the standard normal random variable asymp-
totically as the model is correct. On the other hand, when
the model is mis-specified, 7, will deviate from zero.
Accordingly we can reject the model assumption if
«2» Where Z,, is the quantile of N(0,1) and
x is the level of significance. If there are K candidate
models under consideration, we compute the absolute
value of T, for each model for £=1,---,K and choose
the one with the smallest value.

3.4. Estimation for Continuous Covariates

We briefly discuss how to extend our estimation method
for continuous covariates. One can apply a smoothing
approach to estimate the probability functions condi-
tional on z. Following [24], without loss of generality,
assume that Ze[0,1] and Z <Z,<--<Z, are or-
dered. Let

where Z,=0, h,— 0 is the bandwidth and K is the
kernel. Then

Sy

where {(W(l.),ém W, (z h ))( :1,---,n)} are the re-

arrangement {(VK,é‘m,wni(z,hn))( :1,---,;1)} sorted ac-
cording to W;, where W, =T, AD, and
8y, =1(T; AD,<C,), and S,.(x) is the copula-graphic

estimator in [24]

$r.(x) =i {—lZn;I(XI. <x,6, = 1){%(1) (S0 (X0) || S (27) = (2., )J}} (6)

and 0?(2) solves estimating equation

z</

Special techniques are needed to derive the asymptotic
properties for the case of continuous covariates. For ex-
ample properties of the smoothed versions of S iz and
&(z) are not fully available yet. The #"* convergence
rate for the normality proof may not be directly extended
since the smooth version of S, b, May not be n"?
asymptotic normal. However the estimator for the quan-
tile regression parameter may still be »n'> asymptotic
normal even when some component converges at a slow-
er rate.

4. Simulation Studies

We conduct simulation studies to examine the finite-
sample performance of the proposed methods with R
software. Here we consider two cases. For the first one,
we consider the model,

log(T)= A" (r)+ B (1) Z +e,. ™

where Z ~ Ber(O.S% and (ﬂél)(;/),ﬂéz) (y)):(—l,—l) .
We generate (ey,D which follow the Clayton copula
and Frank copula with €, marginally following
U(-0.57,0.5-0.5y) so that Pr(sy < O) =y, and D mar-
ginally following exp(2). For the second case, we con-
sider

Copyright © 2013 SciRes.

z- ZJK(Z Z] (%,.5,)1(T, <D, <C,) 1 ((x,-X,)(¥,-7,)>0)-

log(T)=b,+b,(1+Z)e, 3)

where Z ~Ber(0.5), (b),5,)=(-1.5,0.5) and (e,D)
generated from the Clayton copula and Frank copula
with € following U(0,0.5) and D ~exp(2). In this

case, (ﬂél) (7) A (}/)) =(b, +0.5b,7,0.5b,7). Three lev-

els of association z = 0.3, 0.5, 0.7 are considered. The
censoring variable C follows a uniform distribution on
[0,12].

We evaluate the performances for y = 0.1, 0.3, 0.5 and
the sample size » = 100 based on 400 simulation runs. To
obtain the standard error of the proposed estimator, we
use the bootstrap method with B = 50. Based on the set-
tings, we also present a naive estimator of g, (), which
is constructed under the wrong assumption that 7 is in-
dependently censored by DA C. That is, we estimate
i (7/) by solving the estimating Equation (4) with

H, (Xl.):PAr(D/\C>Xl.|Z:zi)
Zn:I(Dj/\Cj>XI.,Zj=Zi)
j=1

Z}I(Zj:z,.)
=

Tables 1-4 report the average bias of the proposed
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Table 1. Finite-sample results for estimating the quantile regression parameters under model (7) with Clayton copula.

T y Method ﬁm (7) il )
Bias EmpSd MSE CP Bias EmpSd MSE CP
ol Proposed 0.0059 0.0263 0.0007 0.975 0.0011 0.0369 0.0013 0.980
Naive 0.0129 0.0284 0.0009 0.975 —0.0019 0.0380 0.0014 0.975
Proposed 0.0024 0.0383 0.0014 0.940 —0.0001 0.0498 0.0024 0.945
03 03 Naive 0.0183 0.0379 0.0017 0.947 —0.0115 0.0487 0.0025 0.942
Proposed 0.0001 0.0380 0.0014 0.935 0.0024 0.0546 0.0029 0.922
03 Naive 0.0163 0.0386 0.0017 0.915 —0.0078 0.0554 0.0031 0.930
ol Proposed 0.0074 0.0300 0.0009 0.955 —0.0007 0.0422 0.0017 0.962
Naive 0.0240 0.0318 0.0015 0.891 —0.0124 0.0404 0.0017 0.932
Proposed 0.0064 0.0391 0.0015 0.925 —0.0024 0.0500 0.0025 0.962
03 03 Naive 0.0369 0.0384 0.0028 0.817 —0.0232 0.0511 0.0031 0.922
05 Proposed —0.0001 0.0381 0.0014 0912 0.0025 0.0497 0.0024 0.957
Naive 0.0259 0.0357 0.0019 0.867 —0.0139 0.0495 0.0026 0.942
ol Proposed 0.0087 0.0323 0.0011 0.945 —0.0008 0.0440 0.0019 0.967
Naive 0.0420 0.0335 0.0028 0.802 —0.0260 0.0432 0.0025 0.920
Proposed 0.0073 0.0371 0.0014 0.925 0.0004 0.0519 0.0026 0.927
07 03 Naive 0.0475 0.0358 0.0035 0.707 —0.0254 0.0528 0.0034 0.902
Proposed 0.0065 0.0378 0.0014 0.937 —0.0029 0.0521 0.0027 0.945
03 Naive 0.0314 0.0344 0.0021 0.845 —0.0159 0.0477 0.0025 0.942

The results are based on 400 simulation runs each with a sample size 100.

Table 2. Finite-sample results for estimating the quantile regression parameters under model (8) with Clayton copula.

T y Method ﬁm (7) ﬂm (7)
Bias EmpSd MSE CP Bias EmpSd MSE CP
Proposed  —0.0025 0.0330 0.0011 0.922 ~0.0094 0.1261 0.0160 0.957
o1 Naive 0.0032 0.0270 0.0007 0.957 -0.0076 0.1252 0.0157 0.965
Proposed  0.0002 0.0194 0.0003 0.942 0.0005 0.0415 0.0017 0.932
03 03 Naive 0.0071 0.0210 0.0005 0.927 0.0042 0.0584 0.0034 0.940
os Proposed  0.0004 0.0201 0.0004 0.920 0.0001 0.0442 0.0019 0.942
Naive 0.0058 0.0199 0.0004 0.877 0.0070 0.0444 0.0020 0.915
Proposed  —0.0015 0.0326 0.0010 0.925 -0.0133 0.1291 0.0168 0.960
o1 Naive 0.0030 0.0288 0.0008 0.952 0.0011 0.1060 0.0112 0.977
Proposed  0.0028 0.0196 0.0003 0.912 ~0.0007 0.0425 0.0018 0913
03 03 Naive 0.0129 0.0189 0.0005 0.880 0.0098 0.0437 0.0020 0.915
os Proposed  0.0010 0.0199 0.0004 0.917 0.0001 0.0418 0.0017 0.935
Naive 0.0098 0.0183 0.0004 0.891 0.0104 0.0387 0.0016 0.935
ol Proposed  —0.0011 0.0331 0.0011 0.927 ~0.0087 0.1293 0.0167 0.957
Naive 0.0086 0.0264 0.0007 0.952 -0.0103 0.1655 0.0275 0.942
Proposed  0.0022 0.0166 0.0002 0.942 0.0032 0.0383 0.0014 0.932
07 03 Naive 0.0166 0.0178 0.0005 0.877 0.0169 0.0413 0.0019 0.912
0s Proposed  0.0022 0.0180 0.0003 0.917 0.0007 0.0367 0.0013 0.957
Naive 0.0122 0.0174 0.0004 0.867 0.0108 0.0366 0.0014 0.932

The results are based on 400 simulation runs each with a sample size 100.

Copyright © 2013 SciRes. 0oJS
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Table 3. Finite-sample results for estimating the quantile regression parameters under model (7) with Frank copula.

T y Method Ié(l) (}/) 7 (7)
Bias EmpSd MSE CP Bias EmpSd MSE Cp

Proposed 0.0077 0.0316 0.0010 0.937 0.0021 0.0428 0.0018 0.947

o1 Naive 0.0230 0.0314 0.0015 0.887 —0.0104 0.0411 0.0017 0.942

Proposed 0.0045 0.0366 0.0013 0.945 0.0003 0.0517 0.0026 0.955

03 03 Naive 0.0272 0.0376 0.0021 0.892 —0.0155 0.0500 0.0027 0.930
Proposed 0.0001 0.0380 0.0014 0.957 —0.0005 0.0519 0.0027 0.947

03 Naive 0.0203 0.0361 0.0017 0.932 —0.0127 0.0501 0.0026 0.930

Proposed 0.0109 0.0324 0.0011 0.932 —0.0014 0.0438 0.0019 0.935

o1 Naive 0.0399 0.0325 0.0026 0.770 —0.0213 0.0443 0.0024 0.925

Proposed 0.0073 0.0388 0.0015 0.937 —0.0022 0.0524 0.0027 0.942

03 03 Naive 0.0429 0.0360 0.0031 0.790 —0.0233 0.0507 0.0031 0.930
Proposed 0.0050 0.0366 0.0013 0.947 —0.0033 0.0515 0.0026 0.962

03 Naive 0.0296 0.0343 0.0020 0.852 —-0.0171 0.0484 0.0026 0.952

Proposed 0.0261 0.0309 0.0016 0.885 —0.0130 0.0426 0.0019 0.937

o1 Naive 0.0586 0.0325 0.0044 0.572 —0.0311 0.0443 0.0029 0.907

Proposed 0.0331 0.0323 0.0021 0.867 —0.0236 0.0452 0.0026 0.915

07 03 Naive 0.0575 0.0329 0.0043 0.582 —0.0362 0.0449 0.0033 0.862
Proposed 0.0210 0.0361 0.0017 0.902 —0.0158 0.0533 0.0030 0.947

03 Naive 0.0312 0.0341 0.0021 0.830 —0.0195 0.0512 0.0030 0.955

The results are based on 400 simulation runs each with a sample size 100.

Table 4. Finite-sample results for estimating the quantile regression parameters under model (8) with Frank copula.

T y Method 7 ¥ il
Bias EmpSd MSE CP Bias EmpSd MSE Cp

Proposed —0.0049 0.0331 0.0011 0.937 —0.0114 0.1031 0.0107 0.977

01 Naive 0.0018 0.0288 0.0008 0.922 0.0028 0.1013 0.0102 0.987

Proposed 0.0022 0.0179 0.0003 0.947 —0.0001 0.0400 0.0016 0.937

03 03 Naive 0.0092 0.0196 0.0004 0.942 0.0082 0.0401 0.0016 0.955
Proposed 0.0016 0.0187 0.0003 0.940 0.0012 0.0417 0.0017 0.950

03 Naive 0.0084 0.0183 0.0004 0.920 0.0117 0.0396 0.0017 0.937

Proposed 0.0001 0.0313 0.0009 0.930 —0.0126 0.1317 0.0175 0.980

01 Naive 0.0082 0.0316 0.0010 0.927 —0.0076 0.1440 0.0208 0.977

Proposed 0.0041 0.0181 0.0003 0.950 0.0036 0.0394 0.0015 0.945

03 03 Naive 0.0159 0.0178 0.0005 0.835 0.0167 0.0390 0.0018 0.927
Proposed 0.0029 0.0167 0.0002 0.960 0.0024 0.0397 0.0015 0.950

03 Naive 0.0126 0.0167 0.0004 0.872 0.0126 0.0387 0.0016 0.937

Proposed —0.0002 0.0277 0.0007 0.920 -0.0177 0.1679 0.0285 0.967

01 Naive 0.0141 0.0281 0.0009 0.932 —0.0075 0.1719 0.0296 0.967

Proposed 0.0082 0.0158 0.0003 0917 0.0123 0.0339 0.0013 0.930

07 03 Naive 0.0178 0.0176 0.0006 0.857 0.0223 0.0355 0.0017 0.907
Proposed 0.0075 0.0174 0.0003 0.920 0.0063 0.0390 0.0015 0.955

03 Naive 0.0123 0.0167 0.0004 0.882 0.0102 0.0379 0.0015 0.942

The results are based on 400 simulation runs each with a sample size 100.

Copyright © 2013 SciRes. 0oJS
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400 _
point estimator, Y )(;/) / 400— BV )(y), (j=12), (Bias);
i=1

the empirical standard deviation,

400 ,

Z(ﬂf(j) (7)- A" (7/))2/399,

i1
. 400
where ﬂ(’)(y)=2ﬂi(’)(y)/400, (EmpSd); the mean
i-1

squared error, Bias® + EmpSd®, (MSE); and the coverage
probability of the 95% confidence intervals,

400

SI(A) (1) A (7)£1.96x5d) 400,

where Sdl.(i ) is the estimated standard deviation of
,l;’,.(j ) () by the bootstrap approach, (CP). From the re-
sults, we can see that our proposed estimator has much
smaller bias and smaller mean squared error than the
naive estimator. The confidence intervals coverage
probabilities are close to the nominal level 95% in most
cases while the naive estimator has the coverage rate far
below the nominal level in many cases. Although the
proposed estimator of ,b’él) has the coverage rate lower
than 90% in the first case with Kendall’s tau z= 0.7 but it
still performs better than the naive estimator. As the
sample size increases to n = 200 for that case (data omit-

ted here), the coverage probabilities for proposed esti-
mator become close to the nominal level while the cov-
erage probabilities for the naive estimator get worse. This
confirms that our estimator is asymptotically correct
while the naive estimator is not.

Then we examine the proposed model diagnostic
method when the true model is generated from

log(T)zﬂO(}/)Z+ey,
where f3,(7)=-1, Z~1+Ber(0.5),and
€,~U(-0.57,0.5-0.5y) so that &, (ey)=0 and (ey,D)

follow Clayton copula with D ~exp(2). We consider
7=10.3, 0.5, 0.7 and y = 0.1, 0.3, 0.5 under n = 100 based
on 200 replications.

Three forms of transformation are fitted: 1)
h(t)=log(t):2) h(t)=t:3) h(t)=2(¢"~1). Table5

200
presents the rejection probability '/ (|TM.| >Z, ) / 200,
=1

where a = 0.05, and the probability that the fitted model
is selected as the one which gives the smallest value of
|Tn| among the three candidates. From the results, we
see that when h(¢)=1log(¢), the rejection probability
(type-1 error rate) is close to the specified level of a =
0.05. When the fitted model is wrong, the rejection
probability (power of the test) is very high in most cases.

Table 5. Finite-sample results for the proposed model checking method.

Kendall’s © Quantile y h(t)=log(¢) h(t)=t h(t)=2(1"-1)
ol Power 0.07 0.385 0.965
' Selection rate 0.82 0.18 0
Power 0.05 0.995 1
0.3 0.3
Selection rate 0.995 0 0.005
Power 0.045 1 0.97
0.5
Selection rate 0.995 0 0.005
o1 Power 0.06 0.415 0.99
’ Selection rate 0.845 0.155 0
Power 0.035 0.995 0.995
0.5 0.3
Selection rate 0.995 0.005 0
Power 0.025 1 0.99
0.5
Selection rate 1 0 0
o1 Power 0.06 0.425 0.965
' Selection rate 0.85 0.145 0.005
Power 0.08 0.975 1
0.7 0.3
Selection rate 0.995 0.005 0
Power 0.045 1 0.985
0.5
Selection rate 1 0 0

200
Note: The sample size is 100 and replications are 200. “Power” = ZI(‘T‘ >Z,, )/200 , where o =0.05 . “Selection rate” is the proportion that the fitted
i=1

model is selected as the one giving the smallest value of ‘T‘ among the three candidates.

Copyright © 2013 SciRes.

oJS



20 J-J.HSIEH ET AL.

Even for the case where the power is relatively low
around 40% (the y = 0.1 quantile for h(¢)=¢), the
probabilities of selecting the correct model are still high.

5. Data Analysis

We apply the proposed methodology to analyze the bone
marrow transplant data based on 137 leukemia patients
provided by [1]. Patients were classified into three risk
categories: ALL, AML low-risk, and AML high-risk
based on their status at the time of transplantation. The
covariates (Z;, Z,) are coded as ALL (Z, = 1, Z, = 0),
AML low-risk (Z, = 1, Z, = 0), and AML high-risk (Z, =
0, Z, = 1). We want to investigate how the risk classifica-
tion is related to the quantile of the relapse time. Specifi-
cally the fitted model is given by

S (IOg(T)|ZDZz):ﬂo (N+B(7)Z+ B (r)Z,- (9)

The results are summarized in the Tables 6 and 7 based
on B = 1000 bootstrap replications. Table 6 contains the
estimators and model checking tests with
q(2,,2,)= 1/(Z, +7,+0.2)" . The p-value is the testing
result by the model checking approach provided in Sub-
Section 3.3. Since all the p-values are greater than 0.05,
we adopt the model in (9) for further analysis.

From the analysis we see that patients of AML low-
risk had longer relapse time than those in the other two
groups and the difference is more obvious for those with

earlier relapse. For example, the 10% quantile of the re-
lapse time in the AML low-risk group is 3.2964 times of
that in ALL group and 4.751 times of that in AML high-
risk group. The group differences are statistically sig-
nificant for the 10% and 30% quantiles. but no longer
significant for the 50% quantile.

6. Concluding Remarks

In this paper, we consider quantile regression analysis for
analyzing the failure-time of a non-terminal event under
the semi-competing risks setting. The Archimedean cop-
ula assumption is adopted to specify the dependency be-
tween the two correlated events. This assumption is util-
ized to calculate the weight for bias correction in the es-
timation of quantile regression parameters. Here we fo-
cus on the case of discrete covariates and derive the as-
ymptotic properties of the proposed estimators. The
bootstrap method is suggested for variance estimation.
For checking the adequacy of the fitted model, a model
diagnostic approach is proposed. Simulation results con-
firm that the proposed methods have good performances
in finite samples. In the data analysis, we see that the risk
classification is particularly influential for earlier relapse.
The methodology can be extended to allow for continu-
ous covariates by employing some smoothing techniques
but the corresponding theoretical analysis is beyond the
scope of the paper.

Table 6. Estimation of quantile regression parameters and model checking test based on the bone marrow transplant data.

A B,
Quantile y - - - p-value
p, Sd 95% CI b, Sd 95% CI p, Sd 95% CI
0.1 4.587 0.262 4.109 5.080 1.193 0.301 0.700 1.691 -0.366 0335 —-1.137  0.191 0.581
0.3 5.571 0.198 5.222 6.169 1.278 0.331 0.532 1.894  -0.208 0353 —0.936  0.380 0.897
0.5 6.129 0.409 5.498 6.819 1.155 0.514 —-0.014 1.968 —-0.374  0.608 —1.180 1.242 0.220
Table 7. Comparison of leukemia relapse time for the three risk groups.
Quantile y Disease Group Diff. Std. Err. exp(Diff.) 95% CI of exp(Diff.)
Lowvs All (8)) 1.193 0.301 3.296 2.014 5.422
0.1 High vs All (8,) -0.366 0.335 0.694 0.321 1.210
Low vs High (8 —8,) 1.558 0.254 4751 2.902 8.446
Lowvs All (8)) 1.278 0.331 3.588 1.702 6.647
0.3 High vs All (ﬂz) —0.208 0.352 0.812 0.392 1.462
Low vs High (8,-8,) 1.485 0.443 4416 1.756 10.494
Low vs All (ﬂl) 1.155 0.514 3.175 0.986 7.153
0.5 High vs All (ﬁz) —0.374 0.608 0.687 0.307 3.462
Low vs High (8 —8,) 1.529 0.626 4.616 0.829 8.877
Copyright © 2013 SciRes. 0oJS
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Appendix: Proofs of Theorem 1

The proof follow the outline similar to the proof in [13].
The technical details need to be adjusted for dependent
censoring which make things harder.

Define

S (b.1)- -szz{ ( ();)S(;Z")@f—y}

$,(b.7)=n""3.2,(F, , (1 (b2,)) 7).
i=1
F, (t)=Pr(T<1|Z,)=1-8,, (1),

E{n™3, (b,

For simplicity, we use sup,,sup, and sup_ to denote
supremum taken over beR” | }/e[;/L,yU] and
z€ Z respectively.

First, we show that S, (b,y) converges uniformly to

p(b,y)= )| -beR™, y ey, n]

S, (b,y). Since Z is finite, n, —21( . =7)—>® as

n— . Hence by [17], &(z) is consistent for o(z)
for all ze Z. Using this and conditions C2, it implies
that &(z)e.A with probability 1 for large enough n.
From condition C3, G, (¢) and S, _(¢) converge to
G,(r) and S, (¢) uniformly for ze[0,v]. Condition

C4 (iii) together with conditions C1 and C3 ensure the
uniform boundedness of the first two derivatives of
Buc) (u) and u¢;(z)(u) for ze Z and

ue [inszZST’z (v) ASp, (v) > O,l] , same as the regular-

ity cogdition in [19]. Hence as n, -, by [17] and
[19], S,,(¢) also converges to S, () uniformly for
t€[o, v] Then there exists a number s, €(0,1) such
that S, (¢) and S, (¢) fall into (s,,1] with probabil-

lim sup
=% p b'eB(py )|b-b'|<d,

i

i=1

—n? {,u(b,;/) - y(b’,y)}” =0a.s.

Y[z i{n(x)<b'Z,)6, /1, (X

ET AL.

ity 1 for large enough » and all ¢e [O,V] by condition
C3 and the uniform convergence of the two estimators.
Denote W (a,u,v) (v)/#, (u). Condition C4 (iii)

implies that ‘%‘P(zx,u,v)‘, ‘%‘P(a,u,v) and

i‘P(oc,u,v)

5 are all uniformly bounded above for
v

aeAue[s,1] and ve[s,,1]. Hence

§D‘T’z (t):‘P(;S:T’z (t),ﬁwﬁz(t),d) converges to SD‘T’z(t)

uniformly for ¢e [0 v] and ze Z. This result and the
uniform convergence of G ( ) imply the uniform con-
vergence of H,(t) for te[O v] and zeZ. Hence

we have sup,_ | " s (b,y)-n"S" (b,y)” =0,(1)
The function class

._h—l T
Z{I(X, <h'(b'z

.))5.
1 Xt _ b RP+1
0, (%) 7} Sl

is Donsker because the class of indicator functions is
Donsker and both Z, and 1/H, (X,) are uniformly

bounded by conditions C1 and C3. Therefore, by Gli-
venko-Cantelli theorem,

sup,, ||n*1/28f (b,;/)—,u(b,;/)" =o0,(1). Also
supy, 78, (b.7) = (.7 ) =0, (). (1)

Then the consistency of £() comes from the identi-
fiability condition C5 using the arguments in the proof of
Theorem 1 in [13].

Similar to [13] the following lemma holds with the
uniform boundedness of Z, f, (¢) and B(p,) that
comes from conditions C1, C3 (i) and C3 (ii).

Lemma 1. For any positive sequence {d,} _ satis-

n=1

fying d, -0,

)=z {h(x,)<b"Z,}5,/H, (X,)]

Now, we provide the proof for the asymptotic normality of ,@ ( }/) . One can write

S, (B(r).7)-

From the uniform convergence and asymptotic weak
convergence of 1/ H, (1) and condition C3, we have

Copyright © 2013 SciRes.

S, (B (7).7) =S (B(r).7)-S2 (B, (7).7)
+nl/zzn:Zi[l{h(Xi)Sﬁ(;/)TZi}—l{h(Xl.)sﬂo(y)TZi}Jé'Xi{A L 1( }

supi{l/I:IZi (X,.)—I/Hzi (X,.)} =0, (n"/z”) for any r >
0. Hence the above quantity is dominated by the first
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term S” (ﬁ’( ), ) ( B(7)s }/) By Lemma 1 and
the uniform convergence of B(y) to B,(7),

S (B(r).7)-S1 (B (7):7)

<n [ ulB(r).) -l ()7}

where denotes asymptotic equivalence uniformly in
7 €[r..70]. Applying Taylor expansions for x(b) at
b=p,(7), and using the uniform convergence of

ﬂ(7) to ﬁo(7’),wehave

~
~
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S,(B(r) ) (B (7).7)
= A8y (r)+e, ()} [ B(r)-B ()],

where ¢, (7)~0. Since S, (ﬂ(y),;f)zo,

[ B(r)-p X )|==aln ()} 8,(8() 7). @

It remains to prove the weak convergence of
S, (ﬂo( ;/),;/) to a zero-mean Gaussian process. It fol-
lows that

S, (Bo(7).7) =S (B (7)-7)+[ S, (Bo (7). 7) =S (By(7).7)]

=S/ (B (7)) 220 (h(X) < Bo()

_,,—vzgz,z{h(x,)sm(ﬁ

= (1)~ (1) ~(m)

The first two terms (/) and (/) can be proved to con-
verge to zero-mean Gaussian processes by applying the
arguments in [13] as follows. The family

(2(1(h(x) = B,0) 2.)8, f11, (X

7e[n,7y]}

is Donsker by the Lipschitz continuity of g, () (con-
dition C4 (1)) and uniformly boundedness of Z and
H, ( ) (conditions C1 and C3). Thus, the first term

(1)=S"(B(7)7)
:n—l/zizf(l( (X)< B, (¥ ) /H )
i=l
converges weakly to a zero-mean Gaussian process.

Denote R, (1)=1(X,>¢) and R, (¢)=1(Y,21) as
the at-risk processes at time 7. Let

r(t)=Pr(Y=4Z=

z),

A% (t)=tim, , Pr(C e (t,t+A)C21,Z =2) /A,

A% (1) =[A% (s)ds. N (t)=1

0
Then M= (t)=

a martingale.
From martingale representation theory for univariate
independent censoring,

n*{6.(1)-6, (f)}
~n 1/221 j

So the second term can be written as

Y

rZ

n_ 2

=n Y [w (B ()

Jj=lo

Copyright © 2013 SciRes.

oJS



24 J.-J.HSIEH ET AL.

I{h( )<bT }5xRx( )| with lI’(ozuv /¢ . Denote
where w, (b,z,t)=zE Z=z 6
ACSEION 2 ()
-1 b4 (a u v) el A
From uniform boundedness of Z , H, (X)" and arTme ¥ (et u,v)
ry (X )7 it is easy to show that
0
le (b z, s) o ;7 (s) is Lipschitz in b. Then simi- 8—‘1’(0{,14,1/)
Y, (a,u,v) —ou_____
‘I’(a,u,v)
larly {I w, (ﬂo (;/),Zj,s)deGz"' (s)} can be shown to and
0
be Donsker, and the second term also converges weakly Q‘P(a,u,v)
to a zero-mean Gaussian process. N ( a, u,v) _Oov ]
For the third term (ZI7) , recall ' ¥ (e u,v)
S (1)=¥(&.5,.(1).5:. (1)) Sofor 7e[0,v],z¢ Z,

SD\T,z ([)_SD\T,Z (1)= Spir.c (t)[\lja (a(z)’SW,z (¢).5:, (t)){o?(z)—a(z)}
W, (@(2)s Sy (1) S (S (0= (O + ¥, (@(2), 8y (0,87 (0){Src ()= S1 (0} ]

For notation brevity, denote and
¥, =, (2(2).8 4 (X.).S 4 (X)), W, =Y, (2(2,).Sy4 (X,),5:4 (X))
Y, =Y, (06 (Zi)’SW,Z,- (X,), Sr.z (X, )) The third term becomes

(1) =n"Y. Z1{h(X,)< 5, (7)" 2,

i=1

)
} )
:n_'/zzn:Z,-I{h(Xi)Sﬂo (7/)T Z,.}5X Hy, (Xf)i1 [\P“’f{&(zf)_a(z")}

i=1

¥, {Sr0 (X)) =S (X)), {S)

—
=
N
—_
>
~—
|
o]
=
N
—_
2
~—
—
~—
Il
—~
N
~—
+
—_
oo
~
+
—_
a
~

Since Z is finite, n, — o by condition C1 forall z € Z. So nl/2 {a(z)—a(z } ~M* with M* follows a Gaus-
sian distribution. Let

I{h(T) SbT } (a(z W,z (X)’ST,z (X))
w,(b,z)=zE H.(X) %Zzz
Now term (A4) is
h ﬁ 0 ! i 5X a,i
g 22 ((2)2} Y a(2)a(2)
w ZINW(X)< By () Z {6, Yoy |
_;rl/zl:1 { i, (;) } nlz 2 1[ Z, Z){ (Z])—a(Zj)}

= 3{6(2))-a(2,))--51(2,- 2)

Jj=1 an i=1 HZ (Xt)

~ n_l/zg{&(zf)_a(zj)} w, (ﬂo (7)=Z./) ~ zfz(z)l/z Mw, (B, (7).2)

€2
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which follows a Gaussian distribution by the bounded- er ( t) = Pr( X> t| 7= z).
ness of f,(z) and w,(,(7).z).
Denote Then
t
A% () =lim, o Pr(W e (1,1 +A)W 21,Z =) /A, M7 (£)= N7 (1)~ [1(Z, = 2) Ry, (s)dA™= (s)

is a martingale. Then

n)? {‘S:W,z (t)= Sy (t)}

A (1) = {/1 (s)

25

Denote .
N (6)= 1 (X, <1,6,, =1,2, = z) ~n_l/221 O] (s) dm = (s).
where '
Now similar to the martingale expression for the
Sy, =1(T,AD, <C)) :1_<1_5x, )(1_5y,. ) . second term (/) , we have term (B) as
1 Zt[{h(Xl)SﬂO(}/)TZZ}gX\Pul A
-1/2 ‘ -S
n lz:;, 2 (X;) { W.z; (t) w.z; (t)}
n Zzl X. )< ﬂ v 5 LPul n ° R
g PHICOEB O 2100 18, R0 g
i1 H, (Xi) Nz, =1 0 'z, (S)
~n1/zzjw3(ﬂ0( )dMSWZ ( )
J=lo
where

w, (b,z,1) = zE[z{h(T) <b'2} 8,7, (@(2),8y. (%), Sp, (X)) R () {1, (X) " (1)} 2 = z] :

.. T Sw.z, . be the crude hazard function in [17],
Similar as (II) above, Jw3 (b Z, s)dM T(s) s
0

AT (t) = Iﬁs” (s)ds .
0 0
Lipscliz n . and {I"’a (B)(7)-2,.5) 1" (S)} s N (1) =1(X, <16, =1.Z, =1)

0 [ f o4& .

i

Donsker. Thus the term (B) converges weakly to a Then
zero-mean Gaussian process. s s ‘ s
Finally, for term (C), let M= (1) =N, (1)—I1(Zi =z)Ry (5)dA™ ()
0
yRE (t)=lim,_,, Pr(T e(tt+ A)|X >t,7Z = z)/A is a martingale. From [17], we have

WS, ()-8, (1)) =0 "3 1(2,=5)—
i=1

0
51 (2,=2) b D gy
i=1 s 0 s

B 1570} J S ()8 (S - ()} A7 (5)ds
= 430
#0150 (1)} o {Sr2 (1))

- ”1/2 {‘5‘ (Z)-a(z, )}

where
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Similar to terms (4) and (B), we have term (C) equals

n-l/zizil (h(X)<B,(r) 2,}5,,

H, (X)
zn—l/zi]gw(ﬂo(7),Zj’S)deT'Zj (S)+n’1/2i:TWs (Bo(7).2,55) M, (5)+ X 1, (2)" Mwg (B (7),2)
=t J=1Y €2

where
¥, (@(2): S (X557 (X))

-l

w, (B (7).2.t)=—E| I{h(T)<b'z}5,

H, (X)) {Sr. (X)) ()
y L s @280 (X).80. (X)) o v(aX)-v(z)|
(o)) = () =00 — s o s, 6.0 IZ_Z}’
w, 7)=— ¢a(Z) {ST,z (X)} + sIOSW’z (S)¢;(Z) {SWﬁz (S)} m (S)ds‘ =z
6 (ﬂo (3’)’ )_ E ¢;(z) {ST‘z (X ¢;(Z) {Sryz (X)} ‘Z =

Then each of the three terms in (C) can be shown to
converge to zero-mean Gaussian process similarly as
above.

Summarizing the results above, S, {ﬁ’o (7), }/} con-

Copyright © 2013 SciRes.

verges weakly to a zero-mean Gaussian process. Hence
(2) implies that n™/ 2[ B(r)-B( }/)] converges weakly
to a zero-mean Gaussian process for ™y € [yL, Vo |-

oJS



