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ABSTRACT 

For square contingency tables with ordered categories, the present paper considers two kinds of weak marginal homo- 
geneity and gives measures to represent the degree of departure from weak marginal homogeneity. The proposed meas- 
ures lie between –1 to 1. When the marginal cumulative logistic model or the extended marginal homogeneity model 
holds, the proposed measures represent the degree of departure from marginal homogeneity. Using these measures, 
three kinds of unaided distance vision data are analyzed.  
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1. Introduction 

Consider an  square contingency table with or- 
dered categories. Let ij  denote the probability that an 
observation will fall in the ith row and jth column of the 
table ( ; ). Also let 

R R
p

1, ,i R  1, ,j R  X  and  
denote the row and column variables, respectively. The 
marginal homogeneity (MH) model ([1]) is defined by  
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with  
R

p p  , . 

When the MH model does not hold, we are interested 
in applying the model that has weaker restriction than the 
MH model. As such a model, for example, there are the 
marginal cumulative logistic (ML) model ([2]) and the 
extended marginal homogeneity (EMH) model ([3-5]). 
We are also interested in considering the other structure 
of weak MH. The measures to represent the degree of 
departure from MH are given by, for example, [6,7]. 
When the structure of weak MH does not hold, we are 
interested in measuring what degree the departure from 
weak MH is.  

The present paper considers two kinds of structures of 
weak MH and proposes the measures to represent the 

degree of departure from weak MH.  

2. Weak Marginal Homogeneity I and  
Measure 

2.1. Submeasure I 

Let 
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Note that   . Assuming that  

 0X Y
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Noting that 10 π 2  1 1 
1 1

i , we see that 1) 1  , 
2)    0Y

iF  0XF 
1, , 1R

 if and only if  and i   
( i  1 1), and 3)  0XF if and only if i    
and  ( i0Y

iF  1, , 1R 
1

). When the MH model 
holds,   equals zero. 
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2.2. Submeasure II 

Let  

1i iS F X X 1Y YS F  1, , 1 

X YS S 1, , 1

,  for i R . i i

The MH model may be expressed as  

i i  for i R 
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Note that . Assuming that  
1i

 0X Y
i iS S  , we shall define the submeasure   as  

follows;  
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2.3. Complete Measure 

Assume that i i  and   . Con-
sider a measure defined by  

 1 22
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and the other cell probabilities are zero (say, upper-right- 
marginal inhomogeneity), and  indicates that  

1R  and the other cell probabilities are zero (say, 
lower-left-marginal inhomogeneity). When , we 
shall refer to this structure as the weak marginal homo- 
geneity I (WMH-I). We note that if the MH model holds 
then the structure of WMH-I holds, but the converse does 
not hold.  
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1p
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



Therefore, using the measure , we can see whether 

the structure of WMH-I departs toward the upper-right- 
marginal inhomogeneity or toward the lower-left-margi- 
nal inhomogeneity. As the measure  approaches –1, 
the departure from WMH-I becomes greater toward the 
upper-right-marginal inhomogeneity. While as the   
approaches 1, it becomes greater toward the lower-left- 
marginal inhomogeneity. 

3. Weak Marginal Homogeneity II and 
Measure 

Let 
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The MH model may be expressed by  

 for . 
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We see that     . Let cp p ij ij j ( i  ). In a 
similar way to  , 1  1cp indicates that 1R   and 
the other ij  are zero ( icp j ) (say, conditional upper- 
right-marginal inhomogeneity), and  indicates that 

1R

1 
1cp   and the other ij  are zero ( ) (say, condi- 

tional lower-left-marginal inhomogeneity). When 

cp i j
0  , 

we shall refer to this structure as the weak marginal ho- 
mogeneity II (WMH-II). We note that if the MH model 
holds then the structure of WMH-II holds, but the con- 
verse does not hold. 

Copyright © 2012 SciRes.                                                                                  OJS 



K. TAHATA  ET  AL. 

Copyright © 2012 SciRes.                                                                                  OJS 

200 

 

X YL L   1, , 1 

4. Relationships between Measures and 
Models 

We shall consider the relationship between the measure 
 (or ) and the ML model. The ML model is given 

by  
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  (i.e., the MH model holds) if and only if 3) 
0 0 (   ).  

Thus, when the ML (EMH) model holds, the measures 
  and   are adequate to represent the degree of 
departure from MH. 

5. Approximate Confidence Interval for 
Measures 

Let ij  denote the observed frequency in the ith row and 
jth column of the table ( ; ). As- 
suming that a multinomial distribution applies to the  

n
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R R  table, we shall consider an approximate standard 
error and large-sample confidence interval for the meas- 
ure  , using the delta method, as described by [8]. The 
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6. Examp

Example 1: Consider the unaided distance vision data in 
Table 1(a) taken fro  [1]. There are data on unaided 
distance vision of

We see from Ta
estimated value of th
values in confidence interval for   are negative. There- 
fore, the structure of WMH-I for a woman’s right and left 
eyes departs toward the upper-right-marginal inhomoge- 
neity. Also we see from Table 3 that for the data in Ta- 
ble 1(a), the estimated value of the measure   is 
–0.0436 and all values in confiden e interval for c   are 
negative. Therefore, the structure of WMH-II for a 
woman’s right and left eyes departs toward the condi- 
tional upper-right-marginal inhomogeneity. 

Table 4 gives the values of likelihood ratio chi-squared 
statistic for testing goodness-of-fit of each of MH, L, 
and EMH models. We see from Table 4 that each of ML 
and EMH models fits these data well. Thus the measures 
  and   would indicate the degree of departure from 
MH. We can see from these measures that the de

 M

gree of 
de

inhomogeneity which indicates that the grade of right eye 
for arbitrary woman is “Best” and the grade of her left 
eye is “Worst”. 

Example 2: Consider the unaided vision data in Table 
1(b), taken from [9]. We see from Table 2 that for the  

Br m

parture from MH for the vision data in Table 1(a) is 
estimated to be 1.30 (4.36) percent of the maximum 
departure toward the (conditional) upper-right-marginal 

Table 1. Unaided distance vision data of (a) 7477 women in 
itain fro  [1]; (b) 3242 men in Britain from [9] and (c) 

4746 students in Japan from [3]. 

(a) Women in Britain 

Right eye Left eye grade  

grade (1) (2) (3) (4) Total 

Best (1) 1520 266 124 66 1976 

Second (2) 234 1512 432 78 2256 

Third (3) 117 362 1772 205 2456 

Worst (4) 36 82 179 492 789 

Total 1907 2222 2507 841 7477 

(b) Men in Britain 

Right eye  Left eye grade 

grade (1

1) 

) (4) Total 

Best ( 821 35 1053 

(2) (3) 

112 85 

Second ( 116 494 145 27 

T 72 151 583 87 

W 43 106 331 

791 919 480 3242 

2) 782 

hird (3) 893 

orst (4) 

Total 1052 

34 514 

(c) Stude apa

Right eye  

nts in J n 

Left eye grade 

grade (1) (2 (4) Total 

Be 1291 130 4

) (3) 

st (1) 0 22 1483 

Second ( 149 221 114 

T 64 124 660 

W 20 25 249 1429 

1524 500 1063   

2) 23 507 

hird (3) 185 1033 

orst (4) 1723 

Total 1659 4746

Table 2. Estimates of  , estimated approximate standard 
errors for ̂ , and 
for 

approximate 95% confidence intervals 
, applied to Table

ˆ

 1.  

Table   S. E. I. C. 

1(a) –0.0130 0037 (–0.0  –0.00. 203, 056) 

1(b) 0.0055 0.0064 (–0.0071, 0.01

0040 (0.0 0.020

81) 

1(c) 0.0125 0. 048, 3) 
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Table 3. Estim

p

ates of  timate prox  standard 
erro ̂  
for lie

, es d ap imate
rs fo
 , ap

r , and approximate 95%
d to Table

 confidence intervals
 1.  

Table ̂  S. E. C. I. 

1(a) –0.0436 0.0126 (–0.0683, –0.0190) 

1( 0.0201 (–0.0222, 0.0566) 

0.0 7 3 (0.0198, .0836) 

b) 0.0172 

1(c) 51 0.016 0

Table 4. Values of likelihood i-sq  
the M L, an  mod lied t

ratio ch
els app

uared statistic for
o Table 1.  H, M d EMH

Applied Degrees of Table 

models freedom 1(a) 1(b) 1(c) 

H 3 M 11.99* 3.68 11.18* 

ML 2 0.39 3.16 .41 

E 0 2

1

MH 2 .005 .94 0.56 

*Mean ant at t vel. 

data in Table 1(b) the estimated value of measure 

s signific he 0.05 le

  is 

H-I in 
the data in Table 1(b) se  Table 3 that for 
th  Table 1(b),  estima  of measure 
 72 a o r   includes 
zero. So this m indicat there  structure of 
WMH-II in the data in Tabl ). 

E e 3: C nsider t ta in le 1( en 
om [3,10]. We see from  that for the data in 

value of  measure 

0.0055 and the confidence interval for   includes zero. 
So this may indicate that there is a structure of WM

. Also we 
 the
nfide

e from
ted value

terval fo
e data in
 is 0.01 nd the c nce in

ay e that  is a
e 1(b

xampl o he da
Table 2

 Tab c) tak
fr
Table 1(c), the estimated  the   is 
0.0125 and all values in confidence interval for   

f

are 
positive. Therefore, the structure of WMH-I for a stu- 
dent’s right and left eyes departs toward the lower-left- 
marginal inhomogeneity. Also we see from Table 3 that 
for the data in Table 1(c), the estimated value of the 
measure   is 0.0517 and all values in con idence in- 
terval for   are positive. Therefore, the structure of 
WMH-II for a student’s right and left eyes departs to- 
ward the conditional lower-left-marginal inhomogeneity.  

We see from Table 4 that each of ML and EMH mod-
els fits these data well. Thus the measures   and   
would indicate the degree of departure from MH. We can 
see from these measures that the degree of departure 
from MH for the vision data in Table 1(c) is estimated to 
be 1.25 (5.17) percent of the maximum departure toward 
the (conditional) lower-left-marginal inhomogeneity which 
indicates t at the grade of right eye for arbitrary student 
is “Worst” a d the grade of his/her left eye is “Best”. 

7. Concluding Remarks 

h
n

Fo
t H

r the analysis of square contingency tables with or- 
dered categories, when the ML model, or he EM  
model, or other asymmetry models, for example, [11]’s 

conditional symmetry model (defined by ij jip p   
for i j ) holds, the proposed measures   and   are 
adequate to represent the degree of departure from the 
MH model toward two maximum departures, i.e., toward 
the (conditional) lower-left-marginal inhomogeneity or 
toward the (conditional) upper-right-marginal inhomoge- 
neity. 

ity (i.e., the
r-lef he -r

8. Discussion 

[6,7] considered the measures to represent the degree of 
departure from MH. The present paper has considered 
two types of maximum marginal inhomogene  
lowe t-marginal inhomogeneity and t  upper ight- 
marginal inhomogeneity). The measures in [6,7] take the 
value 1 in two types of maximum marginal inhomoge- 
neity. The measures   and   in the present paper 
can distinguish these two kinds of maximum marginal 
inhomogeneity by the values –1 or 1 although the meas- 
ures in [6,7] cannot distinguish them. Also the proposed 

esent the degree of departure from MH 

 to ss

measures can repr
when the ML or the EMH models, or the other asym- 
metry models hold. Therefore for the ordinal data, the 
proposed measures rather than those in [6,7] may be 
useful to represent the degree of departure from MH. 
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