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ABSTRACT 

The false discovery proportion (FDP) is a useful measure of abundance of false positives when a large number of hy- 
potheses are being tested simultaneously. Methods for controlling the expected value of the FDP, namely the false dis- 
covery rate (FDR), have become widely used. It is highly desired to have an accurate prediction interval for the FDP in 
such applications. Some degree of dependence among test statistics exists in almost all applications involving multiple 
testing. Methods for constructing tight prediction intervals for the FDP that take account of dependence among test sta- 
tistics are of great practical importance. This paper derives a formula for the variance of the FDP and uses it to obtain an 
upper prediction interval for the FDP, under some semi-parametric assumptions on dependence among test statistics. 
Simulation studies indicate that the proposed formula-based prediction interval has good coverage probability under 
commonly assumed weak dependence. The prediction interval is generally more accurate than those obtained from ex- 
isting methods. In addition, a permutation-based upper prediction interval for the FDP is provided, which can be useful 
when dependence is strong and the number of tests is not too large. The proposed prediction intervals are illustrated 
using a prostate cancer dataset.  
 
Keywords: Multiple Testing; False Discovery Proportion; False Discovery Rate; Weak Dependence; Correlated Test 

Statistics; High-Dimensional Data Analysis; Prediction Interval; Upper Prediction Bound;  
Permutation-Based Method 

1. Introduction 

When a large number of hypotheses are tested simulta- 
neously, a direct measure of the abundance of false posi- 
tive findings is the false discovery proportion (FDP),  

defined as FDP, or 
1

V
Q

R




 1 max ,1R R 

, where R denotes the total  

number of rejections, V denotes the number of rejections 
of true null hypotheses, and . Moti- 
vated by various genetic and genomic studies and other 
applications, many useful procedures have been proposed 
to control the expected value of FDP, namely the false 
discovery rate (FDR) [1-5]. Indeed, it is well known that 
controlling FDR has power advantages over the tradi- 
tional way of controlling family-wise type I error [1,2]. 
Suppose a study is properly designed to control the FDR 
at 5%. If such a study is independently repeated many 
times, the average of the FDPs in these repeated studies 
can be expected to be no more than 5%. However, for a 
particular study (without repetition), the FDP is more 
directly relevant than FDR. Therefore, when a study is 
designed to control FDR under common designs, it is  

still very much desirable to assess FDP, e.g. to construct 
a prediction interval for the FDP. One can also consider 
designing a study controlling FDP instead of FDR. This 
approach has been less successful since FDP is a random 
variable and is less straightforward to control than the 
FDR. Indeed, researchers have proposed various proce- 
dures aimed at controlling the FDP [6-13], from which 
confidence envelopes for the FDP can be obtained si- 
multaneously for all possible rejection regions. However, 
confidence envelopes from the existing FDP controlling 
procedures are often too conservative for predicting a 
tight range for the FDP. In particular, when weak corre- 
lations exist among test statistics, methods for construct- 
ing tight prediction interval for the FDP are still limited. 

In the multiple testing context, test statistics are often 
correlated, e.g. in microarray experiments and functional 
magnetic resonance imaging, correlations arise due to 
biological, spatial, temporal or technical factors. A major 
challenge for predicting FDP is to account for unknown 
correlations between test statistics. It has been shown via 
numerical studies that when test statistics are correlated, 
the variability of FDP can increase dramatically [14-17]. 
This can also be seen from the variance formula derived *Corresponding author. 
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in the next section (Formula (2)). Permutation-based me- 
thods are often considered in the presence of dependency, 
e.g. [15]. Permutation-based methods have several limita- 
tions. For instance, they are not applicable when no group 
structure (e.g., groups of cases and controls) is present as 
in some imaging studies [9]. Additionally, if the purpose 
of testing is to detect differences in means, then a per- 
mutation-based test can have an inflated Type I error rate 
by picking up signals due to unequal variances or skew- 
ness of two distributions [18]. Pan [3] and Xie et al. [19] 
also pointed out that permutation-based procedures tend 
to overestimate FDR. Finally, a permutation-based ap- 
proach is generally very computationally intensive; it 
often becomes not feasible when the number of tests is 
large. 

Other works on FDP have been proposed with efforts 
to accommodate the correlations among test statistics. 
For example, Ge et al. [12,20] proposed a formula for the 
upper prediction bound of the FDP assuming that test 
statistics under true null hypotheses are independent and 
also proposed a permutation algorithm to obtain a simul- 
taneous upper prediction band of the FDP. Under the 
assumption that p-values are independent or follow a 
conditional equicorrelated multivariate normal model, 
Roquain and Villers [21] provided exact calculations for 
the cumulative distribution function (CDF) and moments 
of FDP for the step-up and step-down procedures. Ghosal 
and Roy [22] proposed a nonparametric Bayesian proce- 
dure to obtain the posterior distribution of FDP under the 
intraclass or autoregressive correlation structure. In all 
these studies on FDP under dependence, the correlation 
among test statistics is either ignored or assumed to fol- 
low some parametric models. A flexible semiparametric 
approach to modeling dependency among test statistics 
has not emerged. 

In this paper, we first derive an explicit formula for the 
variance of the FDP under a semiparametric weak de- 
pendence assumption among the test statistics. The vari- 
ance formula is easily interpretable and elucidates the 
effect of correlation on the variability of FDP. Using the 
variance formula, we obtain an upper prediction interval 
for the FDP. This approach is semiparametric in nature 
because only the average of the pairwise Pearson correla-
tion between test statistics needs to be estimated. The 
formula-based prediction interval is easy to evaluate even 
when testing a vast number of hypotheses where no other 
methods are computationally feasible. Simulation studies 
indicate that the formula-based prediction interval has 
good coverage probabilities under weak to moderate de-
pendence. In many situations, as illustrated, the predic-
tion interval is quite short (tight) and generally more ac-
curate than competitors. In addition, we discuss a per-
mutation-based upper prediction interval for FDP which 
is useful under strong dependence. We illustrate the pro-

posed prediction intervals using a prostate cancer data-
set. 

2. Methods 

2.1. Notation 

Consider testing m hypotheses simultaneously. Rejec- 
tions are made based on p-values, with a fixed rejection 
region  0,  for some α. Denote the rejection status of 
the ith test by   iR I pi   

 
, where pi denotes the 

p-value of the ith test and I 

 m
R R

 is an indicator function. 
Denote the power of the ith test as 1 – βi. 

Let V and U be the total number of incorrect and cor- 
rect rejections, respectively. The total number of rejec- 
tions or discoveries is 

1 ii



. Let M0 denote 

the index set of the m0 tests for which null hypotheses are 
true and M1 the index set of m1 = m – m0 tests for which 
alternative hypotheses are true. The proportion of true  

 

null hypotheses is 0
0π

m

m
 . When test statistics are de-  

pendent, as in [23], we have  

     

    
0

0
, ,

0 0

Var 1 1

            1 1 1 ,

ij
V

i j M i j

V

V m

m m

    

  

 

   

   


 

    corr ,ij
V i jR R  0,i j M for , and  where 

 
0, ,

0 0

=
1

ij
Vi j M i j

V m m


  




 is the average correlation coeffi-  

cient. Similarly, for the correct rejections, 

 

   

 
1

1, ,

Var 1

               1 1 ,

i i
i M

ij
U i i j j

i j M i j

U  

    



 

 

  


 



    corr ,ij
U i jR R  1, M for i j . Denote  where 

1
1

1
= ii Mm


 . If effect sizes are all equal, i.e.  

=i   for all i, we can obtain a simplified formula  

      1 1Var 1 1 1 UU m m      , where  

 
1, ,

1 1

=
1

ij
Ui j M i j

U m m


  




. Additionally, let  

    corr ,ij
UV i jR R  1M 0j M for i , . De-  

note the average correlation 1 0

0 1

ij
UVi M j M

UV m m


  

 

Under some general regularity conditions including weak  

.  

Table 1 summarizes the outcomes of m tests and their 
expected values. 

2.2. Formula-Based Prediction Interval 

2.2.1. Derivation of Prediction Interval 
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Table 1. Outcome and expected outcome of testing m hypo- 
theses. 

Outcome 
 

Reject H0 Accept H0 Total

H0 is true V m0 – V m0 

H1 is true U m1 – U m1

Total R m – R m 

Expected Outcome 
 

Reject H0 Accept H0 Total

H0 is true m0α  0 1m   m0 

H1 is true 1 1m   1m   m1

Total  0 1 1m m     0 11m m    m 

 
dependence among test statistics, Farcomeni [24] proved  

that the FDP,  V 
, 0,1

1
Q

R


  
 

, as a stochastic  

process indexed by α, is an asymptotically Gaussian 

en

process (see Theorem 2 of [24]). In particular, for a fixed 
α, the FDP has an asymptotically normal distribution 
under weak dependence as discussed in Farcomeni [24]. 
More specifically, assuming that 00 π 1  , when test 
statistics are independent or weakly t,  depend 0V  , 

0U   and 0UV   as m  , we show t P 
a Norm ution totically with special 

mean and variance (see Appendix A (A.1)). No assump- 
tions about higher-order correlation terms are required.  

When effect sizes are all equal, explicit forms for the 

hat FD
follows al di asym

m

strib  p

ean  Q  and variance  2
Q  of the FDP can be 

easily ed using the del ethod and are given by  obtain ta m

   
0π 

0 0π 1 π 1
Q  


  
,            (1) 

    
   

2

0 02

0 0

π 1 π

π 1 π
Q



 

 
4

1 1

1
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


 


,     (2) 

where  

 

 

0
0

0

0 0

π1
1 π

1 π

      π 2π 1U U

m

1
1 V

V

m
      

    (3) 

and 

   

 
       

  

1







. For a moderate to large sample size n,  

ragthe ave rror e Type II e 0  . Then  

2
0 0 0π π 2πQ V U UVc

m m
    

      
  

 (4) 

   
 

1 1  

where 
2

0 0

4

0 0

π 1

1 π

π 1

π
c

  

 
. From (4), it is evident  

that when all the test statistics are independent, 2




Q  is 
ly proportional to m; wh

dependent, correlations also contribute to the variance. 
ic

inverse en some test statistics are 

The rejection threshold α in multiple testing is typ ally 
less than 0.05 and thus ω is small, making the last two 
terms of (4) small. The average correlation among true 
null test statistics, which is represented by V , can have 
a large influence on the variance of FDP. 

When all the parameters are known, a prediction in- 
terval could be derived based on the asymp ic distribu- 
tion of FDP. We shall discuss the estimat

tot
ion of parame- 

ters in details next section. In multiple testing we are 
primarily concerned about high FDPs so an upper predic- 
tion interval is of interest. A  100 1  % upper predic- 

tion interval for FDP is given by 0, Q Qz

 

    , where  

z  is the  100 1  th quantile o standard normal 
distribution. 

f the 

ice, the distrib
FDP under dependenc

ch as the log-transformation to be practi-
ca

 

With finite sample size in pract ution of 
e is often skewed, suggesting trans-

formations su
lly useful. Moreover, by the delta method (see Appen-

dix A for more details), when the FDP is asymptotically 
normal, Y = log(FDP) is also asymptotically normal, i.e., 

 2~ ,Y YY N    asymptotically, where formulas for Y   

and 2
Y  are derived in Appendix A (A.2). Thus it is not 

surprising that Y = log(FDP) is closer to normal than the 
FDP itself, part

ima



icularly under weak dependence. The ap- 
prox te mean and variance of Y are:  

 
  

0

0 0

π
log log

π 1 π
Y Q


 

1 

     
   

   


   (5) 

 
   

2

02
2

0 0 0

1 π 1 1

π π 1 π 1
Y

 


  

  
 
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where 

   (6) 

  is in (3). Applying the expone
mation, a 

ntial transfor- 
 100 1 % upper prediction interval for the 

FDP can be constructed as  0,exp z   . 

tion 
sed prediction interv  

Y Y 

2.2.2. Estima
To calculate the formula-ba al 

 0,exp z Y Y   , we need to estimate necessary pa-
rameters in Y  and Y  first. We adopt the estimator  

0π  proposed for by Storey [2]:    
 0π̂ 1

i

m

# p 






  

for 



 0,1  the choice of 0.5 with   . We use t  he
odmeth  of moment to estimate  . Because  
   0 1 1E R m m    , plugging in the estimate of 

he o  of rej

v
 

0π and t bserved total number ections R, we  

ha e 0π̂ˆ 1
R m

0ˆ1 πm





   The resulting estimator ˆQ  is  


.
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essentially the same as the FDR estimator proposed by  

Storey [2]: 0π̂ˆQ

m

R


  er

ce 

ij

. However, the objective h e is  

to obtain a predictive interval or equivalently an upper 
bound for FDP sin we mainly care about large values 
of FDP. 

The correlation   between the ith and jth rejection 
indicators is  

       
     Var Var

i j i jij

R Ri j

E R R E R E R         
 

 

We here consider one-sided z-test for two-group com- 
parison to illustrate the estimation of correlation. Two- 
sided z-test and t-test are given in Appendix B. Follow- 

  . 

ing the notation defined in Section 2.1, we have  

 
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2, ;

1

ij

ij
V

z z   


 

   



,          (7) 
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 

2
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1
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U

z z   
 

 

  


,        (8) 

   
   
, ; ij

ij
UV

z z  1

1 1

  

 

 

 

where Ψ is the CDF of the standard bivariate normal dis- 
tribution, and ρij denotes the Pearson correlati
the ith and jth test statistics. We propose the following 


 

 
 ,      (9) 

on between 

procedure to estimate the average correlations. In prac- 
tice, when m is very large (m > 2000), we propose to run 
the procedure on a random subset of m tests to save 
computation time.  

1) Estimate the correlations between test statistics ρij 
using the sample correlations. As in [25], an empirical 
Bayes shrinkage estimator of sample correlations can be 
used.  

2) For the ith test with z-score zi, estimate the condi- 
tional probability of the corresponding hypothesis being 
a true alternative hypothesis:  

    
    

0
1

0 0

1 π

1 π π
i z

i
i z i

z
P i M z

z z

 
  

 
 
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where  z  is the density  of  0,1N  and  function

z  is the mean of z-scores he alternative hy- 
pothesis is true. From e esti

 when t
mate ˆ th   we can get  

1 ˆ ˆ z z   .  
3) Predict whether the tests belong to M1 or M0 by 

generating Bernoulli random variables with the estimated 
probability  i

ver correlations 

1P i M z .  
ntity4) After the ide  of each test is predicted, the cor- 

ation θij between any two rejection indicators can be 

calculated from Formulae (7)-(9).  
5) Estimate the a age 

rel

, UV   and 

UV  using the respective sample means of pairwise cor- 
relations.  

6) Repeat steps 3 to 5 for a few times, and take the av- 
er n  

tation-Based Prediction Interval 

 
iction 
 The 

not 

age of these estimates of average correlatio s. 

2.3. Permu

The permutation-based procedure proposed by Korn et al.
[6,7] can be adapted to construct an upper pred
interval for the FDP under general dependence.
method can be expected to be robust because it does 
depend on parametric or weak dependence assumptions, 
but it requires very intensive computation which may not 
be feasible for testing a very large number of hypotheses. 
Let n1 and n2 be the sample sizes of the two groups and 
suppose that unpaired t-test is performed. First, permute 
the group labels and calculate the two-sample t-statistic 
p-values for all m tests under the permutated labels. If the  

number of possible permutations 
 1 2

1 2

!

! !

n n

n n


 is too large,  

perform w = 500 or 1000 random permutations. Second, 
for each permutation, order the p-v llest to  alues from sma

largest. Let      1 2, , ,j j j
mp p p  deno rdered p-val-  te the o

ues for the jth permutation, 1, 2, ,j w  . Write the 
ordered p-values in a w m  matrix:  

   

 

     

1 1
1 2

2

1 2

m

w w w
m

p p

p

p p p

 
 



 
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. 

Third, order the p-values within each co mn and put the 
smallest p-values on top. Denote the res lting matrix by 
S, and its element at the jth row and lth column by 

 
1
mp

   
2 2
1 2p p

 
 





lu
u

j
lS  

where 1, 2, ,j w  and 1,2, ,l m  . 
To construct a  100 1  % upper prediction interval 

for the FDP, we first find an upper bound V  for V. Find 
the [γw]th row of the matrix S where [a] denotes  
closest ller than o

the
integer sma r equal to a. The upper 

bo  estimatedund for V can be  as:  

    1

m w
ll

V I S  


  . By construction  

1 2
j j j

mS S S    for 1,2, ,j w  . Using Korn’s con-  

trolling procedure,  
1
w

kS 
  is the threshold for at most  

k false discoveries with 1 ce, k is the  -γ probability. Hen

 100 1 % upp und for V er bo at threshold  
1
w

kS 
 .  

Given a rejection region  0, , the definition of  V    

implies that  
 
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 

1
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V V
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 VTherefore,   is a c  0 1onservative 10  % up- 
r V(α) at a er bound for  

the FDP can be calculated as 

per bound fo  the uppfixed α. Then

1

V

R


. Since the perm a-  

ch pre

ediction Intervals 

 the performance of the for- 
orrelation 
 the me- 

thod considered m = 10,000 hy- 

ut

tion approa serves the correlation structure of the 
data, it works under potentially strong dependence struc- 
ture.  

3. Numerical Studies 

3.1. Simulation: Formula-Based Upper  
Pr

In this section, we evaluate
mula-based prediction interval under various c
structures via simulations and compare it with

 of Ge et al. [20]. We 
potheses to be tested using one-sided z-test and 0π  = 
0.7. Results from two-sided z-tests were similar and not 
reported. For true null and true alternative hypotheses, z 
scores were generated from  0, nN   and  ,a aN    
respectively, where a  was 2.1, 2.7 or 4.3 and the cor- 
relation matrix will be specified below. The diagonal 
entries of both n  and a  were set to be 1. The thre- 
shold α was fixed to be 0.0085

Two scenarios were considered: null test statistics 
were moderately dependent and alternative test statistics 
were weakly de endent; both null and alternative test 
statistics were weakly dependent. A proportion of test 
st

 

p

 

FB Ge 

. 

atistics were set to be correlated, with blockwise de- 
pendence or unstructured sparse dependence. In the 
blockwise dependence structure, tests were correlated 
within blocks and independent across blocks with the 
block-size of 50. We set 25% null test statistics to be 
correlated with correlation 0.8 and 5% alternative test 
statistics to be correlated with correlation 0.2; or 5% null 
test statistics to be correlated with correlation 0.2 and 5% 
alternative test statistics to be correlated with correlation 
0.5.  

We evaluated the performance of the proposed predic- 
tion intervals using the true correlations between test 
statistics. Table 2 shows results from 1000 replications. 
When null test statistics are moderately correlated (upper 
panel), the coverage probabilities of our prediction inter- 
vals are close to the nominal levels. The interval with log 
transformation is more accurate than the one without 
transformation (results not shown). In comparison, Ge’s 
intervals have the problem of under-coverage because the 
required independence assumption is violated. When 
both null and alternative test statistics are weakly corre- 
lated (lower panel), our prediction intervals have good 
coverage probabilities and are tighter than Ge’s. The es- 
timates of the standard deviation of FDP are very close to 
the true values in both scenarios. 

For the general sparse dependence structure, we set 

Table 2. Estimates of σQ, upper limits (UL) of prediction 
intervals and coverage probabilities (CP) (all in %) under 
blockwise dependence. 

True Estimates

FDR σQ FDR Q̂
Conf. level 

UL CP UL CP

90 2.8 89.8 2.5 81.1
2.0 0.54 2.0 0.54

95 3.1 94.4 2.6 83.0

90 4.3 .0 3.7 .3
3.

90 81
0 0.84 3.0 0.83

95 4.7 94.2 3.9 84.1

90 7.1 90.8 6.3 83.7
5.0 1.32 5.1 1.31

95 7.8 94.5 6.5 85.2

90 2.4 89.2 2.5 94.4
2.0 0.27 2.0 0.26

95 2.5 94.6 2.6 96.8

90 3.6 90.7 3.7 95.7
3.0 0.38 3.0 0.39

95 3.7 95.5 3.9 97.2

90 6.0 92.4 6.3 96.5
5.0 0.66 5.1 0.66

95 6.3 96.6 6.5 98.3

σQ: sd(FDP); FB: formula-based predic interva ra m  
G e dict in  Upper l: 25% ll t ic e 
correlated with ρv = 0.8, 5% alternative tatisti at i  
0.2; Lower panel: 5% null test statisti re cor ρ .  
al ti  sta s a lated ρu = 0.

s simulated from 
N(0.1, 0.1). The covariance matrix was computed as AAT, 

e situation 
w

y and simulated the expres- 
d 
d 

with thod of Ge et al. [20] and the simultaneous 

tion l with log t nsfor ation;
e: G ’s pre ion terval; pane

 test s
nu

cs are
est sta

 correl
tist

ed w
s ar

th ρu =
cs a

with 
related with 
5. 

v = 0 2, 5%
terna ve test tistic re corre

aside a small proportion of test statistics to be correlated 
and the rest of test statistics independent. We first gener- 
ated a lower triangular matrix A with diagonal entries 
equal to 1 and lower off-diagonal entrie

and was normalized to be a correlation matrix for the 
dependent test statistics. Null tests and alternative tests 
can be correlated but with no dependence structure as-
sumed. For the two scenarios, we set 750 null and 50 
alternative test statistics to be correlated; or 100 null and 
400 alternative test statistics to be correlated. 

Results from 1000 replications are shown in Table 3. 
The upper panel shows the situation where more null test 
statistics are correlated. Our prediction intervals have 
good coverage probabilities, while Ge’s intervals under- 
cover the true FDP. The lower panel shows th

here more alternative test statistics are correlated. Our 
prediction intervals cover the true FDP well while Ge’s 
intervals are conservative.  

3.2. Comparison with Simultaneous Prediction 
Band 

We considered two-group mean comparison in the con- 
text of gene expression stud
sion data to assess the performance of formula-based an
permutation-based prediction intervals. We compare

 the me
prediction band method of Meinshausen [11]. We set m = 
5000 and 0π  = 0.7. The total sample size was set to be  
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Table 3. Estimates of σQ, upper limits (UL) of prediction 
intervals and coverage probabilities (CP) (all in %) under 
sparse dependence. 

True  Estimates FB Ge 

FDR σ  Q  FDR  Q̂  
Conf. level 

UL CP UL CP

90 2.8 92.5 2.5 87.8
2.0 0.54  2.0 0.53 

95 3.1 94.7 2.6 89.6

90 4.1 .0 3.6 .6
3.0 0.79  

90 88
 3.0 0.79

95 4.4 93.9 3.8 90.3

90 6.8 90.6 6.2 88.1
5.0 1.24  5.1 1.22 

95 7.4 93.8 6.5 89.7

90 2.4 90.7 2.5 95.2
2.0 0.26  2.0 0.27 

95 2.5 95.1 2.6 97.3

90 3.6 91.0 3.7 93.8
3.0 0.43  3.0 0.42 

95 3.8 95.0 3.8 96.8

90 6.1 91.2 6.3 97.0
5.0 0.70  5.1 0.71 

95 6.4 95.4 6.5 98.6

σQ: sd(FDP); FB: formula-based predict nterval m ; 
G ’ rv r pane 50 (11% u tic e 

ted with 

ion i
l: 7

 with 
) n

log tra
ll test sta

nsfor
tis

ation
s are: Ge

rrela
s prediction inte al; Uppe

co v  = 0.33, 50 (1. lterna s i  
rrelated with 

7%) a tive test tatist cs are
co u  = 0.16, and uv  096; L : ) 

t rre ith 
= 0. ower panel  100 (1.4%

null tes statistics are co lated w v  = 0.19, 4 t
s i

00 (13%) al ernative test 
statistic  are correlated w th u  = 0.13,   and uv  

 g

p

0.6. The diagon n  and a  were 1. 

es to be correlated with 
correlation
to be correl

 an thr

 ran- 
do  

 The formula-based 
pr

ur for- 
m

l Data Example 

measured 13,935 mRNA 
ymphoblastoid cell lines 

 

ge 

FB Per Ge MN 

= 0.05. 

100, 150 or 200 and equally divided between two groups. 
The data were enerated from  ,n nN    or  

 ,a aN    for the two gro s, where μn = 0 and μa = u

al entries of both 

Blockwise correlation structure was used and block-size 
was 50. We set 20% null gen

 0.8 within block, and 3.3% alternative genes 
ated with correlation 0.2 within block.  

One-sided t-test was performed d the eshold α 
was fixed at 0.01. For calculating the formula-based in- 
terval, correlations between test statistics were estimated 
from correlations between gene expression levels. Pair- 
wise Peason correlations were calculated from 500

mly chosen genes across all the subjects, after sub- 

tracting off each gene’s mean within each group as in 
[26]. Sample correlations were then shrunk using the 

Table 4. Comparison of the upper limits (UL) and covera

True Estimates 

empirical Bayes method [25] to correct the well known 
inflation of variability in correlation estimates. The co- 
relations θ between rejection status were then calculated 
using the procedure in Section 2.2.2, repeating the pro- 
cedure for 3 times. For calculating the permutation-based 
prediction intervals, a total of 500 randomly chosen per- 
mutations of the groups were used.  

Coverage probabilities of four prediction intervals are 
given in Table 4 (200 replications).

ediction intervals cover the true FDP well and are 
slightly conservative. Since the sample correlations are 
still over-dispersed after shrinkage, the variance of FDP 
is over-estimated. The permutetion-based interval is more 
conservative than the formula-based ones. In contrast, 
Ge’s prediction interval is too liberal. The simultaneous 
prediction bands are about twice as high as the for-
mula-based intervals. Hence it is not very useful when 
point-wise intervals are needed. In terms of computa-
tional efficiency, when the sample size was 100, the cen-
tral processor unit (CPU) time for calculating the for-
mula-based and permutation-based prediction intervals in 
one run of simulation was 81 seconds and 20 minutes 
respectively, on a 2.66 GHz processor with 4 GB of 
memory. The permutation-based approach will become 
more computationally intensive as m gets larger.  

We have also varied m, rejection region and correla- 
tion structures. When the dependence is weak, o

ula-based prediction interval works well in various 
scenarios. It is the tightest one among all intervals that 
we study.  

3.3. A Rea

The study in Wang et al. [27] 
gene expression levels in 125 l
derived from 62 aggressive and 63 nonaggressive pros- 
tate cancer patients. The purpose is to identify candidate 
genes whose expression levels are associated with ag- 
gressive phenotype of prostate cancer. Two sample two- 

probabilities (CP) of four prediction intervals (all in %). 

FDR σQ FDR  ˆ
Q  UL CP UL CP UL CP UL CP 

n Conf. level 

90 5.3 92.0 6.5 95.5 4.0 85.0 10.0 100.0 
3.2 1.22 3 .31 100 

6.2 7.6 4.2 86.0 11.2 

90 100.0 
2.5 0.90 2.5 1.02 150 

2.0 0.74 2.0 0.87 200 
100.0 

.1 1
95 94.5 99.0 100.0 

4.3 93.0 5.3 97.5 3.3 86.5 8.2 

95 5.0 95.0 6.2 98.0 3.4 89.5 9.1 100.0 

90 4.0 94.0 5.0 99.0 3.1 86.0 7.3 100.0 

95 4.6 96.5 5.8 3.2 88.5 8.0 100.0 

σQ: sd(FDP); FB: formula-based prediction interval with log trans ation; Per: pe utatio sed up r pre boun e pred  inte : 
simultaneous prediction bands using Meinshausen’s permutation algorithm [11]; n: sample size.  

form rm n-ba pe diction ds; G : Ge’s iction rval; MN
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sid  tes re p rmed ea ne, and pro- 
portion of  null h theses was estim ted to be 0π̂  

the

ed t ts we
 true

erfo
ypo

 for ch ge  the 
a

= 0.60. The FDR controlling procedure in [2] was used to 
ontrol FDR at 3% or 5%, rejecting 1708 or 2208 hy- c

potheses respectively. Sample correlations were esti- 
mated from 2000 randomly sampled genes repeating  
estimation procedure for 3 times. The correlation is weak 
and the average of estimated ρV is very close to 0. The 
estimated V  is 0.0059 at α = 0.006. The formula-based 
upper prediction intervals with log transformation (FB), 
permutation-based intervals (Per) and simultaneous pre- 
diction bands (MN) are shown in Table 5. When FDR is 
controlled at 5%, with 90% probability the actual FDP is 
as high as 12.7% (FB). Hence with the correlations in 
this dataset, FDP could far exceed its mean with high 
probability. Since the purpose of the study is to identify 
target genes for a large-scale validation study, a smaller 
rejection region may be more appropriate to avoid exces- 
sive false positives. The permutation-based approach gives 
more conservative intervals than the formula-based one. 
The simultaneous prediction bands are high and too con-
servative for fixed rejection regions. 

4. Discussion 

It is feasible to construct a tight prediction interval for 
the FDP without specifying a parametric correlati

tatistics. When the dependence is 
iction interval for the FDP based on the 

on 
wstructure for test s

we derived a pred
eak, 

variance formula which takes correlations into considera- 
tion. This formula-based approach is computationally 
efficient even when the number of tests is very large. The 
prediction interval could help investigators decide what 
rejection regions are suitable for a particular study to 
control FDR. If the upper limit of prediction interval is 
unacceptably high, then selecting a smaller rejection re- 
gion might be more appropriate. We also discussed a 
permutation procedure which can be employed to find a 
prediction interval for the FDP without assuming weak 
dependence. This approach can be computationally quite  

Table 5. Comparison of upper limits (UL) of prediction 
intervals for the prostate cancer data (all in %). 

Method   FDR ˆ
Q  90% UL 95% UL 

3.0 (2.72) 9.6 13.3 
FB 

5.0 (3.63) 12.7 16.5 

3.0 

MN 

10.1 13.4 
Per 

5.0 15.5 20.2 

3.0 22.2 

5.0 29.5 

26.8 

36.2 

FB: fo a-based predicti rvals with log t ormation; Pe
tation-based prediction int MN: simultan rediction sing
Meinshausen’s permutation algorithm. 
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Appendix A. Asymptotic Distribution of  

e FDP 

.1. Under the general weak dependence assumptions 
e FDP is asymptotically normal (e.g. Theorem 2 of 

at 
that 

asymptotically normal. In particular, we also 

[23], when test statistics under H0 are weakly dependent 
and th 0V   as m  , the asymptotic normality im-  

plies 
A

 th 0 0 0

1 1
~ π ,π 1 πV

V
N

m m m
   

        
   

.  

Farcomeni [24]). Thus in this appendix, we assume th
some weak dependence assumption is satisfied so 
the FDP is 
assume approximate joint normality of V and R. As in 

Similarly, when test statistics under H1 are weakly de- 
pendent and 0U   as m  , asymptotic normality 
implies     
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Therefore, FDP has an approximate Normal dist bu-

tion. Assume that effect sizes are all equal. The variance 
of FDP can be derived using the delta method.  
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Appendix B. Correlation Formulas for θij 
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ed, we could convert the 
tics to z-scores by a bijective quantile transformation as 
in [26]. 

If t-tests are perform t statis- 

  1
2i n iz G t

  , 1,2, ,i m  , where Gn–2 
is the CDF of t distribution with n – 2 degrees of freedom. 
Then all the previous procedures apply. 
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