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Abstract 
 
In this paper, we extend the works by [1-5] accounting for autocorrelation both in the time specific effect as 
well as the remainder error term. Several transformations are proposed to circumvent the double autocorrela-
tion problem in some specific cases. Estimation procedures are then derived. 
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1. Introduction 
 
Following the works of [6], the regression model with 
error components or variance components has become a 
popular method for dealing with panel data. A summary 
of the main features of the model, together with a discus-
sion of some applications, is available in [7-10] among 
others. 

However, relatively little is known about the two way 
error component models in the presence of double auto-
correlation, i.e, autocorrelation in the time specific effect 
and in the remainder error term as well. 

This paper extends the works by [2-5] on the one-way 
random effect model in the presence of serial autocorre-
lation, and by [1] on the single autocorrelation two-way 
approach. It investigates some potential transformations 
to circumvent the double autocorrelation issue, along 
with some estimation procedures. In particular, we derive 
several transformations when the two disturbances fol-
low various structures: from autoregressive and mov-
ing-average processes of order 1 to a general case of 
double serial correlation. We deduce several GLS esti-
mators as well as their asymptotic properties and provide 
a FGLS version. 

The remainder of this paper is organized as follows: 
Section 2 considers simple transformations on the pres-
ence of relatively manageable double autocorrelation 
structure. In Section 3, general transformations are con-
sidered when the double autocorrelation is more complex. 
GLS estimators are derived in Section 4. Asymptotic  

properties of the GLS estimators are considered in Sec-
tion 5. Section 6 provides a FGLS counterpart approach. 
Finally, some concluding remarks appear in Section 7. 
 
2. Simple Transformations 
 
To circumvent the double autocorrelation issue, we first 
need to transform the model based on the variance-co- 
variance matrix. The general regression model consid-
ered is 0it it ity x u    , ;   
where 0

1, ,i N  1, ,t T 
  is the intercept and   is a  vector of 

slope coefficients, it

1k 
x  is a  row vector of ex-

planatory variables which are uncorrelated with the usual 
two-way error components disturbances 

1 k

it iu t    

it  (see [7]). In matrix form, we write y X u  .  
 
2.1. When the Errors Follow AR(1) Structures 
 
If the time specific term follows an AR(1) structure, 

1t t t     , 1  , with  20,t IID   , and the 
remainder error term also follow an AR(1) structure 

, 1it i t ite     , 1  , with ee I 0,it ID 2 , we 
can define two transformation matrices of dimensions 
   2T T 1    and  1T T   respectively,  
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the transformed errors *
i  and *  follow two different 

MA(1) processes, of parameters   and   respective- 
ly. Thus, by applying the appropriate transformation ma-
trices, the autoregressive error structure can be changed 
into a moving-average one. The only cost is the loss of 
the initial and first pseudo-differences, which has no se-
rious consequence for a long time dimension. As a result, 
we focus on the MA(1) error structure. 
 
2.2. When the Errors Follow MA(1) Structures 
 
Here, the time specific term t  follows an MA(1) struc-
ture, 1t t t      , 1   with  20,t IID    
while the remainder error term, it  also follows an MA 
(1) structure, , , 1t i te ei t i    , 1   with  

it  2
ee 0,IID  . For convergence purpose and assuming 

normality, the initial values are defined  

  2 2
0 e0, 1i N  

2      

and 

  2 2
0 0, 1N 2

        

The variance-covariance matrix of the three components 
error term is given by, 

    2 2 ' 2 '
e N N T T N NI I i i i i             (3) 

where       and       are positive defi-
nite matrices of order  and where T  .




 ,0, ,0x x 
 is defined by 

. The exact inverse of 
such matrices suggested by [11] and [1] does not involve 
the parameters 

    2 ,Toeplitz 1x

  and  . Following [11], let  be 
the Pesaran orthogonal matrix whose t-th row is given 
by,  

P

2 π 2 π
sin ,sin , ,sin

1 1 1t

t t Tt
L

T T T T

 π

1
                      




 

where  
'P P   ,  1diag , , T    , 

21 2   
π

cos
1t

t

T
     

,  and 'P P D 

 1, , tg d dD dia  with  2 
π

cos
1

t

T
 
 1 2 td 

 
. 

Pre-multiplying the model by  NI P
 of *u 

yields the fol-
lowing variance-covariance matrix  NI P u ,  

   '* 2 2I D I i i 
    2 '

e N N T T N Ni i       (4)  

where .  

eral T sformations 

eral case of double 

T Ti Pi 
 

. Gen ran3
 

e are now in the context of a genW
autocorrelation issue and lead to a suitable error covari-
ance matrix similar to Equation (4) and its inverse.  
 

.1. First Transformation 3
 

et PL   
tri

denote the matrix such that . Such '
TP P I   

a ma x does exist for   and is efinite 
matrix. Transformation of the initial model 

a positive-d
y X u   

by  NI P  yields  

 P y X u *
Ny I * *            (5) 

and the variance-covariance of the transformed errors is  

   * * *' 2 '
N

  2 ' ' 2 '        

E u u I P P

N T T N N TI P i i P i i I       
 

       
  (6) 

This transformation has removed the autocorrelation 
in the time-specific effect t . Unfortunately, by doing 
so it has infected the it s  a  worsened the initial cor- 
relation in the remaind  disturbances. An additional 
“treatment” is therefore needed.  
 

.2. Second Transformation 

nd
er

3
 

e now consider an orthogonaW l matrix and a di- P  
Pagonal matrix D  such that  ' 'P P P D     (di-

agonalization of 'P P    ). Thu cond 
transformation 

s, appl  a seying
 NI P  yields, 

  *y I P y X** ** **
N u            (7) 

The underlying variance-covariance matrix of the errors 
is, 

    ** **' 2 ' '
NE u u I P P P P       
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'    2 ' ' ' 2 ' N T T N NI P P i i P P i i P        P   (8a) 

or,  
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2

2
2
1




 , 
2

2
2 2




 , and 
2

2 2
3

2
212

1  


    ,  
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Here, because of the choice of matrices P  and 
 end up with 

P , 
we TI 

 elemen

 since is an or
tri

ng the procedure de-
ra, one gets  

P  

to

thogo
eed

nal ma-
x. Generally speaking,   and D  just n  to have 

zero off-diagonal ts, i.e.,  be diagonal matrices. 
The double autocorrelatio structure is thus absorbed, 
and one can easily accommodate with the non-spherical 
form of **  by means of an accurate inversion process.  
 
3.3. Computing the Inverse 

n 

 
The inverse of **  is obtained usi

eloped by [1]. After a bit of algebv

       
1**

2 2
1

1 1 1
N T N TE K E L J S

d N


      N T  

(9)

where  
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Proof: (see the A
 
4.

ition of the estimator followed 
ghted average property. 

The GLS estimator is, 

ppendix) 

 GLS Estimation 
 
We begin with the defin

y its interpretation and weib

4.1. The GLS Estimator 
 
Proposition 1: 

    '
11 1** ** ** **'** **

GLS X X X y
 

       (10) 

Proof: (Straightforward) 
 
4.

ression models, [12,13] provide 
n interpretation of the GLS estimator, which is appeal-

2. Interpretation 
 
In classical two-way reg
a
ing in view of the sources of variation in sample data. In 
the straight line of their work, the GLS estimator may be 
viewed as obtained by pooling three uncorrelated esti-
mators: the covariance estimator (or within estimator), 
the between-individual estimator and the within-indi- 
vidual estimator. They are the same as those suggested 
by [1] except for the last one which was labeled be-
tween-time estimator. We have, 

1) The covariance estimator, 

 '** **
1C

'** **
1

X A X  1X A y , 


where  1 N TA E K  ; 

2) The d between-indivi ual estimator,  

 ' '1** ** ** *
2 2B

*X A X X A y


 , 

 2 2

1
N TA J S

N
 where  and, 

e within-individual or, 3) Th  estimat

 ' '1** ** **
3T

**
3X A X X A


 y , 

where  3 N TA E L  . 

It is im
from so on

portant to note that these estimators are obtained 
me transformati s of the regression Equation (7), 

i.e., 

 ** ' * ** **y I P y X u    . N

The covariance estimator, C  
y 

is obtained when Equa- 
tion (7) is pre-multiplied b  1 1N TM E K A   ; the 
tra

 ones in the matrix o
nsformation annihilates the individual- and time-ef- 

fects as well as the column of f ex-
planatory variables. It is equivalent to the within estima-
tor in the classical two-way error component model (see 
[1-7]). 

The between-individual estimator B  comes from the 

transformation of Equation (7) by the matrix  
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 '
2

1
N TM i I

N
  . This is equivalent to averaging indi-

r each time period.  
ividual estimator T

vidual equations fo
The within-ind   is derived when 

Equation (7) is transformed by 3 N T M E 3L A  . The 
presence of the idempotent matrix NE  indicates that 
this transformation wipes out th ell as 
the time specific error term t

e con t term as wstan
 . Howe , the individual 

effect i

ver
  remains.  

 
4.3. GLS as a Weighted Average Estimator 

ge of 
e three estimators defined above.  

 
As in [14], the GLS estimator is a weighted avera
th

Proposition 2: 

C C B BF F FGLS T T              (11) 

with

 

,  

  ' '
11** ** ** ** **

12
1

1
CF X X X A




  , 

  ' '
11** ** ** ** **

2B

X

F X X X A X


  , 

and 

  ' '
11** ** ** ** **

3

1
T C BF X X X A X I F F

d


      

Proof: 
From Equation (10), it comes that  

    X y X
1 1**' ** ** **' ** **
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  1**' ** ** **' ** **' **
1 22

1
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X y X A y X A

X A y
d




  



 

y

By definition, the estimators C , B  and T  are re-
spectively such that 

**' ** **' *X A y X X *
1 1 CA  ,  

 **' ** **' **
2 2 BX A y X A X  , 

and  

 **' ** **' **
3 3 TX A y X A X  . 

Therefore,  
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with CF , BF  and TF  
 no

defined according to Equation 11).  
ld also te that the three estimators 

 (
We shou C , B  

and T  are uncorrelated. In fact, 

 
2

** 1
1 2 0N N T TA A E J K DS

N


    

and  

 ** 2
1 3 1 0N T TA A E K DL    

because 0T T N NK i E  
0

i , while   **
2 3 0A A   since

N NJ E  . As a result,  

     cov , cov , cov , 0C B C T B T         (12) 

Moreover, following [1], the fact that 

  1rank rM M   
    

2ank rank

1 1 1N T T N N



      
 

3M

T
   (13) 

le information gives evidence on the use of all availab
from the sample. The estimators C , B  and T  to-
gether use up the entire set of to 
GLS estimator 

 information build the 

GLS  with no loss at 
 

rs o tor, say 

all.  

5. Asymptotic Properties 
 
Under regular assumptions, the GLS and the three 
pseudo estimato f the coefficient vec GLS , 

C ,  and B T  are all consistent and asympto
 the one obtain

lassical two-way error component model (see [15]).  

 

tically 
ed in the equivalent. It is a result similar to

c
 
5.1. Assumptions 

We assume that the itx s  are weakly non-stochastic, i.e. 
do not repeat in repeated samples. We also state that the 

llowing matrices exist and are positive definite:  fo
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   ''**X A X ** ****
1plim plim N TX E K X

a
  
     1 NT NT      

for the first transformation; 

 

'

'
** **

** ** 2
2

1

1

plim plim
N TX J S X

X A X N
b

T T

         
      

 

 

for the second transformation; and  

   '' ** **** **
3

1 plim plim N TX E L XX A X
c

NT NT

   
   

      
 

more, in the straight for the third transformation. Further
line of [1], we also assume that, 

   '' ** **** **
1

2 plim plim 0N TX E K uX A u
a

NT NT

   
    

      
 

for the first transformation; 
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for the second transformation; 

   '' ** **** **
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NT NT

  
   

    






  

 addition,  

the variance-components 

for the third transformation. In

 ' 1lim i D i    , so that T T
T
quantity ' 1

T Ti D i   2 2
2 1 

. The lim
 and N 

symptotic 



infinite as T 
taken as T 

garding the error v
sures the a

 denotes by  remains 
its and pro lities a

, 
ss tions re-

ptotic erty of

The covariance estimator 

d
babi

. All along this section
ump

re 

following [1], we consider the “usual” a
ector **u , as stated in [16] and [17], 

which en normality.  

 
5.2. Asym  Prop  the Covariance  

Estimator 
 
Proposition 3: 

C  is consistent.  

T

Proof: 
Since, 

    
1**' ** **' **

C N T NX E K X X E K u 


     

Hence,  
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Making use of assumptions (a1) and (a2), we establish 
the consistency of the covariance estimator,  plim C  . 

Proposition 4: 
The covariance estimator C  has an asymptotic nor-

mal distribution given by,  

 
1
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2
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1
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X E K X

   

 

1 ation, we have  

(14) 

Proof: 
Under the M -transform

     ** ** 0N T N TE E K u E K E u      . 

Moreover its variance is given by  

   ** 2
1N T NV E K u E K    
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T  and its inverse is 

ual to  2

1
NE D


  while assumption (a2) states t

1

he 

absence of correlation between regressors and istur-
. We have 

 d
bances under the M1 transformation
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2
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. 

Thus, the asymptotic normality of the covariance esti-
mator immediately follows,  

 
1
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1

1
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5.3. Asymptotic Property of the Between-Time 
Estimator 

 
Proposition 5: 

The between time estimator B  is consistent.  
Proof: 
Since, 

  1**' ** **' **
2 2B X A X X A u 


   

Hence, according to assumptions (b1) and (b2),  

 

1

**' **

plim

NJ
X S X
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the consistency of the between time estimator,  

   

 

Making use of assumptions (b1) and (b2), we establish

 plim B  . 

Proposition 6: 
The between-time estimator B  has an asymptotic 

normal distribution given by,  
1
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1
1
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N T

a
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X J S X
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T T

 

                 
 

Proof: 
nsformation, we get  
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The variance of this error term is written as  

 
' 2
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Its inverse is  Again, ption (b2) states the ab-
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Thus, the asymptotic normality of the between-time es-
timator immediately follows,  

1
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1
1

, plim
N T

a
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X
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5.4. Asymptotic Property of the 

Within-Individual Estimator 
 

ator
Proposition 7: 

The within individual estim  T  is a consistent 
estimator.  

Proof: 
Since, 
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3 3T X A X X A u 
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f assumptions (c1) and (c2), we establish 
the consistency of the covariance estimator, 
Making use o

 plim T   

Proposition 8: 
thin individual estimator The wi T  has an asymp-

totic normal distribution given by,  
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 of the GLS Estimator 
 

Proposition 9: 
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5.5. Asymptotic Property

GLS  
ator 

is asymptotically equivalent 
to the covariance estim C  and therefore,  

 
1

**' **

2

1
, lim N TX E K X

N p
NT




       

 (18) 

1

a
GLS

NT

 

    

Proof: 
From Equation (10), we get  

 
   

11 1**' ** ** **' ** **X X X u
        

GLSNT
NT NT

         
 

   

On the one hand, we have  

   

   

1**' ** ** **' **

2
1

**' ** **' **

2

1

1 1
            

N T

N T N T

X X X E K X

NT NT

X E L X X J S X

d NT N N T




 



 
 

 

here  ' 1 2 2
2 1T Td i D i     w 

om assumption (a1), we find 

, as . There-

fore, fr that 

T 

 

 **
1

wise
' **

0N TX E L X

d NT


 , when ,N T  . Like , 

assumption (a2) leads us to 
 **'X J **

1
0

X

N
 , 

when . Hence,  

2

N TS

N T



,N T 

   
1**' ** ** **' **

2
1

1
plim plim N T

X X X E K X

NT NT

             

 

On the other hand, we can write 

   

   

1**' ** ** **' **

** **

1 N T
X u X E K u

NT2
1

**' **'

2

1 1
            N T N T

NT

X E L u X J S u

N NT



 
 

the M1 and mations, we get 

d NT


 


. 

Under  M2 transfor

 

 

**' **

**' **

1
   plim

1
2

plim 0

N T

N T

X E L u

d NT

X J S u

T

 
  
 
 

N N
 



 






Copyright © 2011 SciRes.                                                                                  OJS 



J. M. B. BROU  ET  AL. 192 

leading to  
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2
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As a result, 
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i.e.,  
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Finally,  GLSNT    has the same limiting distribu-
tion as  CNT  

 of the two
. This shows the asymptotic 

equivalence  estimators GLS  and C . We 
then deduce that,  
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Thus, the GLS estimator suggested under the double au- 
ation error structure has the desired asymptotic 
ies. 

 
6. FGLS Estimation 

the variance-
n it i

 approach is required. The method 
used consists in removing the time specific effect to ob-
tain a one-way error component model where only 

tocorrel
propert

 
In practice, covariance matrix is unknown, 
as well as all the parameters involved i s determ nation. 
Therefore, a FGLS

it  
hiscarries the serial correlation (see [18] and [3]). T

method has been directly applied to AR(1) and MA(1) 
 

processes in separate subsections.  
 
6.1. Feasible Double AR(1) Model 
 
We assume that , 1it i et it     , 1t t t     ,  

1  , 1 ,  2
ee 0IID it  , , 20,t IID    .  

The within error term is,  

        
N T N T N T Tu E I u E i E I i           

 (19) 

The associated variance-covariance matrix is, 

       ' 2 ' 2
N T T NE uu E i i E           (20) 

Since it  follows an AR(1) process of parameter  , 
we define the matrix C  as the famili
mation matrix with parameter 

ar [19] transfor-

 . This matrix is su  ch
that, 

   2 ' 2 2 2
e1 T TC C I          I

r is given by The resulting GLS estimato

  1*' * *' *
W X X X y


            (21) 

where   *
Ny I C  y  and  *

NX I C X  . 
usThe covariance matrix of   *

Nu I C u  , ing [20] 
trick, is  

     * 2 2 2 2
e e1 TN N Td E J E E

 
          

(22) 
where 
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1
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Following [21], another GLS estimator can be derived. 
We label this estimator the within-type estimator and is 
given by 

  1**' ** **' **
WGLS X X X y


        (23) 

with  
1

*** *2y y


   and  
1

*** *2X X


  . In order to 

get the estimates of numerous parameters involved in the 
 we first need an estimate of the correlation coef-model,

ficient  . The autocorrelation function of the error 

term given by u  is 

       2 2
,

1

                 for 0,1, ,

N

h t

h
it i t h

N
h E u u      

    

We deduce from it that 

 
 

  (24) 

     
     

1 2

0 1


 


 





. It then leads 
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to a convergent estimator of   (see [7]), i.e.,  


     

    
1 2

0 1





where     

 





 

 
,

1 1

1 N T

it i t h

i t h

h u u
N T h

 
  


    with  itu  de-

fined s the OLS ra esidu f the within ation als o  equ
  y X u  . Hence, we get  




 1

1












 2

e BQU estimate of 

              (25a) 

 (25b) 

Furthermore, th

and  

    1 1d T            
22  
  

2
e  is also avail-
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2

e
1 1

N Tu E E u
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u  being the OLS estimate of *u . As a consequence, 
we get  

*


2
e

1

2

2






              (27a) 


and  
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  2 2
0

N

N
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e now need to find 
2

  and   . Th autocovariance 
function of the initial error term u  is gi n  

e 
ve

    2 2 2 2

1
h h hN

h h
N                    
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0,1, ,h t  . 
It comes that, 

      0 0     2 2 2
0

1

N

N
              

  (28) 

We immediately deduce a c erge
second correlation coefficient, ,  
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i.e.

nt estimator of the 
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1
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N
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where   



   


   

            
      

  (29) 
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noting the OLS residuals of y X u  . The varian s 


itu

ce
2
e  is estimated by,  

   22 2
1e         

ators mention
ch as the within

        (30) 

 addition to the GLS estim ed in Se
r GLS estimators su  estimator 

In
othe

ction 4, 

W  
and the within-type estimator WGLS  can all be per-
formed as well. Actually, the knowledge of the AR(1) 
parameters   and   

termin
entitles us to bu

n of   1** 


ild the ma
lved in e de atio , say ma

trices 
trices invo

C
 th

 , C , C , P ,  , D , TK , TL , S

, 1e ei t

 and 

6.2. Feasible Double MA(1) Model 

 state that

T .  S
 

 
We now  it it    , with 1  and 

 2
ee 0,IID . A om individual it  gain, deviations fr

means lead to the model  

  y X u   with   
it iu it  

trix of u

. 

The 
Equ

variance-covariance ma
ation (20), with now  

 is still given by 

2
Toeplitz 1, ,0, ,0

1
r 

 





 
     

     (31) 

Here, we set TC C , TC  denoting the correlation cor-
rection matr s defi  by [8] in their orthogonalizing 
algorithm. We then transform th hin model by 

i
e wit

x a ned

 NI C
riance
 . The ew er  ha  the fo winn  

atrix,  
ror term s llo g 

 m

*u  
cova

   * 2 2 2 2 TN N TE Ed E J
 

       (32) 

Because of the 

      

moving average nature of the process, 
linear estimation of the correlation parameter   is not 

easily obtainable. Instead, 
21

r 










 p useful. roves 

The autocorrelation function of the within error term  itu  
is given by,  

       h2
,

1
it i t h

N
h E u u

N    
           (33) 

                  for 0,1, ,h t 

with  h  denoting the autocovariance function of 


it . As a conseque     

2  
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1

N
j

N
    

 for some  

 and  2j 
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0 0

N

1N
        

      (34) 
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where     
 

,

1

1 N T

it i t h

i t h

h u u
N T h

 
 


    is the pirical 

1

em

autocovariance function and  itu s  are the OLS residuals 
 of the within equation. We also get, for some 2j  , 
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1
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N
r
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       (35) 

We then apply the [8] matrix to the data (for in-
stance to the within transformed dependent vector 

 TC  
y ). 

r, 
to get estim  of the 
Moreove TC  will be applied to the vector of constants 

tates s . 
 
W , in the straight e 

of 

Ste pute 
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[8], the following steps: 
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Step 2: Compute  
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   knowing that 
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We then obtain the estimate of 

t  r 2,t  

2d  as   22
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 of the initial 

pirical counterpart 

The autocovariance function 

 

 
2     ,it i t hh E u u h    
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mation of 
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 2

  and r ,  
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2 2
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          (

The within estimator 

36b) 

W  and the within-type one 

WGLS  

GLS

are now obtainab er, the GLS estimator le. Howev
  can be estimated, p the MA(1) parameters rovided 

  and   
2

are known, y under th onditions  especiall e c

1 4 0r     and 
2

1 4 0r    . In other words, 

the estimates r  and r  should b h lie e 

open interval 

ot  inside th  

1 1
,

2 2
  
 

 as a 

GLS

pre-requisite to a direct  

estimation of  , C , and B T .  

7. Final Remarks 
 

 au dealt with some par-
simonious models, especially the AR(1) and MA(1) ones, 
as well as the general framework. T

a of the variance-covariance matrix of the errors, 
rived the GLS estimator and related asymptotic 

properties. An investigation of the FGLS 
ered in the paper.  
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ppendix: Computing the Inverse of 
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