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Abstract

In this paper, we extend the works by [1-5] accounting for autocorrelation both in the time specific effect as
well as the remainder error term. Several transformations are proposed to circumvent the double autocorrela-
tion problem in some specific cases. Estimation procedures are then derived.
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1. Introduction

Following the works of [6], the regression model with
error components or variance components has become a
popular method for dealing with panel data. A summary
of the main features of the model, together with a discus-
sion of some applications, is available in [7-10] among
others.

However, relatively little is known about the two way
error component models in the presence of double auto-
correlation, i.e, autocorrelation in the time specific effect
and in the remainder error term as well.

This paper extends the works by [2-5] on the one-way
random effect model in the presence of serial autocorre-
lation, and by [1] on the single autocorrelation two-way
approach. It investigates some potential transformations
to circumvent the double autocorrelation issue, along
with some estimation procedures. In particular, we derive
several transformations when the two disturbances fol-
low various structures: from autoregressive and mov-
ing-average processes of order 1 to a general case of
double serial correlation. We deduce several GLS esti-
mators as well as their asymptotic properties and provide
a FGLS version.

The remainder of this paper is organized as follows:
Section 2 considers simple transformations on the pres-
ence of relatively manageable double autocorrelation
structure. In Section 3, general transformations are con-

sidered when the double autocorrelation is more complex.

GLS estimators are derived in Section 4. Asymptotic
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properties of the GLS estimators are considered in Sec-
tion 5. Section 6 provides a FGLS counterpart approach.
Finally, some concluding remarks appear in Section 7.

2. Simple Transformations

To circumvent the double autocorrelation issue, we first
need to transform the model based on the variance-co-
variance matrix. The general regression model consid-
eredis Y, =, +x0B+U,, i=1---,N; t=1---,T

where f, is the intercept and £ is a kxl vector of
slope coefficients, X, is a Ixk row vector of ex-
planatory variables which are uncorrelated with the usual
two-way error components disturbances U, =z + 4,
+v, (see [7]). In matrix form, we write y = X7 +U.

2.1. When the Errors Follow AR(1) Structures

If the time specific term follows an AR(1) structure,
A=p A, &, |/7/1| <1, with g ~ ||D(0,G€2), and the
remainder error term also follow an AR(1) structure
Vi = PViea T, |p| <1, with e ~ IID(O,o-ez) , we
can define two transformation matrices of dimensions
(T —2)><(T—1) and (T—l)xT respectively,

-p, 1 o --- 0
0 - | I

C,=| . L and
" : R
0 - 0 -p, 1
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-p, 1 0 0
0 —-p 1 "
C = . N . 1
v : - - .0 M
0 0 -p, 1
and since we have
€3 — L%
C/?,vai =
Cir —PiCiTo
and
&= P&
C,CAi= : =1 (2)
&~ Pyéro

the transformed errors v, and A" follow two different
MA(1) processes, of parameters p, and p, respective-
ly. Thus, by applying the appropriate transformation ma-
trices, the autoregressive error structure can be changed
into a moving-average one. The only cost is the loss of
the initial and first pseudo-differences, which has no se-
rious consequence for a long time dimension. As a result,
we focus on the MA(1) error structure.

2.2. When the Errors Follow MA(1) Structures

Here, the time specific term 4, follows an MA(1) struc-
ture, 4 =& —p,6 » |py|<1 with & ~1ID O,af)
while the remainder error term, v, also follows an MA
(1) structure, v;, =¢€; —p,€&,,, |o,|<1 with

ey ~ IID(O, o-ez) . For convergence purpose and assuming
normality, the initial values are defined

Vo~ N(0,07 :(1+p5)a§)

and
Jy ~ N(o,aﬂ2 =(1+p§)a§)

The variance-covariance matrix of the three components
error term is given by,

2=07 (1, ®T, )+ (ly ®kir )+ 07 (iyiy ©T,) (3)

where I', =I'(p,) and ', =T'(p,) are positive defi-
nite matrices of order T and where F() is defined by
I'(x) = Toeplitz(1+x*,-X,0,---,0) . The exact inverse of
such matrices suggested by [11] and [1] does not involve
the parameters p, and p,. Following [11], let P be
the Pesaran orthogonal matrix whose t-th row is given

by,
2 . tn . [ 2tn . Tin
L = X | sin ,sin ,t0,S1n
T+1 T+1 T+1 T+1
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where

PI,P' =A, A=diag(A,--,A;),

J, P[P =D and

tnj
+1)

Pre-multiplying the model by (1, ® P)yields the fol-
lowing variance-covariance matrix of u” = (1, ® P)u,

tn
A, =1+ p? —2p, cos
t P, —4pP; [T+1

D =diag(d,,---,d,) with dt:1+pf—2pvcos(_r

*

s =02 (1 ®D)+af,(|N ®i¢i?’)+a§(iNi'N ®A) @)
where if = Pi; .
3. General Transformations

We are now in the context of a general case of double
autocorrelation issue and lead to a suitable error covari-
ance matrix similar to Equation (4) and its inverse.

3.1. First Transformation

Let P, denote the matrix such that P,I",P, = I, . Such
a matrix does exist for I', and is a positive-definite
matrix. Transformation of the initial model y= Xn+u

by (I, ®P,) yields
y =(ly®P,)y=Xn+u" (%)
and the variance-covariance of the transformed errors is

T =E(uu)=0} (1, ®PI,P;)
2 i 2 )
+O—;4(IN®PEITITP/1)+O-E(ININ®IT)

This transformation has removed the autocorrelation
in the time-specific effect A,. Unfortunately, by doing
so it has infected the v;s and worsened the initial cor-
relation in the remainder disturbances. An additional
“treatment” is therefore needed.

3.2. Second Transformation

We now consider an orthogonal matrix P and a di-
agonal matrix D such that P(P,,P;)P'=D (di-
agonalization of P,I",P, ). Thus, applying a second
transformation (I, ® P) yields,

y =(ly®P)y =X"p+u” )
The underlying variance-covariance matrix of the errors

S’

sk ok

E(u™v™) =02 (1, ®P(PL,P))P)
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o (1 ®P(Piir Py )P )+ 0 (iniy ®PP)  (8a)
or,
2"*:%E(u**u**')=012(lN®D) )
+o; (1, ®ifi")+ 03 (iyiy ®A)

where if =PPji., A=PP’, P(P,I,P)P =D,

2 2 2

o c
2 _ 0, 2 _Yu 2_93 4 2 2
o, =—%, oy =—r,and oy =—=1-0y -0,

c c c

if =0 +0'f, +o).

Here, because of the choice of matrices P, and P,
we end up with A=1; since P is an orthogonal ma-
trix. Generally speaking, A and D just need to have
zero off-diagonal elements, i.e., to be diagonal matrices.
The double autocorrelation structure is thus absorbed,
and one can easily accommodate with the non-spherical
form of X" by means of an accurate inversion process.

3.3. Computing the Inverse

The inverse of X" is obtained using the procedure de-
veloped by [1]. After a bit of algebra, one gets

w1 1 1 1
) =—(E,®K; )+—(E, ®L, )+—(J, ®S
(57) ' = 2By 0K, ) (0L )+ i=(0, @)
©
where
d=(if'D'it)a3 +o7, Iy =iyiy,
EN:IN—J—N, K,=D"'-L,
N
L' piiip!
' (i7'D™) T
1 o2 T
S =|—S- 2 SitiZ's
Tl o-fN+0120'22(iT”SiT;”) o
and
No;?

S =diag(s,, ", with §; =———»——.
g(simrnsy) o d,o” + NA,o;

Proof: (see the Appendix)
4. GLS Estimation
We begin with the definition of the estimator followed

by its interpretation and weighted average property.
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4.1. The GLS Estimator

Proposition 1:
The GLS estimator is,

-1

' o\ 1 s ' s\ Tl
%Ls=(x (=) X ) X“ (") y" (o)
Proof: (Straightforward)
4.2. Interpretation

In classical two-way regression models, [12,13] provide
an interpretation of the GLS estimator, which is appeal-
ing in view of the sources of variation in sample data. In
the straight line of their work, the GLS estimator may be
viewed as obtained by pooling three uncorrelated esti-
mators: the covariance estimator (or within estimator),
the between-individual estimator and the within-indi-
vidual estimator. They are the same as those suggested
by [1] except for the last one which was labeled be-
tween-time estimator. We have,

1) The covariance estimator,

\ -1 \
ne=(X"AX") XAy,

where A :(EN ®KT);

2) The between-individual estimator,
5 s\ 71 x| %
7o=(x"A X XAy

where :L J, ®S.) and,
AZ N 2 N T

3) The within-individual estimator,
ok s\ 71 *x ok
(XA X X Ay

where A =(E,®L;).
It is important to note that these estimators are obtained

from some transformations of the regression Equation (7),
ie.,
Y =(Iy®P )y =X"n+u".

The covariance estimator, 77, is obtained when Equa-
tion (7) is pre-multiplied by M, = (EN K, ) =A; the
transformation annihilates the individual- and time-ef-
fects as well as the column of ones in the matrix of ex-

planatory variables. It is equivalent to the within estima-
tor in the classical two-way error component model (see

[1-7D).

The between-individual estimator 7, comes from the
transformation of Equation (7) by the matrix

0JS
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M, =W(IN ®I; ) This is equivalent to averaging indi-

vidual equations for each time period.

The within-individual estimator 7, is derived when
Equation (7) is transformed by M, = (Ey ® L; ) = A,. The
presence of the idempotent matrix E, indicates that
this transformation wipes out the constant term as well as
the time specific error term 4, . However, the individual
effect x; remains.

4.3. GLS as a Weighted Average Estimator

As in [14], the GLS estimator is a weighted average of
the three estimators defined above.
Proposition 2:

Nors = Fetle + Feng + Ry (11)
with,
1 *k *k -1 *k -1 *k 3k
Fcza_fx (") X7 X"TAXT,
sk ok ok -1 s ok
FB:(X (") x)x AX™,
and

1

FT :é(x**’ (Z**)-l X**)i X**’Aix** - —Fc _FB

Proof:
From Equation (10), it comes that

X o (2** )-1 y** _ (X - (Z** )-1 X **)UGLS
with

okt sk

X**v(z**)-l y** ILX**'A,)/** +X Azy

1 ekt ek
+—X
gAY
By definition, the estimators 7., 7, and 7; are re-
spectively such that
X

skt ok

Ay =(XTAX )ne,

and

skt

X Agy** :(X**vij**)nT.

Therefore,
X - (Z**)_l y** _ %(X **'Alx**)ﬂc
1

-‘,—(X**IAZX**)]]B +é(x**'ASX**)77T
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Or,
(X**-(z**)*l x**)ﬂGLS =%(X**VA1X**)UC
1
+(X**‘A2X**)UB +é(x**'A3X**)77T
Thus,

s = =X (27) X (XA
1
-1

+(X**'(Z**)_l X**) (X**'AZX**)TIB

+é(x**-(2**)-1 X**)_l (X**IA3X**)77T
= Fene +Frpg + Fgy

with F,, F; and F defined according to Equation (11).
We should also note that the three estimators 7., 77
and 7; are uncorrelated. In fact,

2
(o}

AX"A, :WI(ENJN ®K;DS;)=0

and
AZ"A =0 (Ey ®K;DL; )=0
because K;if =0=E,i,,while AZ"A =0 since
JyEy =0. Asaresult,
cov(77¢,77 ) = cov (e, ) = cov(mg.,m; ) =0 (12)
Moreover, following [1], the fact that
rank (M), )+rank (M, ) +rank (M, )

=(N-1)(T-1)+T+(N-1)=NT (13)

gives evidence on the use of all available information
from the sample. The estimators 7., 7 and 7; to-
gether use up the entire set of information to build the
GLS estimator 775 with no loss at all.

5. Asymptotic Properties

Under regular assumptions, the GLS and the three
pseudo estimators of the coefficient vector, say 74,
N, Mg and 7, are all consistent and asymptotically
equivalent. It is a result similar to the one obtained in the
classical two-way error component model (see [15]).

5.1. Assumptions
We assume that the x,S are weakly non-stochastic, i.e.

do not repeat in repeated samples. We also state that the
following matrices exist and are positive definite:
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NT

“AX X" (B, @K )X
(a,)plim[%]:plim[ (Ey ®K7) J

for the first transformation;

ok

ok 1 ok
. X | —=Jy®S; | X
cax) X (Ees]
f :pllm

T

(b) plim[

for the second transformation; and

sk ok X o E L X P
(Cl)plim[%j = plim[ ( v ® T) J

NT

for the third transformation. Furthermore, in the straight
line of [1], we also assume that,

. . x**' E ® K ok

NT

for the first transformation;
X **I Kk
(b, ) plim [%J

X" [NIZJN ®3Tju**

T

=plim =0

for the second transformation;

' ok X**‘ E L ok
(cz)plim[ﬂ]:pﬁm[ (B OL )0 J:o

NT NT

for the third transformation. In addition,

lim i”’D7'if)= , so that the variance-components
quantity (ITi D' if)o-22 +07 denotes by d remains
infinite as T — o . The limits and probabilities are
taken as T —>o and N — . All along this section,
following [1], we consider the “usual” assumptions re-
garding the error vector u"’, as stated in [16] and [17],
which ensures the asymptotic normality.

5.2. Asymptotic Property of the Covariance
Estimator

Proposition 3:
The covariance estimator 77, is consistent.
Proof:

Since,

ne =n+(X"(Ey ®|<T)x"")’1 X" (Ey ®K; Ju”
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Hence,
-1
X7 (Ey ®K; ) X"
plim(77C —77) = [plim[ ( NNT i ) D
xplim[ X (E“N? Ky )u J: 0

Making use of assumptions (al) and (a2), we establish
the consistency of the covariance estimator, plim (ryc ) =n.
Proposition 4:
The covariance estimator 7). has an asymptotic nor-
mal distribution given by,

X**'(EN®KT)X**D_]

1
2 5N|n, lim
e g NT o2 (p ( NT

(14)
Proof:
Under the M, -transformation, we have

E[(Ey ® K, )u™ |=(Ey ®K;)E(u™)=0.

Moreover its variance is given by
V[(Ey®K;)u" =07 (Ey ®K;) and its inverse is

equal to LZ(EN ® D) while assumption (a2) states the
Gl

absence of correlation between regressors and distur-
bances under the M, transformation. We have

X7 (Ey®K Ju™

I , (15)
N[O,Glzplim(x (EN®KT)X D

NT

and,

\/N_T(ﬂc _77)

(X(Ey @K )XY (X (E, ®K, Ju”
- NT JINT

from which we deduce that

VNT (77C —77)—"—)
-1
X" (Ey®K; ) X"
N O,Gf[plim( ( N T) B

NT

Thus, the asymptotic normality of the covariance esti-
mator immediately follows,

X**v(EN ®KT)X** \J]—l

2 ,N ! lim
e T NT o2 P NT
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5.3. Asymptotic Property of the Between-Time
Estimator

Proposition 5:
The between time estimator 775 is consistent.
Proof:
Since,

£l sk -1 k! sk
e =n+(XTAXT) X" Au

Hence, according to assumptions (bl) and (b2),

k1 \] *k
X (NN2® S, J X

T

X (ij@@STju**

T

-1

plim(i]B —77) =| plim

=0

x plim

Making use of assumptions (b1) and (b2), we establish
the consistency of the between time estimator,
plim(75) =17 .

Proposition 6:
The between-time estimator 77, has an asymptotic
normal distribution given by,

-1
LRl 1 *k
X (ZJN ®szj

T

ng ——N n,Tl plim

(16)
Proof:
Under the M,-transformation, we get

EK%@ |T]u**}=(%®|TjE(u**)=o

The variance of this error term is written as

i o?

N | 2a-1 2 L
[—N ®IT]u =i+ (ir 4i7")

Its inverse is S; . Again, assumption (b2) states the ab-
sence of correlation between regressors and disturbances
under the M, transformation. We get

X (JNZ® S, )u**
N d

T

\Y%
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X (J’\‘ZGDST)X**
N
N| 0,plim

T

In addition, we have

from which we deduce that

‘/?(773 _77)_(1—)

-1

X (JNZ®STJX**
N
N| 0, plim

T

Thus, the asymptotic normality of the between-time es-
timator immediately follows,
-1

2

x( ! JN®szj**

1
—2 5 N| 7,—| plim
T7s n T p T

5.4. Asymptotic Property of the
Within-Individual Estimator

Proposition 7:

The within individual estimator 7; is a consistent
estimator.

Proof:

Since,

okt ok

k! *k -1
o =n+(XTAXT) X AU

Hence,

1
, [ XT(E,®L )X”
phm(nT—ry):[pllm( ( NNT ) H

xplim( X (ENN(:) Lr)u J:o
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Making use of assumptions (c1) and (c2), we establish
the consistency of the covariance estimator,

plim (7 ) =7

Proposition 8:
The within individual estimator 7; has an asymp-
totic normal distribution given by,

-
X" (E,®L )X"
m—2>N n,l\?—T[plim( (B L) H

NT
(17)

Proof:
Under the M;-transformation, we obtain

E[(Ey®L)u" |=(Ey ®L)E(u™)=0
The variance of (Ey ®L; )u™ is obtained as

V[(Ey®L )u™|=d(Ey ®L;)

. . | .
The inverse of this matrix is E(EN ®L; ). Assumption

(c2) states the absence of correlation between regressors
and disturbances under the M3 transformation. We have

X" (Ey®L )Ju”

JNT
X™(E, ®L )X"™
N[O,d plim[ ( N T) D
NT

mm—n):[X““(EN®LT>x**]‘

d

and,

NT

X" (E, ®L; u"
X
INT

from which we deduce that

\/ﬁ(m _77)_d—>

okt ok -1
N O,d{plim(x (Ey ®Lr)X j}
NT

Thus, the asymptotic normality of the within individual
estimator immediately follows,

-1
X" (E, ®L X"
n —2>N n,%(plim[ (EuOL) B

NT
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5.5. Asymptotic Property of the GLS Estimator

Proposition 9:
The GLS estimator 75 is asymptotically equivalent
to the covariance estimator 7. and therefore,

Proof:
From Equation (10), we get

X (2** )-l X" ! X (E** )-1 =

NT NNT

\/ﬁ(ﬂGLs _77) =

On the one hand, we have

X**v(z**)*lx** :LX**'(EN@)KT)X**
NT ol NT
1 X7 (Ey®L X"

+— +L
d NT N

X" (3, ®8)X"
N°T

where d =(iT’1'D'1iT’I)0'22 +07 > o, as T — 0. There-
fore, from assumption (al), we find that

1 X7(Ey®L ) X"
d NT

—0,when N, T — . Likewise,

1 X7 (3, ®S;)X”

assumption (a2) leads us to N T -0,

when N,T — o . Hence,

okt ok -1 ok
X ) X okt ok
i (=") 1 [x (Ey ®K; )X j

=—rplim
NT o} P NT

On the other hand, we can write

X (2** )-1 0 1 X**V(EN ®K, )U**

N e UNT .
1 X7 (Ey®Ly)u” L1 X" (Iy®S; )u”
d JINT N> JINT
Under the M, and M, transformations, we get

Sl 1 X7 (Ey®Ly)u”
d

INT

X**' J S ek
:plim(% (3 ©S;)u j:o

T

+
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leading to
k! *k -1 ok Kkt ok
lim 2E)Y =) L plim| X (By @K )u
’ NI N
As aresult,
plim | VNT (75 =71) |
X (E, ®K )XY
=plim { ( N T) J
NT
; Hx**‘(EN®KT)u**
x plim
~NT
ie.,

plim[ﬁ(ﬁel_s _77):| = plim[\/ﬁ(ﬂc _’7):|

Finally, +/NT (77q,s —7) has the same limiting distribu-
tion as ~/NT (7, —7) . This shows the asymptotic
equivalence of the two estimators 7 and 7.. We
then deduce that,

X**v(EN ®KT)X**\JJ]

1
2 5N|n, lim
MeLs n NT 012 [P { NT

Thus, the GLS estimator suggested under the double au-
tocorrelation error structure has the desired asymptotic
properties.

6. FGLS Estimation

In practice, the variance-covariance matrix is unknown,

as well as all the parameters involved in its determination.

Therefore, a FGLS approach is required. The method
used consists in removing the time specific effect to ob-
tain a one-way error component model where only v
carries the serial correlation (see [18] and [3]). This
method has been directly applied to AR(1) and MA(1)
processes in separate subsections.

6.1. Feasible Double AR(1) Model

We assume that v, = p,v; _ +e;, 4 =p, A4 +¢&,

<1, |p|<1, ¢ ~1D(0,07), & ~1ID(0,07).

Py

The within error term is,
U=(Ey ®I; )u=(Eyu®i )+(Ey ®1; )v=u®i; +v
(19)

The associated variance-covariance matrix is,
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5= E(Ga')zaj(EN ®iri )+o? (E, ®T,) (20)

Since v, follows an AR(1) process of parameter p,,
we define the matrix C, as the familiar [19] transfor-
mation matrix with parameter p,. This matrix is such
that,

C(O'fl"v)C' :(l—pf)oflT =o’l;
The resulting GLS estimator is given by
* * -1 koK
e =(X"X ) X"y 1)
where y"=(1, ®C)y and X" =(1,®C)X.
The covariance matrix of u” =(I, ®C)u, using [20]
trick, is

' =(02(1-p,)d +03)(EN ®3¥)+03(EN ®E))

(22)
where
|;:C|T:(1—pv){ ti ! 1]
=(l=p)(a@ 1 - 1) =(1-p,)if
Jr=—i, B =1 -J7
and

:(l—pv)z[az+(T—1)]:(l—pv)2d;

Following [21], another GLS estimator can be derived.
We label this estimator the within-type estimator and is
given by

skt ok

£ ok -1
UWGLs:(X X ) Xy (23)

*_l ~ /\*—l *
with y"=6,2 2y and X" =0,2 2X". In order to
get the estimates of numerous parameters involved in the
model, we first need an estimate of the correlation coef-
ficient p,. The autocorrelation function of the error

term U is given by
- -~ N — "
V(h)ZE(UitUi,th)=(Tj(O'f,+pvo'3) (4)
forh=0,1,---,t

We deduce from it that p, = =——=—. It then leads
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to a convergent estimator of p, (see[7]), i.e.,

RVOIRD

where ;(h) :;i i

N(T—h) 55
fined as the OLS residuals of the within equation

itai,t—h with l]it de-

o

§/ = 5(77 +U. Hence, we get

o= o (25a)
1_pv
and
dr=(1-p,) [&2 (T —1)} (25b)

Furthermore, the BQU estimate of o, is also avail-
able as

AK!

U (E,®E)D
Oe=r———"—
(N=1)(T-1)

u being the OLS estimate of U’. As a consequence,
we get

(26)

~2
o =2 (27a)
1-p,
and
~ N 2 ~
o = (ﬁj 7(0)-on (27b)

~2 ~ .
We now need to find o, and p, . The autocovariance
function of the initial error term U is given

r(0)= st s+ ok = 7 0) sl

for h=0,1,---,t.
It comes that,
~ ~ N 2 ~ ~ ~
o1 = }/(O)—(ﬁ]}/(O) =7(0)-0,-0v  (28)

We immediately deduce a convergent estimator of the
second correlation coefficient, i.e.,

o= oo

P, = ——— (9
[0)-70]-( 4 [F0-70)
where ;(h) Iﬁﬁ;tilaitai,t—h with Ui de-
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noting the OLS residuals of y = X7 +u. The variances

o’ is estimated by,

~2 A2\ ~2
Oe =(1—p1)0,1 30)

In addition to the GLS estimators mentioned in Section 4,
other GLS estimators such as the within estimator 7,
and the within-type estimator 7,5 can all be per-
formed as well. Actually, the knowledge of the AR(1)
parameters p, and p, entitles us to build the matrices
involved in the determination of (Z**) , say matrices
C,,C,,C,P,A, D, K, L, S and §;.

6.2. Feasible Double MA(1) Model

We now state that v, =e; —p,€;,_,, with |pv| <1 and
ey ~ IID(O, o’ 2\ . Again, deviations from individual
means lead to the model

)7: Y;]H] with Uit :Zzi +Vit.
The variance-covariance matrix of U is still given by
Equation (20), with now

r, :Toeplitz[l, r, =1_LV2,0,-.-,0] 31)
+

Here, we set C=C;, C; denoting the correlation cor-
rection matrix as defined by [8] in their orthogonalizing
algorithm. We then transform the within model by
(I, ®C). The new error term u" has the following
covariance matrix,

3 = (o, +0V2)(EN ®J7 )+03(EN ®E) (32)
Because of the moving average nature of the process,

linear estimation of the correlation parameter p, is not

\4

easily obtainable. Instead, r, = 1—p — proves useful.
+p0,

The autocorrelation function of the within error term Uit
is given by,

}N/(h) = E(l]itl]i‘th)=(NT_j[o_i +7 (h)] (33)
forh=0,1,---,t

with 7, (h) denoting the autocovariance function of

~ ~2 N &, .
vii. As a consequence, o :( j}/(]) for some

-1

j=2 and

v =7,(0)= (%};(o)—& (34)
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P 1 N T 2 2
where y(h)=——— UitUit-h is the empirical
=N &
autocovariance function and Uis are the OLS residuals
of the within equation. We also get, for some j>2,

A A

r =Lﬂ[;(1)—}(j)} (35)

(N —I)Uv

We then apply the [8] matrix C; to the data (for in-
stance to the within transformed dependent vector V).
Moreover, C; will be applied to the vector of constants
to get estimates of the «,S. We have, in the straight line
of [8], the following steps:

Step 1: Compute y;, = i/“ and
gv,l

y - MY

it e

* gv,lfl

Yy =——— for t=2,--T
\' gv,t
a2
where g,, =1- Arv for t=2,---,T.

g v,t-1
1

Step 2: Compute Yy~ = o3 2 y" knowing that
i =Crir =(oy &, -+ o ) The estimates of the ¢S are

obtained as 2{1 =1 and

[
&t=¢ for t=2,--,T.
gv,t

. . 2 ~2 T ~2
We then obtain the estimate of d’ as d, =) ar .
t=1
The autocovariance function
2 e
y(h)=E(uu,., ) =y,(h)+o,+y,(h) of the initial
composite error term U and its empirical counterpart

N T . A ~
y(h):ﬁ;tglunuu_h ,(Unbeing the OLS

residuals of the initial two-way model) permit the esti-

~2 ~
mation of o, and r;,

~2 -~ ~2 A2

o.=7(0)-0v -0 (36a)
and
. ()=t -0,
f, o r)zroy —on (36b)
o
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The within estimator 7, and the within-type one
TMweLs are now obtainable. However, the GLS estimator
Mas can be estimated, provided the MA(1) parameters
p, and p, are known, especially under the conditions

A2 A2
A, =1-4r,>20 and A, =1-4r, >0. In other words,

the estimates r; and r, should both lie inside the

. 11 . .
open interval (—E,Ej as a pre-requisite to a direct
estimation of 755, 7., Mgand 7, .

7. Final Remarks

This paper has considered a complex but realistic corre-
lation structure in the two-way error component model:
the double autocorrelation case. It dealt with some par-
simonious models, especially the AR(1) and MA(1) ones,
as well as the general framework. Through a precise
formula of the variance-covariance matrix of the errors,
we derived the GLS estimator and related asymptotic
properties. An investigation of the FGLS is also consid-
ered in the paper.
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Appendix: Computing the Inverse of =~

We established that

2" =07 (Iy ®D)+03 (1, @)+ 03 (iyiy ®A)

with D =diag(d,,--,d,) and A=diag(A,,---,A;) .
Setting G=o07 (I, ®D)+0; (iNi;\‘ ®A) , We can re-
write the variance covariance matrix as

37 =G+a; (1, ®i (1, ®if')=G+0730

where J =(IN ®iﬁ). By the means of an update for-
mula, we deduce an expression of the inverse of X,

-1
(") =6"-6" (J'GlJ +%|Nj JG
0,

We need to obtain G and the inverse of the brack-
eted expression. On the one hand,

G :(IN @Di][aflm +a§(iNi'N)®AD-1J

x[.N®Di]

Let H denote the matrix o}l +0; (iNi;q )®AD'l .

At this step, the inverse of H is required. Let

C = (l,Ca] bea NxN orthogonal matrix. Then,

JIN
(C'®IL)H(C®I)=0]ly +0](CiyiyC)®AD™
:alz(IN ® |T)+G3ZB
Therefore,

(Cel)H(C®l)

2 2
:diag(0'12+—NA103 o, Op + NA;o; ,0'12,---,0'12]
d, d;
with

NAD™ 0 0
B=| 0

. .. 0

0 0 0

. o S
It is worth mentioning that C, —1i, =0 for C, and

N

1 . . .
——1Iy are different columns of the same diagonal ma-

N
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trix. It is therefore obvious that H has already been
diagonalized. As a consequence, the inverse of H is
given by,

H! =(C®|T)
. d d 1 1
xdlag(d 2 Il\lA 2""’d 2 IT\IA 2’_2""’_2j
107 + 103 10, + 103 O O

x(C'®l)

) 1 . 1 . 1 .
H 1:O-_12<Caca)®|T+(WlN®ITJA(W|N®IT]

where

. d d
A=diag = ! R e >
0, +NA, o, d;o; + NA; o,

Since C,iy, =0 and C.,C, =1, we have
, 1. .
C.C,=1, —WININ =E,.
Therefore,

- :ULIZ(EN ®IT)+[%iN ®IT]A[%N ®|Tj

It then follows that,

1
G‘1=(IN®D_2]

G =%{(EN ® D-1)+(#iNi'N ®sﬂ

1

2
No,

in which S =diag(s,,--, with § =——F-—1——,
9(1 ST) ‘ dtalz-i-NAth

=17,
On the other hand, the matrix {J G +L2 Iy J has

9,
to be determined. We get,

JG™ :Gi]z(lN ®i{“')x[(EN ®D1)+(#iNi'N ®sﬂ
><(|N ®i{1)

or,
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1673 :%[EN ®i'D i + iy, ®i¢'5i¢}
1
Thus,
T 1. .
JG'I =—|(iZD"i* ) E, +(i2'Sit )—iyi
Ul |:(T ) N (T T)Nz NNi|
Hence,
RN FRLI
O,

1 i’'sit i¥'Di
= I (D7) +ig iy | - ——T
O_l |: (T ) N N{ Nz N

and,
. 1 s
JGT I +— 1 =al +biyiy
0,
where
1 i’'si/ i Dl ‘DIt
a=iy D' +— and b="T"1L-
o, o, N o, N
Since

oyt b . .
(aIN +bININ) IE(IN—mlNlNJ,

-1
. 1
wededuce |JGI+— 1y | .
0,
We are now interested in the expression

-1
G‘J(J'GIJ +L2|NJ 167,
0,

We have,

-1
G‘lJ[J'G‘IJ +i2|N] JG

0,

=1(G1JJ'G1 - G‘JiNi'NJ'Glj
a

a+bN

From the definitions of the matrices G and J, we can

write
G :—1 E ®D1i’1+(—1 i ®SilJ
]2 N T Nz N'N T H

and

so that
GG

1 1
=—|(E, ®D'i!i*' D! ( ii, ® Siti Sj
O'l4|:( N T'T ) N NN T'T
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and lastly

1 .. e
=——iyiy ®Sifif'S

G’lJiNi'N JG™!
It then comes that

1
G [J'GIJ +L2 IN] JG™
<)

1 e 1(1.” 4j
E,®D D~ — iyl ®SIFILS
aal( ) ac; N2 o

1 1. .
— | —i, iy, ®Si%iY'S
ao_lz;(Nz NN TT j

1 b L o
- ivi, ®Si%it's
aaf‘(Nz(a+bN) AR J

In other words,
-1
GIJ(JG J+—I J JG™!
—E

aa, N ®(D 'ii'D" 1)

1 a
+W(mj(ININ ® Sitiy S)

Finally, the inverse of £ can be derived as

w71 I 1 NPy T
(E) :EN®(?D a0t Th

1 1

1 1 I
+J, ® S— Si‘i's
" (asz ofN*(a+bN) T J

' . . ok -1
with J =iyiy. An alternative expression for (Z )
is available. Setting K, =D™' —L;, and

1
L, = D'ifi’'D™', we get
TTVD g

=)

1 _
=—E, ®(D Ll ——

O-] 1

Difi’' D" J

1 1 o
+J, ® S— Sitif's
§ (afw oN’(a+bN) " ]

w11
(E ) :G_lz(EN®KT) (I D_ll)0'2+0'1

(E ®L,)

1
+_2(‘]N ®ST)

where
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. Hence, we finally get
s =Lts-— 1 giirs L Ve 1 |
of  o/N(a+bN) () = (Eu 8K )+ (B O L )+ (3 ©S;)
ie., o
(i) 2 2
S :LS— ol Sifi's where d—(lT Di; )O'2+O'1
"o oiN+aiar (i)
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