
American Open Journal of Statistics, 2011, 1, 105-109 
doi:10.4236/ojs.2011.12012 Published Online July 2011 (http://www.SciRP.org/journal/ojs) 

Copyright © 2011 SciRes.                                                                                  OJS 

On Asymptotic Properties of AIC Variants with 
Applications 

Alex Karagrigoriou, Kyriacos Mattheou, Ilia Vonta 
University of Cyprus & National Technical University of Athens, Athens, Greece 

E-mail: alex@ucy.ac.cy, mattheouk@cytanet.com.cy, vonta@math.ntua.gr 
Received May 24, 2011; revised June 15, 2011; accepted June 23, 2011 

Abstract 
 
In statistical modeling, the investigator is frequently confronted with the problem of selecting an appropriate 
model from a general class of candidate models. In recent years, various model selection procedures that can 
be used for the selection of the best possible model have been proposed. The AIC criterion [1] is considered 
the most popular tool for model selection although many competitors have been introduced over the years. 
One of the main drawbacks of AIC is its tendency to favor high dimensional models namely to overestimate 
the true model. A second issue that needs the attention of the investigator is the presence of outlying obser-
vations in the data set the inclusion of which in the statistical analysis may lead to erroneous results. In this 
work we propose AIC variants to handle the above weaknesses. Furthermore the asymptotic properties of the 
proposed criteria are investigated and a number of applications are discussed. 
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1. Introduction 
 
In this section we introduce an AIC variant that involves 
bootstrap-based corrections. The idea of bootstrap to 
improve the performance of a model was introduced by 
Efron [2] and discussed by others in recent years (e.g. [3] 
and [4]). 

Assume that n pairs of observations (x1,y1),...,(xn,yn) 
are available from the p0-dimensional regression model 

0 1 ,1 0 , 0 ei i p i py b b x b x     i


 

where , i = 1, 2,···, n and e~F( ,1 ,, ,i i i px x x   2,  ) 
for a distribution function F with mean   and variance 

2 . 
The Akaike Information Criterion (AIC) evaluated for 

the p-dimensional model, p < K is given by 

  2ˆAIC log 2pp p  n , 

where K a pre-assigned upper bound for the true dimen-
sion p0 of the model and 2ˆ p  the least squares estimator 
of 2

p . An equally popular criterion is the so called 
Bayesian Information Criterion (BIC; [5]) which is de-
fined similarly by  

  2ˆBIC log logpp p  n n . 

The bootstrapping algorithm for the AIC variant is de-

fined as follows. We remove the ith observation and ap-
ply the criterion to the remaining n – 1 observations. Let 

2
,ˆ p i  the estimator of the variance of the p-dimensional 

model which is based on the n – 1 remaining observa-
tions. Then, the estimate of AIC is given by  

   2
,ˆAIC log 2 1i p ip p n   . 

We now define the AIC average by  

   1
ave

1

AIC AIC
n

i
i

p n p



  . The AIC variant is finally 

defined by  

          jack aveAIC AIC 1 AIC AICp p n p    p   

(1). 
Observe that the proposed technique represents a bias 

correction for the original value of AIC so that the re-
sulting variant form is a bias-corrected version of AIC. 
Note also that as it turns out, the proposed method can be 
described better by the jackknife technique rather than 
the traditional bootstrapping approach.  

Observe that a jackknife-corrected version of BIC 
could be defined similarly. In particular, define the esti-
mate of BIC based on n-1 observations as follows:  

     2
,ˆBIC log log 1 1i p ip p n n    . 
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We now define the BIC average by  

   1
ave

1

BIC BIC
n

i
i

p n p



  . 

Finally, the jackknife variant of BIC is given by  

          jack aveBIC BIC 1 BIC BICp p n p    p . 

If the above adjusted approach is applied to the small 
sample variant AICC proposed by Hurvich and Tsai [6], 
the resulting AIC estimate will be: 

      * 2
,

1
ˆAIC log 2 1

1 3i p i

n p
p p

n n p
  

  
  

n 




 

which is equivalent to  

     
 

* 2 1 2
AIC AIC

1 3i i

p p
p p

n n p

 
 

  
.     (2) 

As a result, the average AIC and the AIC variant crite-
rion can be defined analogously. The resulting criterion 
is given by  

 
       

jack:C

C ave:C

AIC

AIC 1 AIC AIC

p

p n p p



   C

 

where AICave;C(p) is defined similarly to AICave(p).  
It should be pointed out here that model selection cri-

teria such as the above could be applied to a very general 
context not only in regression models like the ones used 
in this section but also in autoregression models as well 
as in survival models. 
 
2. Asymptotic Properties  
 
In this section we first establish the equivalence of AIC 
and all criteria proposed earlier and then investigate the 
asymptotic properties of the proposed criteria. The 
equivalence of the AIC variant given in (1) and the origi-
nal AIC criterion is established in the following theorem. 

Theorem 1: Under the regression setting of the pre-
vious section, the following statements hold: 

1

2 2
,

1

ˆ
nn

p i
i

 


 
 

 
  

and  

   jackAIC AIC 0p p   

in probability as n tends to infinity.  
Proof. Note that according to the jackknife methodol-

ogy, the quantity  estimates the 
bias of the estimator:  

   jackAIC AICp  p

p

   
     

jack jack

ave

bias AIC AIC

1 AIC AIC

p p

n p

 

  
. 

Simple calculations show that  

 

 

1

2 2
jack ,

1

ˆ ˆbias 1 log log

1 2
2

n n

p p
i

n

n p
p
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i

 
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Observe that due to the consistency of the maximum 
likelihood estimator, we have  

2 2 2
,ˆ ˆ&P P

p p i
2      

so that 
1

2 2
,

1

ˆ .
n n

n
p i

i

 



 
 

 
  

The result is immediate.  
Note that the equivalence of all other variants of 

model selection criteria proposed in the previous Section 
follows immediately from the above Theorem 1. The 
result for BICjack and AICjack;C is provided below as a 
corollary without proof:  

Corollary 1: Under the assumptions of Theorem 1, 
the following statements hold: 

1)    jackBIC BIC 0p p   

2)    jack:CAIC AIC 0p p   

in probability as n tends to infinity. 
Two of the main issues in model selection are consis-

tency and asymptotic efficiency. A natural requirement 
for a selection procedure is to choose a model as good as 
possible from a given family of models. Needless to say, 
the goodness depends on the objective of the analysis. 
Consistency is our main concern whenever we know the 
true model as correctly as possible. In other words, the 
consistency is of great importance if the true model be-
longs to the family of models from which the selection is 
to be made. 

The asymptotic efficiency is associated with the case 
where the selected model should yield a good inference. 
For this objective it is natural to assume that the true 
model does not necessarily coincide with one of the 
models under consideration.  

It is important to point out that the two issues are not 
compatible. It has been shown that only the AIC – like 
criteria are found to be asymptotically optimal in the 
sense that they produce predictions with the smallest 
possible prediction error. At the same time these criteria 
have been found to be inconsistent. In particular, Shibata 
[7] showed that AIC tends asymptotically to overfit the 
true dimension (overestimation). On the other hand the 
BIC although not asymptotically efficient [8] it is con-
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sistent [9]. 

It is easy to show that the asymptotic equivalence be-
tween the AIC(.) and the proposed AICjack(.) implies that 
the latter is an inconsistent selection criterion. On the 
other hand the asymptotic efficiency is solely associated 
with prediction and if this is the purpose of the study, 
then a selection strategy carrying such a property should 
be used. 

The issue of asymptotic efficiency was introduced by 
Shibata [10] and discussed by several others [6,8,11]. 
The main idea is based on the selection of that order 
(dimension) which leads to the smallest average mean 
squared error of prediction. The concept of asymptotic 
efficiency is closely associated not with an estimate of 
the order of the model but rather with a finite approxima-
tion to the truly infinite order of the model. Shibata was 
the first to make the innovative assumption that the data 
belong to a linear model with infinitely many parameters 
and established the asymptotic efficiency for zero mean 
autoregressive processes with Gaussian errors [10]. 

Recently, Lee and Karagrigoriou [12] derived a pow-
erful result where in a time series setting the AIC-type 
criteria possess the asymptotic efficiency property irre-
spectively of the distribution of the error sequence. The 
main requirement for the asymptotic efficiency is the 
existence of the 4th moment of the error distribution. 
Such a result which can be easily adopted in a regression 
setting shows the great significance of the property. If a 
procedure under such minimum requirements fails to 
possess the asymptotic efficiency property then the crite-
rion should not be considered appropriate for predictive 
purposes. 

The following theorem shows the asymptotic optimal-
ity of the proposed AICjack(.) criterion. 

Theorem 2: Under certain regularity assumptions, the 
order  selected for a p-dimensional regression model 
or an AR(p) process by the adjusted AICjack criterion, is 
asymptotically efficient, i.e., as n tends to infinity 

p̂

 
 *

ˆ
1n

n n

Q p

L p
  

in probability, where  the mean squared error of 
prediction of the pth order model,  the average 
mean squared error of prediction and  the sequence 
that minimizes  

 nQ p

.

 nL p

np

 .Ln

Proof. The asymptotic equivalence of AIC(p) and 
AICjack(p) from Theorem 1, implies that the same as-
ymptotic result holds for any p and therefore it holds for 
the quantities  and  that minimize the two criteria 
AICjack and AIC respectively. Hence, 

p̂ k̂

   ˆˆAIC AIC 0Pp k  , 

Due to the above asymptotic equivalence, the same 

asymptotic result holds for the mean squared error of 
prediction:  

   ˆˆ 0P
n nQ p Q k   

or equivalently 

 
 

ˆ
1

ˆ
n P

n

Q p

Q k
 . 

The desired result follows from:  

 
 

 
 

 
 *

ˆ ˆˆ
1

ˆ ˆ

n nn P

n nn n

Q k Q kQ p

L pQ k L k
  

where the first term tends to 1 by the above result and the 
other two by the asymptotic efficiency of the original 
AIC criterion (Shibata, 1980, Theorem 5.2). 
 
3. Applications and Discussion  
 
In this section, some small scale simulation studies are 
invoked. The simulations were performed with the Win-
dows version of the Statistical Software SAS.  

Small number of observations (10 - 50) is simulated 
for a two - independent variable standard normal regres-
sion model of the form  

1, 2,1 , ~j j j j jY X X e e N    0,1

1



    (3) 

with j = 1,2, ··· ,13 where  

 , , 1 , ,, ~ 0,i j i j i j i jX X e e N   

with i = 1,2,3, j = 1,2, ··· ,13 and Xi,0 = 0 for i = 1,2,3. 
Notice that an extra variable is available which does not 
enter into the true model given by Equation (3). A total 
of seven (7) models are available, namely the full model, 
3 single-variable models and 3 two-variable models. 
Note finally that in what follows, the true model is the 
one involving the independent variables X1 and X2. 

We observe that the standard criteria, AIC, BIC and 
AICC select the correct model in all situations. The ad-
justed AIC criterion, AICjack, proposed in the present 
work separates clearly the correct model as well as the 
“larger” model involving all 3 independent variables but 
selects the bigger one by a relatively small margin.   

In this study we have also used the new adjusted crite-
rion AICjack,C which combines the AICjack with the small 
sample correction term of Hurvich and Tsay ([6], see 
Equation (2)). The form of the criterion is given by 

 
jack,C jack

2 1 2
AIC AIC

2

p p

n p

 
 

 
. 

Note that in our simulation study, the resulting crite-
rion selects the correct model. The actual values of the 
all the above selection criteria for all models involved are 
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presented in Table 1.  
Furthermore, the simulation study allows for the in-

clusion of outliers. In particular, approximately 20% of 
the observations in each case are dropped and replaced 
by observations from various Normal distributions with 
zero mean and variance larger than 1. In fact, the previ-
ous simulation study is repeated with the exception that 
the last 3 observations are replaced with 3 observations 
coming from a different normal distribution, namely N (0, 
2). Although the standard AIC criterion selects the cor-
rect model the same is not true for BIC. Furthermore, the 
corrected AICC selects the correct model but the value of 
the criterion for the model with the single independent 
variable X1 stays very close. 

The proposed criteria perform quite well in this case. 
In particular, the AICjack separates very well the correct 
model as well as the “larger” ones and selects with a very 
small margin the bigger one while the AICjack,C with a 
large margin selects the correct model. The results in this 
case are summarized in Table 2.  

Similar results have been found by simulation studies 
performed with various samples sizes (n = 20, 30 and 50) 
and with two (2) additional variables that do not enter 
into the true model which is given by Equation (3). 

All studies arrive at similar conclusions. It should be 
noted that the effect of the adjustment on AIC depends 
on the particular application. In particular, if outlying 
observations are present, then their contribution is 
downgraded since the jackknife technique reduces their 
impact. On the other hand, if outlying observations are 
not present, then the correct model as well as models 
“larger than” the correct one are easily recognized and 
the values of the adjusted AIC criteria are well separated 
from all other candidate models. In particular, it is shown 
that for any k > p0 and any  0m p

       jack jackAIC AIC AIC AICm k m  k  

which implies that the proposed criterion separates two 
competing models much more clearly than the original 
AIC criterion as long as the models are “larger” than the 
true model. It should be pointed out that the sample size 
n in combination with the proportion of outlying obser-
vations plays a crucial role. When we deal with relatively 
small sample sizes (n < 50), differences are easily ob-
served between the proposed jackknife-based criteria and 
all other known criteria. As the sample size increases, the 
differences are less distinctive. On the other hand though, 
if outlying observations are present, the proposed tech-
nique can identify the phenomenon much easier than 
other criteria, adjust accordingly the value of the associ-
ated jackknife criteria and proceed with the correct selec-
tion. In other words, the presence of outliers makes the  

Table 1. Exact values of model selection criteria for simu-
lated data without outliers. 

Variables in the model AIC BIC AICjack AICjack,C 

X1 X2 0.33 0.46 0.1775 0.3827 

X1 X2 X3 0.43 0.61 0.1399 0.5245 

X1 0.59 0.68 0.5238 0.6161 

X1 X3 0.74 0.87 0.5381 0.7432 

X3 1.29 1.37 1.272 1.3644 

X2 X3 1.44 1.57 1.4945 1.6996 

X2 1.48 1.57 1.3999 1.4922 

 
Table 2. Exact values of model selection criteria for simu-
lated data with outliers. 

Variables in the model AIC BIC AICjack AICjack,C 

X1 X2 0.494 0.79 0.3273 0.5324 

X1 X2 X3 0.59 0.98 0.3001 0.6847 

X1 0.613 0.78 0.5654 0.6577 

X1 X3 0.756 0.93 0.5713 0.7765 

X3 1.05 1.08 1.0018 1.0941 

X2 X3 1.20 1.18 1.1776 1.3827 

X2 1.24 1.23 1.1734 1.2657 

 
proposed criteria superior to the traditional ones. If 
though no outliers are present, all criteria have a similar 
behaviour, especially for large sample sizes (n > 100). If 
the proportion of outliers is small and the sample size 
relatively large, the advantages gained by the proposed 
criteria is limited. The higher the proportion of outliers 
(combined with small to medium sample sizes), the 
higher the usefulness of the proposed criteria. As an 
anonymous referee pointed out, this special feature of 
our jackknife criteria may be useful in cases where mix-
tures of distributions are involved, an issue we intend to 
explore in detail in the near future. 

To investigate the behavior of the proposed criteria in 
a real case, we use the well known Hald’s data (see [13] 
and [14]). This application is of great interest since dif-
ferent criteria select different models. The response 
variable represents the heat evolved in calories per gram 
of cement and the four covariates X1, X2, X3, X4 are 
measured as percent of the weight of the clinkers from 
which the cement was made. The AIC criterion selects 
the full model (all four variables) while BIC and AICC 
select the model with the variables X1, X2 and X4. Our 
jackknife criterion although chooses as the best model, 
the full model, gives as its second best choice the model 
with only two variables, namely X2 and X3. Note that 
these diverse results are due to the fact that there is a 
strong correlation between the variables X1 and X3 as 
well as between the variables X2 and X4. This implies that 
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the investigator looses a relatively small amount of in-
formation if one of the variables X1 and X3 or one of the 
variables X2 and X4 is missing from the selected model. 
In that sense, the second best model selected by our 
jackknife selection criterion appears to be an ideal selec-
tion. The appropriateness and possible superiority of the 
jackknife criteria in situations with heavy correlation 
between covariates needs further investigation.  

Applications of the proposed criteria are found in sev-
eral settings among which one could mention medical 
data sets were outlying observations often appear. The 
outlier detection issue is closely related to the issue of 
reference (normal) range. The reference range plays the 
key role in determining the type and the extent of the 
therapeutic or pharmaceutical action to be taken. In real-
ity the determination of a reference range is equivalent to 
the construction of a confidence interval in which the 
true value of a population characteristic lies with high 
probability. 

Recall that the modeling, the statistical inference as 
well as the prediction inference may be heavily affected 
by the presence of outliers. The identification of the cor-
rect model for a set of data that includes outliers reduces 
the undesirable features of the above effect and in turn 
increases the reliability of the resulted confidence inter-
val (reference range). 

The so called censored linear regression models pro-
vide yet another class of models to which the proposed 
model selection technique could be applied. These mod-
els appear in the standard regression model setting, 
namely 

, 1,2, ,i i iX Z e i n     

with the exception that we do not observe the event time 
Xi but instead the triplet (Ti, Zi, Di) which refer to three 
i.i.d. random variables such that Ti = mn(Xi, Ci), Ci = 
censored time, Zi = covariate vector and Di = 0 if Xi > Ci 
and 1 otherwise. 

We also assume that the errors ei are independent of Zi 
and Ci and   is the unknown vector of parameters. 
Consistent estimators can be found and the MSE of pre-
diction as well as the Average MSE of prediction can be 
evaluated. The asymptotic efficiency of the standard se-
lection criteria and the adjusted criteria proposed in this 
work are easily established.  
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