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Abstract 

Genetic or evolutionary search algorithms seek and exploit the structure of a 

problem by operating on an encoding which represents the problem variables. 

The algorithms employed are generally designed to handle a wide variety of 

problems and while exploitation and progress can be rapid at the initial stages, 

the algorithms ultimate convergence rate can be slow. In order to speed up the 

solution process as well as produce a more refined solution, a rule based en-

coding is proposed. The rule based structure injects domain specific knowledge 

into the optimization process. This allows for an intuitive encoding and mimics 

the process utilized in many decision support applications such as scheduling. 

The encoding for the approach is often reduced in size as well. Specific rules 

for a particular problem class are coded into the formulation. This requires ad-

ditional programming effort, but is valuable for specific applications which are 

repeated over time. During the solution process, a record is maintained con-

cerning which rules or sequences of rules were successfully applied. This al-

lows the rules to be continuously updated over time. An approach for imple-

menting rules within the design encoding is demonstrated and several simple 

game problems are solved using this technique. The results are compared to a 

solution generated by a traditional encoding. 
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1. Introduction 

One of the many practical applications of genetic or evolutionary algorithms is in 

the area of decision support. Generating a solution to this class of problems in-

volves the ordered selection of a large number of individual decisions, each of 

which is influenced by every decision made up to that point. Common examples 

of decision support problems include routing [1], scheduling [2], bin packing [3] 

and game strategy [4]. Genetic algorithms are particularly well suited for solving 
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decision support problems as they seek a global, rather than a local optimum and 

can easily handle integer and discrete variables which are commonly required in 

the problem formulation. Significant hurdles are inherent, however, due to the 

presence of a large number of decision variables. This can result in slow final 

convergence and the potential of “noise” or unwanted characteristics appearing in 

the final solution. Unwanted characteristics could include two small batch runs of 

a part separated by a run of another part in a manufacturing schedule or a void in a 

packing problem that could easily have been filled. Evolutionary algorithms pos-

sess the trait of discovery [5], but the discovery process is heavily dependent upon 

randomness built into the search algorithm. For most decision support applica-

tions, specific domain knowledge is available which, if embodied in the problem 

encoding, could be used to greatly enhance both the convergence of the solution 

process and the quality of the final strategy.  

In practice, most decision support activities are highly dependent upon human 

intervention. Some success in the application of evolutionary algorithms to various 

decision support application areas has been achieved by several investigators [5] 

[6], but the problem is far from being resolved. Factories are scheduled by produc-

tion planners who have a wealth of experience and understanding of the intricacies 

of day to day operations. Truck scheduling and routing is directed by a dispatcher 

who has a knowledge base which is also difficult to emulate with a brute force op-

timization approach. On the other hand, this knowledge base is local in nature and 

often works against system level goals and objectives. Additionally, it is difficult 

to maintain a high level of human performance on a day in and day out basis [7]. 

For these reasons, it makes sense to add a level of computational support to aid the 

human in making key decisions. The idea of a self-evolving decision support sys-

tem has been a goal for a considerable length of time [8]. The structure of the 

support, however, must be better aligned with the existing process which relies 

heavily on a knowledge based approach. This can be accomplished to some extent 

through the implementation of expert systems. On the other hand, a rule based 

genetic or evolutionary approach has the potential to deliver a knowledge driven 

process within the framework of a traditional optimization setting. A knowledge 

or rule based approach holds the promise of not only improving the effectiveness 

of the decisions being made, but also in capturing the knowledge to allow for the 

possibility of obtaining improved performance each day, every day. 

The implementation of rules within the framework of an optimization algorithm 

is well established in the most general sense. One of the original computational 

approaches to solve the traveling salesman problem combined a simulated anneal-

ing algorithm, with a sequence of path modification rules [9]. The rules including 

moving groups of cities and reversing the order of a group of cities from the cur-

rent visit sequence. Rule based approaches have been also applied to agent based 

systems involving communication networks [10]. In some cases, genetic algo-

rithms were employed to optimize the rule selection. If the current strategy was 

viewed as the chromosome of a genetic algorithm, this approach could be consid-

ered a rule based evolutionary approach. Attempts in applying heuristic 
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knowledge within the broad framework of genetic algorithms has been attempted, 

but these efforts have generally been focused on modification of the genetic oper-

ators or in searching for rules that predict outcomes in data sets [11]. Rule mining 

for multi-objective association has been implemented in this area [12]. Chaotic 

sequences and cultural algorithms have also been employed to improve the per-

formance of an evolutionary algorithm [13] [14] [15]. All of these approaches are 

designed to improve the performance of the evolutionary algorithm by guiding the 

evolution of the population based on the knowledge obtained during previous iter-

ations.  

The next logical step is to implement a genetic encoding which executes rules in 

the fundamental sense of being contained in the problem encoding itself. A rule 

based version of an evolutionary algorithm which implements this concept was 

constructed and applied to the area of structural design [16]. A trade-off exists 

between the amount of coding required by the user in order to solve a particular 

problem. If the problem is solved repeatedly over time, such as a factory schedule, 

the coding of specific rules can be justified. A generalization of this approach to 

the decision support problem is presented herein and several example problems 

are solved using this concept. 

2. Genetic Formulation 

A traditional nonlinear programming formulation employs a set of design varia-

bles which are modified through a search strategy. Success is measured by a com-

bination of an objective function value(s) and the satisfaction of a set of con-

straints. This formulation, for a single objective search, is expressed mathemati-

cally as follows: 

   
T

1 2Minimize ; where , , , nf x x x x x               (1) 

Subject to 

  0; 1,2,3, ,jg x j J                      (2) 

  0; 1,2, ,kh x k K                       (3) 

With 

low high

i i ix x x                          (4) 

A design configuration or a decision strategy to a genetic algorithm is repre-

sented by an encoded string of information which is analogous to a chromosome 

in a living organism. Each position or gene in the string represents a specific de-

sign or decision characteristic which is directly linked to a specific application. 

The collection of all possible gene states represents the number of possible design 

or decision strings. If the encoding is thought of as a replacement for the vector of 

design variables in Equations (1)-(4), the relationship between a standard nonline-

ar programming and genetic optimization approach can be clearly seen. There are, 

however, several key distinctions which differentiate the two approaches. Among 

these distinctions are: 

(i) The genetic algorithm operates by manipulation of the coding of the set of 
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gene values composing the chromosome. 

(ii) A population of designs or decision strings is considered rather than a single 

design or decision point. 

(iii) The transition from one set of designs or decisions to the next are probabilis-

tic rather than deterministic. 

(iv) The algorithm operates in a discrete rather than a continuous design or deci-

sion space. 

These differences may not seem that dramatic, but they produce an algorithm 

which is more globally oriented in its search and is less likely to be trapped by lo-

cal minima compared to other traditional approaches. 

The overall suitability of a chromosome is termed its fitness. The property of 

fitness may be related to any function or functions of the design performance or 

the outcome of a decision strategy. This fitness is the characteristic which deter-

mines the probability of a particular chromosome to be selected. The selected 

chromosomes become parents for the next generation. The chromosomes pos-

sessing the greatest fitness have the highest probability of becoming parents. Even 

the least fit member, however, has a finite probability of being selected. The par-

ent strings are combined using a variety of genetic operators in order to produce 

offspring. The process is repeated with the expectation that both the average fit-

ness of the population as well as the best fitness contained in the population will 

improve.  

In order to initiate the solution process, an initial population is generated ran-

domly. The rules which govern how parents are selected and combined to produce 

offspring are also defined. Special operators such as mutation are included in order 

to guard against the loss of important design or decision information. This is nec-

essary as the population represents only a small subset of the design or decision 

space. The search requires no gradient information and produces a number of de-

sign or decision alternatives. Alternatives can be useful when considering multiple 

design or decision criteria and accounting for unforeseen events. The process re-

lies on the randomness present in natural selection, but exploits information gath-

ered in order to produce a viable solution in a reasonable amount of time. The par-

allel nature of the solution process allows for the solution of problems requiring 

significant simulation times to access the outcome of a decision strategy. It also al-

lows for solutions of problems that require large populations due to the size of the de-

cision matrix. Additional detail concerning conventional genetic algorithms is given 

by Goldberg [17] and Davis [18]. 

3. A Rule Based Encoding 

In a traditional genetic optimization, an encoding of the design is generated so that 

the structure of the design or decision support strategy may be directly manipulat-

ed by the genetic algorithm. This encoding structure is important, as it allows the 

genetic algorithm and associated genetic operators to modify the design or deci-

sion string. The genealogy of the design or decision string can be tracked from the 

initial population, through each subsequent generation, to the final outcome. Some 
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sense of discovery can be captured by observing what structural changes are made 

to the encoding during the process. There is no reason why this same approach 

cannot be extended to allow for design or decision rules which directly modify the 

genetic encoding. This process allows the genetic operators to manipulate the 

original problem encoding structure utilizing the rules, or to actually alter the rules 

themselves. This allows for a natural capture of knowledge or intelligence or even 

corporate memory concerning the problem solution as well as the computational 

path to the solution. The rules may be applied to a population of decision encod-

ings which have been created randomly or through the application of a traditional 

genetic algorithm.  

The implementation of a rule based encoding must be done carefully in order to 

provide as much flexibility as possible while avoiding the creation of a local 

search algorithm. Some randomness must be maintained in the execution of the 

rule base in order to preserve a global view. There must also be a mechanism for 

simultaneously firing multiple rules in order to transform a single decision string 

to a better state. Utilizing multiple rules simultaneously is essential, as in many 

cases, no one rule in itself is sufficient to improve the overall performance. Ideal-

ly, all of these features should be built into a standard genetic encoding structure. 

There are a number of encoding strategies that might be implemented and only 

one possibility is presented herein. The goal is not to generalize the concept, but to 

demonstrate the capability of such an approach. 

At an elementary level, the process can be defined by a rule string as shown in 

Figure 1. Here, the first element represents the number of the rules defined by the 

string to actually apply. This allows for both a single rule or multiple rules to be 

executed on a given decision string in the current population. The second element 

defines which member of the decision strategy population to apply the rules to. If 

a single decision strategy is being considered for modification, this element may 

be eliminated. The subsequent groups of elements are used to define which spe-

cific rule or rules to apply with associated information blocks. These information 

blocks provide specific information as to how each rule is to be executed. The fact 

t h a t  t h e r e  a r e  o n l y  t h r e e  i n f o r m a t i o n  b l o c k s  w i t h i n  e a c h 

 

 

Figure 1. A Rule Based Encoding for a Genetic Algorithm. 

rule definition group in Figure 1 is of no consequence. The number can be arbi-

trarily expanded as needed. In order to ensure consistency in the crossover opera-

tion for generating offspring, it is convenient to keep the number of blocks in each 

rule execution group equal.  
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The rules, as structured, are applied to a conventional encoding string which 

represents a member of the design or decision support population. For example, in 

a manufacturing scheduling example, the problem encoding being operated upon 

could represent the individual job priorities. The priorities could be fed into a sim-

ulation, would provide the performance metrics with which to evaluate the effec-

tiveness of the decision string. The rules would then operate on the job priority 

encoding and could include concepts such as: 

 Increase job priority on a job which is delivered late. 

 Decrease job priority on a job which is ready early. 

 Alter a priority of a selected job (as specified in the rule encoding). 

 Switch priorities between two jobs (each specified in the rule encoding). 

 Divide a product batch order into two separate orders or jobs for separate pro-

cessing. 

 Combine two product batch orders so they are processed together. 

A number of other potentially effective rules could be implemented as well. The 

rule based encoding operates on the decision encoding population to modify the 

overall schedule. Good or bad rules will be identified by the process. Good rules 

will be exploited while bad rules will eventually evolve out of the rule population. 

This allows for a straightforward capture of knowledge. 

The process may now be thought of as a two phase process. The first phase in-

volves the generation of a population of decision strategies. A traditional genetic 

optimization can be executed to form this population. Alternatively, it could be 

formed through a random selection, much as the population for the first generation 

in a conventional genetic solution process. A subset (one or more) of this popula-

tion could then be subsequently processed by the rule based encoding. There are 

many possibilities to move between the phase one and phase two processes. Care 

must be taken not to have such specific rules as to eliminate the global nature of 

the search. This is why generic rules such as the one to alter a priority of a selected 

job or switch the priorities of two jobs are included. This allows the algorithm to 

select a schedule as part of the genetic selection process which is then subse-

quently influenced by the application of rules. One final point of note is the rela-

tive size of the design or decision encoding. The original problem encoding may 

involve hundreds or thousands of elements while the rule based encoding will 

typically involve tens of elements. The reduction in overall solution time relies on 

the fact that solving a set of smaller problems sequentially is far more efficient 

than solving a very large problem. This has a significant impact on convergence 

and the computational time required. 

4. A Simple Example—The Summation Game 

In order to demonstrate how a decision support problem is formulated for solution 

via a rule based genetic approach; consider the summation game shown in Figure 

2. The goal of the game is to place the consecutive integers, one through nine, so 

that the sum of each row, column and diagonal is identical. For the example 

placement of the integers in Figure 2, the sums are shown for each row, column 
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and diagonal and are seen to be far from equal or optimal. The objective function 

utilized in this example will be the difference between the highest and lowest sum 

of any row, column or diagonal. The row, column and diagonal sums are shown 

for the initial placement of integers in Figure 2 by the small numbers following 

the red arrows. For this initial placement, the objective function is eighteen (dif-

ference of lower row sum of twenty four and upper row sum of six). In this in-

stance, the integers are simply placed in order by rows. Certainly, this placement 

does not represent a solution to the game.  

Using a conventional genetic optimization algorithm, there are many ways to 

formulate this problem for solution. Remarkably, even a simple problem like this 

is not easily solved. The approach considered here is to compare a traditional, 

brute force approach, with a rule based decision support approach. A conventional 

approach would consist of implementing a nine element encoding where each el-

ement in the encoding is allowed to take on an integer value from one to nine. 

Each position of the encoding string translates directly to a position in the sum 

game, starting at the top left corner and proceeding across and down. The sums of 

the rows, columns and diagonals are easily calculated and provide a means of 

evaluating an appropriate objective function. In this example, the objective func-

tion is taken to be the difference between the largest and smallest of the sums. If 

this difference is zero, then all of the sums are equal and a potential solution has 

been located. The term potential is used as there is no guarantee in this formula-

tion that each integer value is utilized once and only once. For example, if any in-

teger value were repeated nine times, all sums would be zero, but it would not 

represent a solution to this particular game. 

In order to guarantee that each encoding position represents a unique integer at 

the end of the search process, a constraint is added to the formulation which suc-

cessively penalizes the multiple use of an integer in the encoding string. This is 

not the only way to avoid the multiple value issue, but it represents an easily  

 

 

Figure 2. Simple Sum Game at Initial Setting. 

implemented approach. The first formulation of the problem may now be ex-

pressed in mathematical form as follows: 
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       

     

Minimize Maximum , ,

Minimum , ,

i j k

i j k

f x Sum row Sum column Sum diagonal

Sum row Sum column Sum diagonal

 
 

 
 

 (5) 

where 

   1 2 3 9, , , , ;1 9 and integeri ix x x x x x x               (6) 

i = 1, 3 

j = 1, 3 

k = 1, 2 

and 

 1 dupg x N                          (7) 

where 

dupN  = total number of repetitions of integers in x 

This formulation was executed using a conventional genetic algorithm and the 

objective function solution history is documented in Figure 3. This solution rep-

resents a particular run. Additional runs were made where the population size, 

random seed and number of generations required were investigated. The solution 

history for this solution for the constraint value is plotted in Figure 4. An exterior 

penalty function was utilized for this solution. A population size of 2000 was se-

lected with the best five design encodings being carried over from generation to 

generation. A valid solution to the game was generated on the forty fifth genera-

tion which is documented in Figure 5. Note that the sum of each row, column and 

diagonal is equal at a value of 15. From the constraint history in Figure 4, initial 

genera t ions  ut i l ized  mul t ip ly  repea ted  intege rs  in  the  dec is ion  

 

 

Figure 3. Objective Function Solution History for Sum Game Problem. 
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Figure 4. Constraint Value Solution History for Sum Game. 

 

 

Figure 5. Solution Developed for the Sum Game. 

 

string, but by generation 45, all integer values in the best decision string were 

unique. Note that there are multiple solutions to the game which can be seen by 

simple switching the first and third rows or columns. This issue is not considered 

here, as any valid solution to the game is being sought. 

The way in which a problem is formulated can have a significant impact on the 

efficiency and effectiveness of a genetic optimization algorithm. The first formu-

lation considered is valid, but by adding a constraint, the difficulty of the solution 

was considerably magnified. This increase in difficulty required the inclusion of a 

large population and additional generations to be executed. If algorithm efficiency 

is measured by the number of objective function and constraint evaluations, this 

formulation can be seen to have potential efficiency problems. If the calculation of 

the objective function and/or constraints is computationally expensive, this loss of 

efficiency can become a significant issue. Each objective function and constraint 

evaluation in this simple case requires little computational effort, but even for this 

case, it does raise the issue of formulation versus efficiency and effectiveness. 
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Certainly there is a benefit in linking the problem formulation and the encoding of 

the decision string as closely as possible to the physical nature of the problem it-

self. This strategy can often be developed for decision support problems through 

consideration of how an expert might approach the problem and mimicking their 

solution strategy. This leads naturally to a rule based formulation and encoding of 

the problem. 

The initial encoding and solution approach is valid in that it did generate the de-

sired solution. On the other hand, it may be regarded as a brute force approach 

where the encoding captures little of the strategy of solving the game from a given 

initial placement of integers. When a decision support task is being envisioned, the 

lack of capture or understanding of the strategy is a distinct disadvantage. A rule 

based encoding of the problem can be implemented in order to provide the link 

which leads to a viable decision support formulation. For the sum game, consider 

how a human player would work toward a solution to the game. It is most likely 

that a hand solution to the game would involve assigning the integers 1 through 9 

to various positions in the game matrix. The user would then start exchanging the 

position of pairs of numbers in the game matrix to improve the larger differences 

among the various row, column and diagonal sums. Using this approach, some 

explicit strategy or rule set is applied in order to decide which game matrix posi-

tions to exchange. A positive outcome of this approach is that only feasible solu-

tions can be generated in that no replication of integers can occur during the pro-

cess. This exact approach may be built into the rule based encoding.  

Care must be taken so as not to reduce the global search characteristic of the 

genetic approach, but other than this caution, virtually any rule encoding will 

work. In this particular case, the caution revolves around locating a temporary 

placement of the integers for which no single swap of two integers will improve 

the difference in the sums. This situation may be avoided by a number of strate-

gies, including the implementation of a simulated annealing algorithm in order to 

accept intermediate designs which are not as good as the current one, particularly 

in the early stages of the search. Another approach would be to include some ran-

domness in the rule set, which enhances the global nature of the algorithm. In this 

case, the rule encoding itself will be created so that the local minimum situation 

can be overcome by allowing the solution process to apply a number of simulta-

neous moves at any iteration. 

The rule set developed can be very complicated, or alternatively, very simple in 

nature. The genetic algorithm has the capability of discovery and exploitation. 

This means that the user need not be overly concerned with the development of an 

intelligent rule set. In this case the rule set is based only upon the concept of se-

lecting two integers in the matrix and exchanging them. No consideration of row 

and column sums are built into the rule set as the genetic algorithm will apply the 

rules in a way that the best objective is located. In order to execute the basic rule 

structure, four items need to be included in the encoding. These items define the 

row and column of each of the two positions to be switched. In order to avoid the 

trap of a local minimum, a number of simultaneous exchanges will be allowed. 
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For this example from one to three exchanges will be allowed. The number of ex-

changes is specified in the encoding and thus controlled by the genetic algorithm. 

Taking into account the above considerations, a rule based encoding for the simple 

sum game may be expressed as follows: 

 1 1 2 2 1 1 2 2 1 1 2 2, , , , , , , , , , , ,a a a a b b b b c c c cx N r c r c r c r c r c r c
 

where 

N indicates the number of exchanges to execute. 

and 

r1a, c1a, r2a, c2a represent the first pair of positions to exchange (row, column)1 = 

(r1a, c1a) with (row, column)2 = (r2a, c2a) 

and 

r1b, c1b, r2b, c2b, r1c, c1c, r2c, c2c represent the other two exchange possibilities. 

This form of the encoding string is directly in line with the general structure pre-

sented in Figure 2. 

As an example, consider the current game matrix configuration to be given by: 

1 2 3

Matrix 4 5 6

7 8 9

 
 


 
    

and let the encoding string by set at. 

 2,2,3,1,2,2,1,3,3,1,1,3,2x 
 

the current game matrix would be altered to the form given by 

1 6 3

Matrix 9 5 2

7 8 4

 
 


 
    

The operation switches (row2, column3) with (row1, column2), which exchanges 

the 6 and 2 integer values. The encoding also switches (row2, column1) with (row3, 

column3) which exchanges the 4 and 9 integer values. The last possible exchange 

of (row1, column1) with (row3, column2) is not executed since the number of rules 

specified to be executed, N, is two. Whether or not this new configuration is ac-

cepted is a function of the objective function which is formulated as the difference 

between the maximum and minimum row, column and diagonal sum as defined in 

the first formulation. 

On the surface the new formulation seems a bit complex in that a nine element 

decision string from the encoding in the first example has been replaced by a 13 

element encoding string. The elimination of the constraint is a positive step, but 

the performance can be compared by looking at the results of executing the second 

or rule based formulation. Since the execution of the rule based formulation re-

quires an initial game configuration, the integers are selected randomly without 

replacement. The objective function history is plotted in Figure 6 as a function of 

the number of generations executed by the genetic algorithm. It is  
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Figure 6. Solution History for Sum Game Using a Rule Based Approach. 

 

seen in Figure 6 that the solution was located by the eighth generation with a 

population size of 200. While additional coding was required to implement the 

rule interpretation and to modify the game matrix accordingly, the number of 

function evaluations required to solve the problem was reduced by a factor of al-

most 50. This is a significant difference and indicates the potential promise in a 

rule based approach for more difficult decision support problems. 

5. A More Challenging Problem: The Maze 

The solution of an arbitrary maze is a good representation for most decision sup-

port problems. Here, however, the simple rule based genetic algorithm will be 

considered. For a given maze configuration, the goal is to develop a sequence of 

moves that will lead from the starting point to the designated end point. A simple 

maze with one starting point and one exit point will be considered. The success of 

each move is dependent upon all moves made previously and as such which it 

shares with virtually any form of decision support application. The data file re-

quired to describe a particular maze must define the size of the maze (assumed 

here to be rectangular), and have some mechanism to define feasible and 

non-feasible moves from each block in the maze. The possible move directions are 

simple north, east, west and south which requires four potential move states be 

built into the encoding for each successive move through the maze. A sample 

maze is shown in Figure 7 which will be utilized to demonstrate the approach. In 

Figure 7, the walls are delineated by solid lines, while the individual matrix loca-

tions are shown in lighter, dashed lines. Both a traditional genetic formulation and 

a rule based formulation will be considered. It should be noted that the solution 

could be potentially be generated using another type of evolutionary algorithm 

such as ant colony or swarm optimization [19] [20] [21]. 

For the traditional formulation, the encoding is expressed as a series of moves, 

where each move is represented by an integer value from zero to three. Thus the  



W. M. Alobaidi et al. 
 

59 

 

Figure 7. A Simple Maze. 

 

encoding is given as: 

 1 2 3, , , , ; where 0 3, is an integern i ix x x x x x x           (8) 

Here, n represents the total number of moves allowed for the decision support. 

The constraint of not being able to travel through a wall may be handled in a 

number of ways. Here it is arbitrarily dealt with by not allowing a move which 

passes through a wall. For example, if a north move is specified and this move 

would pass through a wall in the maze, the move is disallowed and the next move 

in the decision encoding is considered.  

The objective function may also take on a number of forms as long as an indi-

cation of success is measured within the function. For this example, the objective 

function will be the distance from the position in the maze after executing every 

move specified in the decision encoding and the desired end point. The goal is to 

minimize this distance, with a value of zero being the limit which indicates a solu-

tion has been generated. This objective function may be expressed as follows: 

      
1

2 2 2

current final current finalMinimize f x x x y y             (9) 

This objective function has a problem when a path is found which terminates 

near the endpoint but is a dead end. This solution will be rated better than other 

members of the population which do not progress as far through the maze, but re-

main on productive tracts. Some penalty may be assigned to a dead end situation. 

This moves directly into the realm of problem specific knowledge and leads natu-

rally into the rule based approach. For this example, the objective function defined 

above will be implemented without consideration to dead paths. 

The comparison of the rule based and traditional genetic algorithms was limited 

in the number of trials for each method. Several population sizes were investigat-

ed, as were different random seeds and the number of generations allowed. Con-

siderable attention was directed toward the standard genetic algorithm, as the abil-

ity to make significant progress in the maze solution was limited. The rule based 

code required very few trial runs, as the solution was able to be generated with 

very little tweaking of algorithm parameters. As the number of different problems 

addressed is limited, this is not a comprehensive comparison of the two approach-
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es. Several different mazes of the same size were tested, and the results presented 

here on a single one of those tested. The results from the other maze solution at-

tempts were similar in the performance of the algorithms. The goal here was not to 

make a detailed study on the comparative utility of the methods [22], but to 

demonstrate how the rule based method can be implemented. 

The formulation developed above was executed using a standard genetic algo-

rithm with a population of 500 with each decision string having a length of fifty 

elements. This resulted in the evaluation of 50,000 decision strings. The results 

from several runs started with different random seeds are shown in Figure 8. As 

can be readily seen, the final distance to the exit point in the maze was not located. 

This continued to be the case for larger population sizes and for larger numbers of 

generations. The best paths found terminated at local dead ends, which is not un-

expected. By dramatically expanding the population size and executing many 

more generations, this difficulty could potentially be resolved. For a problem such 

as this, where the evaluation of the objective function is relatively inexpensive, 

this may represent a viable approach. As the objective function becomes increas-

ingly expensive, however, this approach is not attractive.  

From the rule based perspective, starting from an initial path or set of paths de-

fined identically as in the previous formulation, the object is to execute a defined 

rule set in order to improve the path(s). The rule set for this problem consists of 

five separate rules. These rules are defined as follows: 

1) Group all successful moves at the beginning of the encoding string. 

2) For a selected group of encoding string positions, randomly alter the values. 

3) For a selected move in the encoding string, alter the direction as specified. 

4) For the first successful move in the encoding string after a specified position, 

try the same direction for the next number of specified moves (encoding posi-

tions). 

5) Rectify the first specified number of back/forth moves, starting from a speci-

fied position in the encoding string. 

 

 

Figure 8. End Points for Conventional Genetic Algorithm Solution. 

The first rule consolidates all successful moves at the beginning of the string, 

which allows the remaining positions to explore the maze from a given point in 
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the maze. The second rule alters a set of encoding positions to random values. 

This rule was inserted in order to allow for a global search. The third rule operates 

on the same principle as does rule 2, but it only alters a single position to a value 

specified in the information segment of the rule encoding string. The fourth rule 

seeks to take advantage of the situation where a series of moves can be made in 

the same direction and the final rule eliminates situations where a move is directly 

countered by an opposite direction move (i.e. north followed immediately by 

south). These rules are easily implemented and while they insert some problem 

specific knowledge, they are very general in scope. More specific rules dealing 

with situations such as dead ends could be included, but they require additional 

code for the identification of such conditions. 

The rule encoding for this example takes on a form very similar to that pictured 

in Figure 2. For this example, a maximum of five rules was allowed, each of 

which was assigned two informational positions in the string. The first position 

defines the number of rules to execute and the second defines which portion of the 

path to modify. This requires a total of 17 string positions to define the maximum 

length rule set (5 sets of three positions plus the first two). Note that this is a con-

siderably smaller encoding string than for the conventional genetic solution ap-

proach which required a decision string of 50 elements. 

Ten initial paths were generated by executing a conventional genetic algorithm. 

Only one generation was executed, with a population of 500 designs. Ten paths 

were selected based both of the distance to the end point of the maze and the dif-

ference among the paths traveled. This portion of the solution process is termed 

the phase one search. The second phase, executes the rules to modify the paths as 

described in the rule based approach. A population of 500 was maintained for the 

phase two search. The process was terminated as soon as the distance to the end 

point of the maze was reduced to zero. The rule based algorithm located the solu-

tion after 12 generations and required less than one third of the function evalua-

tions for the failed searches of the conventional algorithm. The solution was con-

sistently generated from multiple starting point groups. 

The final path and prescribed moves are shown in Figure 9. Note that there are 

a few back and forth moves present in the final solution. As implemented, there is 

nothing in the formulation which seeks to avoid this situation. Figure 10 docu-

ments the success frequency of each of the five rules. This success frequency is 

based upon the number of times a specific rule was executed successfully. Infor-

mation such as this can be utilized to improve or alter the rule set. Note that all 

five of the rules were used successfully, although rules 3 and 4 and particularly 

rule 5 accounted for the largest number of successful moves. This makes some 

sense as the first rule, once executed, moves all successful moves to the front of 

the decision string and has little impact beyond that point. 

Rule 2 allows for random move alterations which are important from maintain-

ing a global search perspective. It would not, however, be expected to form a  
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Final String = ENNEENNNWWWEWNNNEEEEESSSSSEEENSENNNWWNNNEWSEENSNSN 

Figure 9. Final Solution Generated by Rule Based Approach. 

 

 

Figure 10. Successful Rule Execution Distribution. 

 

large percentage of the successful moves. The remaining rule based moves per-

form specific functions during the search and each can be shown to have had a 

positive impact. Combinations or groups of rules applied simultaneously to gener-

ate a better decision string were not tracked, but this could be done quite easily. 

6. Summary and Conclusions 

A rule based approach has been successfully demonstrated on a small subset of 

decision support problems. While the ultimate effectiveness of the rule based ge-

netic algorithm has not yet been determined, the concept has been presented. The 

rule base is conveniently encoded within the decision string of the genetic algo-

rithm which makes the implementation of the approach a straightforward matter. 

For the sample problems, the rules are hard coded into the algorithm, which re-

quires additional programming effort. The two phase approach allows for many 
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combinations of a conventional genetic search with a rule based approach. Phase 

one is utilized to locate suitable decision strings to operate upon. Phase two con-

tains the execution of the rule based method. Hybrid methods, which automate the 

rule updates, as well as other genetic parameters during the solution, may be pos-

sible.  

In both problems considered, significant improvement in both solution effi-

ciency and efficacy were noted. The problems are simplistic in nature, but the 

concept may be implemented as presented for the solution of more difficult and 

significant applications. The comparison was only made to a standard generic al-

gorithm, and there are other evolutionary methods that could be applied to the 

problems tested. The purpose herein was not to present the rule based method as a 

better approach to any other, but to demonstrate the basic approach as an impetus 

to consider more relevant applications. The ability to incorporate problem specific 

knowledge is of significant interest and potential benefit to any decision support 

problem.  

The ability to determine which rules are being exploited successfully is also 

demonstrated and this feature can be further exploited to improve the rule base 

over time. The successes of the rules implemented were presented, but no effort 

was made to leverage this information on the problems tested. The balance be-

tween discovery based on randomness and a rule directed search is important. If 

randomness is removed completely, the search will be local which may not be 

very effective. The impact on the rules allowing for discovery in the genetic algo-

rithm can be seen by looking at the rules which were successfully applied in the 

search. Extensions to other problem classes including the traveling salesman, 

manufacturing scheduling and structural design are currently being investigated. 
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