
Open Journal of Optimization, 2015, 4, 51-60
Published Online September 2015 in SciRes. http://www.scirp.org/journal/ojop
http://dx.doi.org/10.4236/ojop.2015.43007

How to cite this paper: Li, G.R., Sun, M. and Li, P.C. (2015) Quantum-Inspired Bee Colony Algorithm. Open Journal of Opti-
mization, 4, 51-60. http://dx.doi.org/10.4236/ojop.2015.43007

Quantum-Inspired Bee Colony Algorithm
Guorui Li1, Mu Sun2, Panchi Li1

1School of Computer and Information Tsechnology, Northeast Petroleum University, Daqing, China
2Beijing Branch of Daqing Oilfield Information Technology Company, Beijing, China
Email: lipanchi@vip.sina.com

Received 15 March 2015; accepted 22 August 2015; published 25 August 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
To enhance the performance of the artificial bee colony optimization by integrating the quantum
computing model into bee colony optimization, we present a quantum-inspired bee colony opti-
mization algorithm. In our method, the bees are encoded with the qubits described on the Bloch
sphere. The classical bee colony algorithm is used to compute the rotation axes and rotation an-
gles. The Pauli matrices are used to construct the rotation matrices. The evolutionary search is
achieved by rotating the qubit about the rotation axis to the target qubit on the Bloch sphere. By
measuring with the Pauli matrices, the Bloch coordinates of qubit can be obtained, and the opti-
mization solutions can be presented through the solution space transformation. The proposed
method can simultaneously adjust two parameters of a qubit and automatically achieve the best
match between two adjustment quantities, which may accelerate the optimization process. The
experimental results show that the proposed method is obviously superior to the classical one for
some benchmark functions.

Keywords
Quantum Computing, Bee Colony Optimizing, Bloch Sphere Rotating, Algorithm Designing

1. Introduction
Artificial bee colony algorithm is proposed as an intelligent optimization algorithm which attempts to simulate
bee colony to search food sources by scholars from Turkey in 2005 [1]. Compared with genetic algorithm, par-
ticle swarm optimization and other intelligent algorithm, the outstanding advantage of this algorithm is syn-
chronously to perform the global and local search in each of iterations, which avoids the premature convergence
greatly and increases the probability of obtaining the optimal solution. At present, this algorithm has already
been successfully applied to numerical optimization [2]-[4], neural network design [5], digital filter design [6],
and network reconfiguration in distributed system [7], construction of the minimum spanning tree [8] and many

http://www.scirp.org/journal/ojop
http://dx.doi.org/10.4236/ojop.2015.43007
http://dx.doi.org/10.4236/ojop.2015.43007
http://www.scirp.org
mailto:lipanchi@vip.sina.com
http://creativecommons.org/licenses/by/4.0/

G. R. Li et al.

52

other fields. However, the progress has been slow in the algorithm improvement. For the design of the control
parameters, Ding Haijun et al. present an improved artificial bee colony algorithm for the solution to TSP prob-
lem [9]. Kang Fei et al. propose a cultural annealing artificial bee colony algorithm [10]. Duan Haibin et al.
present a new algorithm with application of the combination of artificial bee colony algorithm and quantum
evolutionary algorithm [11].

As a new computing model, quantum computing catches wide attention of international and domestic aca-
demics for its polymorphism, superposition and concurrency. At present, the fusion with genetic algorithm, im-
mune optimization, paticle swarm optimization and other intelligent optimization model is successfully applied.
In the real quantum system, the qubits are described on the Bloch sphere with two adjustable parameters. How-
ever, in the existing quantum intelligent optimization algorithms, individuals are encoded by qubits described by
unit circle with a single adjustable parameter. Evolutionary mechanism adopts quantum rotation gates and
quantum non-gates, and it essentially rotates qubits about circle center, which only changes one parameter of
qubits as well. Therefore quantum properties have not been fully reflected. Although Ref. [12] presents a quan-
tum genetic algorithm based on the Bloch coordinates of qubit, however, this algorithm does not consider the
match between two adjustment quantities, which means it doesn’t go along the shortest path when the current
qubit moves towards the target qubit. As a result, the optimization performance is influenced.

This paper proposes a new individual coding evolutionary mechanism, which is different from the coding of
quantum genetic algorithm in Ref. [12]. In this paper, we directly use qubits described on the Bloch sphere to
code (not the qubits coordinates). The evolutionary search is achieved by rotating the qubit about the rotation
axis on the Bloch sphere. This method can automatically achieve the best match between two adjustment quanti-
ties of bee colony individual qubits. For the design of quantum-inspired bee colony algorithm, we elaborate de-
sign principle and implementation programs of the algorithm. Taking benchmark functions extremum opti-
mization as example, it shows that the proposed method obviously outperforms the classical one by comparison.

2. Bee Colony Algorithm
Assuming the number of bees is sN , and the number of employed bees and onlooker bees are eN and uN ,
respectively. Individual dimension is D , and individual searching space is DS R= . The employed bee colony
is ()1 2, , ,

eN=X X X X
 and its initial the n-th generation colony is ()0X and ()nX , respectively. The

objective function is :f S R+→ . Taking minimum optimization as example, the artificial bee colony algorithm
can be described as follows:

(a) Randomly generating sN solutions, where the i-th solution iX is written as:

()()min max min0,1j j j j
iX X rand X X= + − , (1)

where 1, 2, ,j D=  . Calculate the target values, and then initialize ()0X by the first eN solutions;
(b) For the employed bee iX in the current generation, the new position in its neighborhood can be obtained

from the following equation:

()j j j j j
i i i i kV X X Xφ= + − , (2)

where { }1, 2, ,j D∈  , { }1,2, , ek N∈  , and k i≠ , and j
iϕ is a random number in the range (0, 1);

(c) We use greedy selection operator to select the better ones in iV and iX for the next generation. This
operator is denoted as 2:sT S S→ , and its probability distribution is written as:

(){ } () ()
() ()

1,
,

0,
i i

s i i i
i i

f f
P T

f f

 <= = 
≥

V X
X V V

V X
; (3)

(d) Using the strategy of roulette, randomly select an employed bee, and search a new position in its neigh-
borhood. This operator is written as 1 : eN

sT S S→ , and its probability distribution is written as:

(){ } () ()1 1
eN

s i i mmP T f f
=

= = ∑X X X X ; (4)

(e) Let bestf denote the minimum objective function value, and the corresponding individual be
()1 2, , , Dx x x . We initialize the employed bee if its searching time Bas reach to the threshold value Limit and it
does not find a better position;

G. R. Li et al.

53

(f) If algorithm meet the stopping criteria, it outputs bestf and the corresponding individual ()1 2, , , Dx x x ,
else go back to (b).

3. Quantum-Inspired Bee Colony Algorithm
This paper studies a new method of quantum-inspired searching with the fusion of bee algorithm. This method is
named quantum-inspired bee colony algorithm (QIBC).

3.1. Description of Qubits on the Bloch Sphere
During the quantum computing, a qubit is a two-level quantum system which could be described in two-dimen-
sion complex Hilbert space. Based on principle of superposition, a qubit can be defined as:

icos 0 e sin 1
2 2

ϕθ θ
= +ϕ , (5)

where 0 πθ≤ ≤ and 0 2πφ≤ ≤ .
Owing to the continuity of θ and ϕ , a qubit can be in infinitely many different states and described by a

point on the Bloch sphere. As shown in Figure 1.

3.2. The Rotation of Qubits about the Axis
In this paper, we create a search mechanism on the Bloch sphere which is used to rotate the qubit about the rota-
tion axis to the target qubit on the Bloch sphere. The rotation can simultaneously change two parameters of a
qubit, and automatically achieve the best match between two adjustment quantities, thus we can enhance the
performance of optimization. The key to the above rotation is the design of rotation axis. The design method
given by this paper can be expressed as the follows [13] [14].

Assuming , ,x y zp p p =  P and , ,x y zq q q =  Q denote two points on the Bloch sphere respectively, the
rotation axis axisR about which P rotates to Q along the shortest path is the vector product of P and Q, namely,

axis = ×R P Q . As shown in Figure 2.

Figure 1. A qubit description on the Bloch sphere.

Figure 2 Rotation axis of qubit on the Bloch sphere.

G. R. Li et al.

54

Based on the principle of quantum computing, the rotation matrix makes the qubit rotate about a rotation axis
along the unit vector , ,x y zn n n =  n with radian of rotation δ , and it’s defined by

() ()cos i sin
2 2
δ δδ = − ×nR I n σ , (6)

where I is the unit matrix, and , ,x y z =  σ σ σ σ , , ,x y zσ σ σ are Pauli matrices [15].
Therefore, on the Bloch sphere, the rotation matrix that rotates the ()ij tϕ about (),axis i jR to ()bj tϕ

can be described as follows:

() () ()()cos i sin ,
2 2

ij ij
ij axis

t t
i j

δ δ
= − ×M I R σ . (7)

The rotation operation is given by

() ()ij ij ijt t= Mϕ ϕ , (8)

where t is iteration step.

3.3. QIBC Coding Method
In QIBC, the individual coding adopts qubit based on the Bloch sphere. Let sN denote population size, D de-
note the number of variables, and () () ()1 2, , ,

sNt t t =  P p p p denote the t-th generation colony. During in

itialization, the i-th individual can be coded as follows:

() () ()1 2(0) 0 , 0 , , 0i i i iD =  p ϕ ϕ ϕ , (9)

where 1, 2, , si N=  .

3.4. The Projection Measurement of Qubits
On the basis of the principle of quantum computing, by applying Pauli matrices to ϕ , we can get the Bloch
coordinates of ϕ . The qubits projection measurement is denoted by the following equations:

0 1
1 0xx  

= =  
 

ϕ σ ϕ ϕ ϕ , (10)

0 i
i 0yy

− 
= =  

 
ϕ σ ϕ ϕ ϕ , (11)

1 0
0 1zz  

= =  − 
ϕ σ ϕ ϕ ϕ , (12)

where 1, 2, , si N=  and 1,2, ,j D=  .
In QIBC, each qubit are regarded as three paratactic genes, each one contains three paratactic gene chains,

and each of gene chains represents an optimization solution. Therefore, each entity represents three optimization
solutions at the same time.

3.5. The Solution Space Transformation
In QIBC, three optimization solutions given by each entity can be expressed by Bloch coordinates. Because the
value of coordinate is in (−1, 1), we must map it to solutions to the problems. Assuming the j-th variable is

Min ,Maxj j jX  ∈   , the solution transformation can be expressed as the following three equations:

() ()Max 1 Min 1 2ij j ij j ijX x x = − + +  , (13)

() ()Max 1 Min 1 2ij j ij j ijY y y = − + +  , (14)

G. R. Li et al.

55

() ()Max 1 Min 1 2ij j ij j ijZ z z = − + +  , (15)

where 1, 2, , si N=  and 1,2, ,j D=  .

3.6. Employed Bee Search
Taking minimum optimization as example, according to the value of target function, we rank the optimized
population in descending order, and select the first eN entities to compose employed bee colony. The rest of
them compose onlooker colony. For the i-th employed bee ()i tp , first of all, randomly select employed bees

()j tp and ()k tp ()i j k≠ ≠ , and also randomly select a dimension d. Then calculate the rotation axis

() () (),axis id jdi j t t= ⊗R ϕ ϕ and the rotation angle ()ik tδ between ()id tϕ and ()kd tϕ . Taking

()kd tϕ as target, rotate ()id tϕ about (),axis i jR through ()ik tδ . Let ()ˆ i tp denote the employed bee

after rotation. By greedy selection operator, we select the better ones between ()i tp and ()ˆ i tp for the next
generation from the following equations:

()
() ()() ()()
() ()() ()()

ˆ ˆ,

ˆ,
i i i

i
i i i

t f t f t
t

t f t f t

 <= 
≥

p p p
p

p p p
, (16)

where,

()() ()() ()() ()()()max , ,i i i if t f t f t f t=p X Y Z , (17)

()() ()() ()() ()()()ˆ ˆ ˆˆ max , ,i i i if t f t f t f t=p X Y Z . (18)

3.7. Onlooker Bee Search
It is similar with employed bee search. First, we calculate selective probability of each employed bee with the
equation as follows:

() () ()1
eN

i i mmP f f
=

= = ∑p p p p . (19)

To each onlooker bee, first, we select employed bee ip according to the roulette method, and in its neigh-
borhood we search for new position ˆ ip in the same method as the employed bee search. If ˆ ip is better than

ip , set ˆi i=p p , and set the number of searches 0Bas = . If Bas is less than threshold Limit , set
1Bas Bas= + , otherwise, we initialize ip and set 0Bas = .

3.8. Algorithm Termination Criterion
To this algorithm, the termination criterion is the number of iterations. Whether it meets the pre-set accuracy or
not, the algorithm will stop when the limited number of iterations reaches.

4. Analysis of Experimental Results
Taking functions extremum optimization as example, by comparing with bee colony [1], Bloch quantum genetic
algorithm [12], elite genetic algorithm, quantum delta potential-based particle swarm optimization [16], we ve-
rify the superiority of QIBC. All of algorithms use Matlab R2009a to implement on the computer (P-II 2.0 GHz)
with 1.0 G memory.

4.1. Benchmark Functions
To verify the superiority of QIBC, the following ten Benchmark functions are used in this experiment. All of ten
functions are for the minimum optimization, and ∗X is the minimum extreme value point.

(1) () ()2

1 1 1
D i

ji jf x
= =

= ∑ ∑X , 100 100ix− ≤ ≤ , 0ix∗ = , () 0f ∗ =X ;

G. R. Li et al.

56

(2) () () ()()1 2 22
2 1

1
100 1

D

i i i
i

f x x x
−

+
=

= − + −∑X , 100 100ix− ≤ ≤ , 1ix∗ = , () 0f ∗ =X ;

(3) () ()()4
3

1
* 1 0,1

D

i
i

f i x rand
=

= +∑X , 100 100ix− ≤ ≤ , 0ix∗ = , () 0f ∗ =X ;

(4) () ()2
1 1

1 10.2 cos 2π

4 20e e 20 e
D D

ii iix x
D Df = =− ∑ ∑

= − − + +X , 100 100ix− ≤ ≤ , 0ix∗ = , () 0f ∗ =X ;

(5) () ()() ()2
5 1

1 2

4 1
1

6

D D

i i i
i i

D D D
f x x x −

= =

+ −
= + − −∑ ∑X , 2 2

iD x D− ≤ ≤ , ()* 1ix i D i= − + , () 0f ∗ =X ;

(6) () ()
2

6
1 1

cos 1
4000

D D
jk

jk
k j

y
f y

= =

 
= − +  

 
∑∑X , () ()2 22100 1jk k j jy x x x= − + − , 100 100ix− ≤ ≤ , 1ix∗ = ,

() 0f ∗ =X ;

(7) () () () ()7 1 2 1 1, , ,D D Df g x x g x x g x x−= + + +X  , () () ()()0.25 0.12 2 2 2 2, sin 50 1g x y x y x y = + + +  
,

100 100ix− ≤ ≤ , 0ix∗ = , () 0f ∗ =X ;

(8) ()
2 4

2
8

1 1 1
0.5 0.5

D D D

i i i
i i i

f x ix ix
= = =

   = + +   
   

∑ ∑ ∑X , 100 100ix− ≤ ≤ , 0ix∗ = , () 0f ∗ =X ;

(9) () 2
9 1 1

1 cos 1
4000

DD i
ii i

x
f X x

i= =

 
= − + 

 
∑ ∏ , 500 500ix− ≤ ≤ , 0ix = , ()* 0f X = ;

(10) () ()()2
10 110 10cos 2πD

i iif X D y y
=

= + −∑ ,
()

, 1 2

2 2, 1 2
i i

i
i i

x x
y

round x x

 <= 
≥

, 100 100ix− ≤ ≤ , 0ix = ,

()* 0f X = .

4.2. Parameters Setting
For convenient comparison, based on the complexity of benchmark functions, we set up precision thresholds ε
for each function. Only when optimization effect is less than the thresholds, the algorithm is call converges. In
this experiment, the precision thresholds are set as follows. for 1 6,f f , 1.0ε = ; for 2f 10ε = ; for 3f ,

510ε −= ; for 4 9 10, ,f f f , 1010ε −= ; for 5f , 210ε = ; for 7f , 810ε −= ; for 8f , 410ε = . If the algorithm
converges, the current optimization steps are called the number of iteration. If not, the number of iteration is
equal to the pre-set limited number of iterations.

The dimensions of ten functions are set to 30D = , and population sizes of five algorithms are equal to 40.
For QIBC and BC, we have 20eN = , 20uN = , 50Limit = . For BQGA, on the basis of Ref. [12], the initial
value of rotation angle is 0.05π , and the mutation probability is 10-3. For QDPSO, based on Ref. [16], the con-
trol parameter is 1.2λ = . For EGA, the crossover probability is 0.8, the mutation probability is 0.01. The li-
mited number of iterations of five algorithms is 410G = .

4.3. Comparison and Analysis of Simulation
To enhance the objectivity of comparisons, each algorithm independently runs 50 times, and we have compari-
sons of statistical results. The average time for each of iteration are shown in Table 1. To make comparisons be
sufficient, besides showing the average results, the best and the worst ones are also are given. Comparison of the
number of iterations, average iterations, and optimization results are shown in Table 2.

From Table 1, for the running time, we rank five algorithms in descending order as QIBC, BQGA, BC, EGA,
QDPSO. The reason is that, in QIBC and BQGA, we use coding mechanism of qubit with three chains. During
each iteration, each entity respectively do updating, solution to space transformation, calculating value of
benchmark functions etc. and these operations take a long time. QIBC is longer than BQGA because QIBC
needs the projection measurement, design of rotation axis and rotation matrices, and its calculating quantity is

G. R. Li et al.

57

Table 1. Comparison of average time for each iteration (unit: second).

No. QIBC BC BQGA QDPSO EGA

f1 0.0281 0.0038 0.0216 0.0016 0.0026

f2 0.0219 0.0016 0.0095 0.0005 0.0015

f3 0.0223 0.0018 0.0100 0.0006 0.0015

f4 0.0218 0.0016 0.0103 0.0005 0.0014

f5 0.0221 0.0017 0.0098 0.0006 0.0014

f6 0.0596 0.0102 0.0429 0.0040 0.0126

f7 0.0245 0.0023 0.0270 0.0010 0.0011

f8 0.0222 0.0018 0.0104 0.0006 0.0015

f9 0.0176 0.0046 0.0116 0.0005 0.0003

f10 0.0183 0.0050 0.0178 0.0007 0.0005

Table 2. Comparison of optimization results in five algorithms.

No. Algorithm Convergence
Number Average Iteration Average

Results The Worst Result The Best Results

f1

QIBC 50 3083 0.1577 0.5737 0.0313

BC 0 10,000 349.70 1075.1 29.904

BQGA 0 10,000 131.59 246.14 36.583

QDPSO 21 7190 17.893 414.60 2.22e−6

EGA 0 10,000 456.36 887.14 227.14

f2

QIBC 37 4643 9.4221 80.358 0.0444

BC 23 6250 52.786 914.20 0.0699

BQGA 0 10,000 1046 6992 138.01

QDPSO 32 5076 12.440 72.776 0.0024

EGA 0 10,000 2654.1 12,494 301.56

f3

QIBC 48 5050 1.18e−6 2.10e−5 4.74e−10

BC 45 8016 1.36e−6 3.32e−5 9.61e−10

BQGA 0 10,000 187.72 792.30 21.370

QDPSO 47 6471 2.17e−4 0.0107 5.2e−75

EGA 0 10,000 1504.8 8057.3 219.92

f4

QIBC 47 5685 3.53e−11 6.29e−10 4.17e−14

BC 35 7210 7.84e−10 1.85e−08 5.59e−14

BQGA 0 10,000 15.894 20.742 10.280

QDPSO 6 9730 16.377 20.005 3.81e−14

EGA 0 10,000 19.287 21.047 3.9204

f5

QIBC 41 3561 68.415 398.62 2.4709

BC 10 9028 245.01 663.55 488.40

BQGA 0 10,000 5427 12,981 435.03

QDPSO 6 9061 827.33 2992.8 3.2900

EGA 0 10,000 6581.4 9429.7 4487.2

javascript:void(0);

G. R. Li et al.

58

Continued

f6

QIBC 49 2467 0.1926 8.9054 1.25e−09

BC 28 5838 17.966 106.97 3.47e−08

BQGA 0 10,000 491.21 829.02 196.59

QDPSO 0 10,000 171.47 351.05 8.8842

EGA 0 10,000 22,127 355,958 978.91

f7

QIBC 49 5763 3.39e−09 1.69e−07 0

BC 36 8354 3.67e−08 1.45e−6 1.49e−10

BQGA 0 10,000 110.73 169.67 32.058

QDPSO 32 8640 0.4312 9.2145 2.42e−19

EGA 0 10,000 164.55 231.46 93.272

f8

QIBC 50 5454 1412 5700 61.335

BC 0 10,000 50,112 69,884 33,193

BQGA 0 10,000 4910.5 12,882 1006.1

QDPSO 50 7392 2003 5300 200.81

EGA 0 10,000 7843.8 38,137 4291.6

f9

QIBC 50 2162 8.65e−17 3.33e−15 0

BC 36 3424 0.0033 0.0221 0

BQGA 12 7780 0.0239 0.1275 0

QDPSO 29 5040 0.0062 0.5136 0

EGA 0 10,000 3.1224 7.3366 1.6101

f10

QIBC 50 2606 1.13e−14 1.13e−13 0

BC 49 6290 4.03e−12 1.89e−10 0

BQGA 0 10,000 172.42 416.64 26.023

QDPSO 6 9284 7.3553 15.882 0

EGA 0 10,000 822.60 1298.1 455.30

larger.

In Table 2, for the ability of optimization, obviously, QIBC is better than QIBC, BQGA is better than EGA.
QDPSO is worse than QIBC, but it’s better than BQGA, and it’s similar to BC. For the optimization perfor-
mance of five algorithms, we rank them in descending order as QIBC, BC, QDPSO, BQGA, EGA.

For the above results, we present the following analysis. Firstly, we introduce the coding mechanism of qubit
with three chains, and it effectively enhances the ergodicity of algorithm to solution space. Based on the geome-
tric properties of the Bloch sphere, this mechanism can enlarge the number of global optimal solutions and the
probability of attaining global optimal solutions. That is the reason why these two algorithms are better than
their classical ones respectively. Secondly, QIBC has a better performance of optimization than BQGA, because
they adjust qubit in the different ways.

In BQGA, qubits are updated by directly adjusting θ and ϕ with the same adjustment amount (namely
θ ϕ∆ = ∆). Obviously, in this method, it is hard to close to target qubits along the shortest path, because there

must be some matching relation between θ∆ and ϕ∆ when it’s along the shortest path. But this matching
relation is hard to be expressed clearly by analytic equations. In QIBC, we adjust qubit in indirect method.
Namely, we rotate qubit to target qubit about the rotation axis on the Bloch sphere, and obviously, this path is

G. R. Li et al.

59

Table 3. Comparison of optimization results in QIBC and BC.

Function Algorithm Convergence
Number Average Number Average Results The Worst Result The Best Result

f9
QIBC 10 6267 1.11e−16 6.66e−16 0

BC 0 10,000 1.23e−07 6.80e−07 1.5e−08

f10
QIBC 7 9065 4.14e−08 4.02e−07 3.4e−13

BC 2 9758 3.17e−07 1.90e−06 2.4e−11

the shortest. Although it does’t adjust two parameters of qubit directly, it achieves the best match between θ∆
and ϕ∆ automatically and accurately. Hence, this method has better optimizing efficiency than classical ones.

It’s also worth pointing out that, although the QIBC has better optimizing performance, the complexity of this
algorithm is obviously higher than classical ones. Comparing with classical ones, the QIBC needs some extra
operations, such as calculating rotation axis, rotation angel, rotation matrices and the solution to space transfor-
mation. Considering run time and optimizing performance, QIBC earns better optimizing efficiency by sacrific-
ing running time, which is the same as No Free Lunch. For many off-line optimizing tasks which may ignore
running time, the QIBC has wide application prospects.

We need investigate and study the influence after dimensions and parameters change. Taking 9f and 10f
as example, while 100D = , population size is 40e uN N= = , and 100Limit = , 410G = . Precision threshold
of 9f and 10f is 1010− . The QIBC and the BC run 10 times respectively. Optimization results is shown in
Table 3.

As the results are shown, for the high-dimensional optimization problems, the proposed algorithm also shows
its better performance than classical ones.

5. Conclusion
We present a quantum-inspired bee colony optimization algorithm. In proposed method, the bees are encoded
with the qubits described on the Bloch sphere. The population evolutionary is achieved by rotating the qubit
about the rotation axis on the Bloch sphere. The experimental results show that, the method of qubits coding on
the Bloch sphere and the method of bee updating which can achieve the best match between two adjustment
quantities of qubit parameters by rotating about the rotation axis, can truly enhances the performance of the in-
telligent optimization algorithm.

Acknowledgements
This work was supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No.
F2015021), the Youth Foundation of Northeast Petroleum University (Grant No. 2013NQ119) and the Science
Technology Research Project of Heilongjiang Educational Committee of China (Grant No. 12541059).

References
[1] Karaboga, D. (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, En-

gineering Faculty, Computer Engineering Department, Erciyes University, Kayseri.
[2] Bahriye, A. and Dervis, K. (2012) A Modified Artificial Bee Colony Algorithm for Real-Parameter Optimization. In-

formation Sciences, 192, 120-142. http://dx.doi.org/10.1016/j.ins.2010.07.015
[3] Xiang, W.L. and An, M.Q. (2013) An Efficient and Robust Artificial Bee Colony Algorithm for Numerical Optimiza-

tion. Computers & Operations Research, 40, 1256-1265. http://dx.doi.org/10.1016/j.cor.2012.12.006
[4] Li, G.Q., Niu, P.F. and Xiao, X.J. (2012) Development and Investigation of Efficient Artificial Bee Colony Algorithm

for Numerical Function Optimization. Applied Soft Computing, 12, 320-332.
http://dx.doi.org/10.1016/j.asoc.2011.08.040

[5] Karaboga, D., Akay, B. and Ozturk, C. (2007) Artificial Bee Colony (ABC) Optimization Algorithm for Training
Feed-Forward Neural Networks. Modeling Decisions for Artificial Intelligence, 4617, 318-329.
http://dx.doi.org/10.1007/978-3-540-73729-2_30

http://dx.doi.org/10.1016/j.ins.2010.07.015
http://dx.doi.org/10.1016/j.cor.2012.12.006
http://dx.doi.org/10.1016/j.asoc.2011.08.040
http://dx.doi.org/10.1007/978-3-540-73729-2_30

G. R. Li et al.

60

[6] Karaboga, N. (2009) A New Design Method Based on Artificial Bee Colony Algorithm for Digital IIR Filter. Journal
of the Franklin Institute, 346, 328-348. http://dx.doi.org/10.1016/j.jfranklin.2008.11.003

[7] Rao, R., Narasimham, S. and Ramalingaraju, M. (2008) Optimization of Distribution Network Configuration for Loss
Reduction Using Artificial Bee Colony Algorithm. International Journal of Electrical Power and Energy Systems En-
gineering, 1, 709-715.

[8] Singh, A. (2009) An Artificial Bee Colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem. Ap-
plied Soft Computing, 92, 625-631. http://dx.doi.org/10.1016/j.asoc.2008.09.001

[9] Ding, H.J. and Li, F.L. (2008) Bee Colony Algorithm for TSP Problem and Parameter Improvement. China Science
and Technology Information, 25, 241-243.

[10] Kang, F., Li, J.J. and Zu, Q. (2009) Improved Artificial Bee Colony Algorithm and Its Application in Back Analysis.
Water Resources and Power, 27, 126-129.

[11] Duan, H.B., Xu, C.F. and Xing, Z.H. (2010) A Hybrid Artificial Bee Colony Optimization and Quantum Evolutionary
Algorithm for Continuous Optimization Problems. International Journal of Neural Systems, 20, 39-50.
http://dx.doi.org/10.1142/S012906571000222X

[12] Li, P.C. (2008) Quantum Genetic Algorithm Based on Bloch Coordinates of Qubits and Its Application. Control Theo-
ry & Applications, 25, 985-989.

[13] Li, P.C. and Lin, J.J. (2012) Chaos Quantum Immune Algorithm Based on Bloch Sphere. Systems Engineering and
Electronics, 34, 2592-2598.

[14] Li, P.C., Wang, Q.C. and Shi, G.Y. (2013) Quantum Particle Swarm Optimization Algorithm Based on Bloch Spheri-
cal Search. Chinese Journal of Computational Physics, 30, 454-462.

[15] Giuliano, B., Giulio, C. and Giuliano, S. (2004) Principles of Quantum Computation and Information (Vol. I: Basic
Concepts). World Scientific, Singapore, 100-112.

[16] Li, P.C., Wang, H.Y. and Song, K.P. (2012) Research on Improvement of Quantum Potential Well-Based Particle
Swarm Optimization Algorithm. Acta Physica Sinica, 61, Article ID: 060302.

http://dx.doi.org/10.1016/j.jfranklin.2008.11.003
http://dx.doi.org/10.1016/j.asoc.2008.09.001
http://dx.doi.org/10.1142/S012906571000222X

	Quantum-Inspired Bee Colony Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Bee Colony Algorithm
	3. Quantum-Inspired Bee Colony Algorithm
	3.1. Description of Qubits on the Bloch Sphere
	3.2. The Rotation of Qubits about the Axis
	3.3. QIBC Coding Method
	3.4. The Projection Measurement of Qubits
	3.5. The Solution Space Transformation
	3.6. Employed Bee Search
	3.7. Onlooker Bee Search
	3.8. Algorithm Termination Criterion

	4. Analysis of Experimental Results
	4.1. Benchmark Functions
	4.2. Parameters Setting
	4.3. Comparison and Analysis of Simulation

	5. Conclusion
	Acknowledgements
	References

