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ABSTRACT 

This paper is devoted to introducing an optimization algorithm which is devised on a basis of ordinary differential equa- 
tion model describing the process of animal swarming. By several numerical simulations, the nature of the optimization 
algorithm is clarified. Especially, if parameters included in the algorithm are suitably set, our scheme can show very 
good performance even in higher dimensional problems. 
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1. Introduction 

Let  f x  be a real valued continuous function defined 
for Dx� , where  is a positive integer. The prob- 
lem of finding the minimal value 

D

 min
Dx

f x


 

is called a D-dimensional optimization problem for 
 f x . Such an optimization problem is one of funda- 

mental problems in the study of science and technology 
and so far various methods have already been presented. 

When  f x  is a  function, the point 1 x  which  

hits the minimal value     min
Dx

f x f x





 is obtained  

in the set of solutions of the functional equation 
. But, in general, it is not so easy to solve this 

functional equation. So, approximate solutions become 
more important. The steepest descent method is a method 
of obtaining a sequence  in 

  0f x 

 0,1, 2,nx n   D  which 
approaches to x  by using the recurrence formula  

 1n n n nx x f x   
0n

 
with some suitable coefficient 

  . This method is very convenient and it is easily 
observed that nx  converges to a limit x  such that 

  0f x  . But x


 may hit very often some local 
minimal value of f x  and not the very minimal value. 
So, when  f x  possesses many local minimal values, it 
is very difficult to find out the point x  by this method. 

Recently, a development of techniques of numerical 
computations has yielded a new paradigm of optimiza- 

tion using a collection of particles in D  which interact 
each other and move for striking out the point x . Such a 
method is called the particle optimization. One of the 
typical particle optimization was devised by Kennedy- 
Eberhart [1]. They consider a swarm of particles not only 
flying in D  like bird but also behaving as an intellec- 
tual individual which can memorize its personal best 
through the whole past and, on the other hand, can know 
the swarm’s global best at each instant. In each step, 
processing such personal and swarm information, they 
move to a suitable position. The phase space in which the 
particles move about is therefore an abstract multi-di- 
mensional space which is collision-free. They called their 
method the particle swarm optimization. Afterword, the 
particle swarm optimization has been developed exten- 
sively and applied to various problems. We will here 
quote only some of them [2-4]. A survey of the method 
has recently been published by Eslami-Shareef-Khajeh- 
zadeh-Mohamed [5]. 

In this paper, we want to compose another type parti- 
cle optimization which is inspired more directly from the 
animal swarming like fish schooling, bird flocking, or 
mammal herding. Our particles move truly according to 
the animal’s behavioral rules for forming swarm. We 
first set a D-dimensional physical space D  in which the 
particles move about. We then assume among individuals 
two kinds of interactions, attraction and collision avoid- 
ance. These interactions will be formulated by general- 
ized gravitation laws. Regarding  f x  as an environ- 
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mental potential, we assume also that the particles are 
sensitive to the gradient of  f x



 at their positions and 
have tendency to move toward the most descending di- 
rection of the value of f x . But they cannot know 
which mate has the global best position of the swarm at 
any momemt. We will also incorporate uncertainty of 
their information processing and executing. The phase 
space of particles is therefore given by D D  , here 
 , D D

i ix v     means that at that moment the i-th 
particle is at position xi with velocity vi. As for animal’s 
behavioral rules, we are going to follow those presented 
by Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bona- 
beau ([6], Chapter 11). That is: 

1) The swarm has no leaders and each individual fol- 
lows the same behavioral rules; 

2) To decide where to move, each individual uses 
some form of weighted average of the position and ori- 
entation of its nearest neighbors; 

3) There is a degree of uncertainty in the individual’s 
behavior that reflects both the imperfect information- 
gathering ability of an animal and the imperfect execu- 
tion of its actions. 

(We refer also a similar idea due to Reynolds [7].) The 
authors have in facttried to model in the previous paper 
[8] these mechanisms by stochastic differential Equations 
(2.1) and (2.2) below. 

Our optimization scheme is actually composed on the 
basis of the continuous model Equations (2.1), (2.2) but 
just ignoring velocity matching (i.e., taking 0  ) and 
setting the external force as the sum of resistance and 
gradient of the potential function to be optimized. At 
each step, the particles have a velocity determined by the 
sum of centering with nearby mates and acceleration by 
the external force. Its position is renewed by the sum of 
the velocity and a noise which reflects the imperfectness 
of information-gathering and execution of actions. At the 
first stage, the particles move striking out the global mi- 
nimal value on one hand keeping a swarm and on the 
other hand keeping a territorial distance with other mates. 
The noise helps the swarm to escape from the traps of 
local minimal values and to reach into a neighborhood of 
the global one. At the second stage, the movement of 
particles slows down. The particles go to an equilibrium 
state in which some particle attains at the swarm’s best 
value. 

In order to investigate swarm behavior of particles, we 
shall apply our optimization scheme to a few benchmark 
problems. When  f x  has many local minimal values, 
the territorial distance must be chosen in a suitable length 
to find a good approximate solution. Optimal strength of 
noise is also required. If it is too small, the swarm is eas- 
ily trapped by a local minimum; to the contrary, if too 
large, the particles cannot keep on swarming because of 
the strong dispersion. If these are suitably set, then our 

scheme can show very high performance even in 12- 
dimensional problems. 

2. Continuous Model 

We being with reviewing the continuous model presented 
by [8].  

We consider motion of I animals in the physical space 
. The position of i-th animal is denoted by 3  i ix x t

  1, ,i  I , and its velocity by   1, ,i I  i i . 
The model equations are then written as 

v v t

d d di i i ix v t B                            (2.1) 

 

d

, , d ,

p q

i ij
j i ij ij

p q

ij i i i
j i ij ij

r r
v x

x x

r r
v f t x v t

x x









                      
                      





 (2.2) 

where ij i jx x x   and ij i j . The first Equation 
(2.1) is a stochastic equation for xi, here  

v x v 

   , 0 1, ,iB t t i I    denotes a system of independ- 
ent 3-dimensional Brownian motions defined on a com-
plete probability space with filtration   , , ,t P  

0t
 

(see [9]). The term idi B  therefore denotes a noise re- 
sulting from the imperfectness of information-gathering 
and action of the i-th animal, i  being some coefficient. 
In the meantime, (2.2) is a deterministic equation for vi. 
The first term in the right hand side denotes the centering 
and the collision avoidance of animal. The animals have 
tendency to stay nearby their mates and at the same time 
avoid colliding each other. As p and q are such that 
1 p q    , if i jx x r  , then the i -th animal 
moves toward the j-th; to the contrary, if i jx x r  , 
then it acts in order to avoid collision with the other. The 
number  therefore denotes a critical distance. If p 
is large, then, as the distance 

0r 
i jx x r   increases, its 

power   p

i j  decreases quickly. Hence, the lar- 
ger p is, the shorter the range of centering is. The second 
term of (2.2) denotes the effect of velocity matching with 
nearby mates. Finally, the term 

r x x

 , ,i i if t x v  denotes an 
external force imposed to the i-th animal at time t which 
is a given function for xi and vi. In the subsequent section, 
we take a function of the form 

  ,i i if cv f x                (2.3) 

where icv  denotes a resistance for motion and 
 if x   denotes an external force determined by a  

potential function . 

1
3:f  

3. Optimization Scheme 

Let  f x  be a real valued  function defined for 1
Dx  with positive integer . Consider the optimi- D
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zation problem 

 min .
D i

x
f x


               (3.1) 

On the basis of (2.1), (2.2), we introduce an optimiza- 
tion algorithm for (3.1). Let   , 1, ,ix t i I  , denote the 
positions of I particles moving about in the space D , 
and let   , 1, ,iv t i I  , denote their velocities. We ig- 
nore velocity matching of particles, namely, we set 

0  , and take the function  , ,i i if t x v  in (2.2) in the 
form (2.3) above. Our scheme is then described by 

       ,i i i i x t t x t v t t t t                (3.2) 

     

        ,

i i

p q

ij i
j i ij ij

v t t w t v t

r r
x t f x t

x t x t
 



   


t

                          





(3.3) 

where      ij i jx t x t x t 
   t B t t B t   

. In addition,  
 Δ , 1, ,i i i i I  



, is a family of in- 
dependent stochastic functions defined on a complete 
probability space  , , ,t P   0t

 with values in D  
whose distributions are a normal distribution with mean 
0 and variance . And t  w t


 is given by  
 1w t c t    . 

Set initial positions and initial velocities 

    
    

0 1

0 1

0 , , 0 ,

0 , , 0 ,

DI
I

DI
I

x x

v v

 

 

x

v

 �

 �0
 

respectively. Then, the algorithm (3.2), (3.3) defines a 
discrete trajectory 

    1 , , ,DI
n n I nx t x t x    

where . In each step n, we com-  , 0,1,2, ,nt n t n N   

pute the minimal value  
1
minn i

i I
nf f x t

 
    and memo- 

rize its value together with the point D
nx   hitting it, 

i.e.,  n nf x f . Repeating the iteration N-times,  

0
min n

n N
f f

 
 is an approximation value of (3.1) and x   

such that  f x f  is an approximation solution of our 
scheme. 

As x  is one of members of swarm 1, , Ix x  having 
interactions one and another, the approximate solution 
x  may not satisfy the condition   0f x . This means 
that there is a point x  in a neighborhood of x  which 
hits a local minimum of  f x , i.e.,   0f x . In this 
case, x which can easily be obtained by classical meth- 
ods (e.g., the steepest descent method) gives a better ap- 
proximate solution of (3.1) than x . 

4. Numerical Experiments 

We show some numerical experiments to expose the par- 

ticle’s behavior of our scheme. It is expected that the 
particles crowd around a point x  giving the global 
minimum of  f x

, ,p q r

 or are dispersed into a number of 
neighborhoods of points giving local minimums. The be- 
havior may change heavily depending on the choice of 
parameters  and  . 

We here use three well known benchmark problems, 
namely, Problem (3.1) with Sphere function, Rastrigin 
function and Rosenbrock function. Problem (3.1) with 
the Sphere function 

  2

1

D

d
d

f x


  x                (4.1) 

is the simplest problem. The optimal point is obviously 
given by  0 0, ,0  . The following function 

   2

1

10 10cos 2π
D

d
d

df x D x x


          (4.2) 

is called the Rastrigin function. Its optimal point is also 
given by  0 0, ,0  with the global minimum  
 0f 0 . It is easily seen that this function possesses 

many local minimums; indeed, at every lattice point, 
 f x  has a local minimum. Therefore, Problem (3.1) 

with function (4.2) is very difficult to treat especially in a 
high dimension . Finally, the Rosenbrock function is 
formulated by 

D

     
1 2 22

1
1

100 1 .
D

d d d
d

f x x x x





          (4.3) 

This function takes its global minimum 0 at the lattice 
point  1, ,1 .e    

As shown below, behavior of the particles depends on 
the model parameters. We set  9, 25, 49; 0.0,0.9;I w 

1.0, 2.0;3000,10000,30000; 0.5,r   and  
     , 3,5 , 7,p q 

61.0 10t
9 . The step size is fixed by  

    and the total step number is 5000N  . 
As for D, we consider 2-dimensional and 12-dimensional 
problems. 

When 2D  , the initial position 0  is taken in, x
 28, 21

I
, where no optional point exists in , 

moreover, 0  is far away from the optimal point. In ad- 
dition, for 2-dimensional Rosenbrock problem, we will 
take 

 2
8,12

x

 12, 280

I  x , too, because the Rosenbrock func- 
tion defined by (4.3) is not symmetric with respect to the 
transformation x x . 

When 12D  , the initial position 0  is taken ran- 
domly in , but it is very difficult to find the op- 
timal point in a higher dimensional search space. 

x
 12

2, 2 

4.1. Sphere Function 

Figure 1 shows the numerical results for Sphere function. 
The parameters are set as , ; 25I  0.9w  3000  ; 

0.5r  , and    3,5,p q  . For , the computed 2D 
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result is given by Figure 1(a); similarly for 12D  , by 
Figure 1(b). 

In the first stage , 0 1500n    nf x  decreases 
rapidly, which means that all the particles strike out for 
the optimal point 0 in group influenced form the force 
due to the gradient of  f x . In the second stage, since 
the interaction among particles becomes dominant rather 
than the potential force, decreasing of the value  nf x  
becomes slow. This means that the particles make local 
searches in a neighborhood of the global optimum. But, 
the interaction may prevent the optimal particle from at- 
taining exactly the global minimum. So, our method 
makes it possible to search both wide range and small 
range by using the same scheme. On the other hand, it is 
an important problem to find a better combination of 
parameters in order to have a suitable balance between 
the global search and the local search. 

4.2. Rastrigin Function 

Figure 2 shows the numerical results for the Rastrigin  
 

 
(a) 

 
(b) 

Figure 1. Graph of  nf x  at Steps 0 ≤ n ≤ 5000 for 5 trials. 

(a) Sphere function for D = 2; (b) Sphere function for D = 12. 

 
(a) 

 
(b) 

Figure 2. Graph of  nf x  at Steps 0 ≤ n ≤ 5000 for 5 trials. 

(a) Rastrigin function for D = 2; (b) Rastrigin function for D 
= 12. 
 
function. For D = 2, we set I = 49, ; 0.9w  10000  ; 

1.0r  , and    , 7,p q  9 . For  and 12,D  r  ,p q  
are replaced by 2.0r   and , respec- 
tively, and the rests are the same as for D = 2. Such a 
combination yielded the best result in our numerical si- 
mulations. 

 ,p q   3,5

Figures 2(a) and (b) illustrate the graphs of  nf x  
for 5 trials in the cases D = 2 and D = 12, respectively. 
Figure 3 then shows the positions of particles at Step 

5000N  . (When D = 12, only the first two coordinates 
are illustrated.) In the 2-dimensional case, many particles 
reach a neighborhood of the optimal point  0,0  with- 
out being trapped by lattice points giving local minima. 
In the 12-dimensional case, however, no particles can 
exactly get to the optimal point. But, we see that, for the 
optimal point x  of the scheme, most of its coordinates 
coincide optimally with 0. 

In order to measure the total optimality of swarm, we 
want to consider the total energy defined by 

Copyright © 2013 SciRes.                                                                                 OJOp 



T. UCHITANE, A. YAGI 49

 
(a) 

 
(b) 

Figure 3. Positions of particles at Step N = 5000. (a) Rastrigin 
function for D = 2; (b) Rastrigin function for D = 12. 
 

 
1

.
I

n i
i

E f x t


n     

We can say that, if n  is small, then most of swarm 
particles stay in rather better positions and the swarm is 
in a steady state. To the contrary, if n  is large, then 
many swarm particles move actively from local minima 
to others to reach a steady state. Table 1 shows some 
summation results of 5000 . As seen by this table, if 

E

E

E

  
is too small, namely, the noise is too small, then the 
swarm is trapped in a steady state of high total energy. 
To the contrary, if   is sufficiently large, then particles 
can escape from the trap of local minima and the swarm 
moves into a state of lower total energy. But if   is too 
large, then the noise effect disperses swarm particles in 
every direction to disconnect the interaction among 
swarm mates. In this simulation, the value 10000   is 
the best one. 

4.3. Rosenbrock Function 

Figure 4 shows the numerical results for the Rosenbrock 
function. For D = 2, we set 49I  , , 0.9w  3000  , 

, and . The initial positions are set 
in either . For 

0.5r    , 3p q 
 98
8,12 orK K 

,5
 12 98

, 8   12D  ,  

Table 1. Total energy of particles at Step N = 5000. 

  test1  test2  test3  test4  test5  

sum 938 973 973 1001 935 
0 

min 9.02 8.00 10.99 8.02 8.03 

sum 1082 1106 1091 1147 1053 
3000

min 10.09 9.58 10.83 9.89 11.26

sum 2508 2655 2593 2311 2523 
10000

min 21.89 24.36 16.79 16.51 22.57

sum 11732 18830 18892 19219 19046
30000

min 147.63 222.27 198.41 195.95 181.32

 
we set I = 49, w = 0.9, 3000  , , and 1.0r   ,p q   
 7,9 . Such a combination provided the best result in 
our numerical simulations. 

Figures 4(a) and (b) illustrate the graphs of  nf x  
for the 2-dimensional problems with initial positions 

0 0andK K  x x , respectively. Figure 4(c) illus-
trates the same for the 12-dimensional problem. Figure 5 
then shows the positions of particles at Step 5000N  . 
(When 12D  , only the first two coordinates are illus- 
trated.) We observe that particles line along a curve 
drawn on D  by the local minima of  f x  defined 
by (4.3). 

5. Conclusions 

After reviewing the stochastic differential equation model 
for animal swarming, we have introduced our optimiza- 
tion algorithm directly based on animal swarming be- 
havior, centering, collision avoidance and imperfectness 
of information-gathering and acting. The optimization 
function was treated as a potential function and each par- 
ticle has tendency to move into the most descending di- 
rection of the values of the potential function. By these, 
on one hand, the particles keep on swarming; on the 
other hand, they search the optimal point globally and lo- 
cally without being trapped by points giving local min- 
ima. 

Numerical experiments were performed in order to 
clarify particle’s behavior of the proposed scheme. We 
used Sphere function, Rastrigin function and Rosenbrock 
function. For getting good performance, the parameters 
of algorithm must be suitably chosen. 

Especially,  ,p q  controls an effective range of how 
far the interaction among particles is attainable. Mean- 
while, r decides the standard distance of any two parti- 
cles; that is, if the distance of two particles is more than r, 
then they are attractive each other, on the contrary, if less 
than r, then they are repulsive. The parameter   con- 
trols vitality of the swarm. If   is too small, then the  
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(a) 

 
(b) 

 
(c) 

Figure 4. Graph of  nf x  at Steps 0 ≤ n ≤ 5000 for 5 trials. 

(a) Rosenbrock function for D = 2 with x0 = K+; (b) Rosen- 
brock function for D = 2 with x0 = K−; (c)Rosenbrock func- 
tion for D = 12. 

 
(a) 

 
(b) 

Figure 5. Positions of particles at Step N = 5000. (a) Rosen- 
brock function for D = 2; (b) Rosenbrock function for D = 
12. 
 
swarm is easily trapped in a neighborhood of points giv- 
ing local minima; on the contrary, if too large, then they 
cannot keep on swarming and they result in searching the 
optimal point individually. If   is suitably chosen, then 
the swarm strikes out toward the optimal point making 
global searching without being trapped by local minima. 
As shown by numerical examples in 12-dimensional 
space, such machinery is available even for higher di- 
mensional problems. 

Our optimization method devised on the basis of ani- 
mal swarming may be applicable to various optimization 
problems presented from the real world. In those prob- 
lems, it may be unknown whether the optimization func- 
tion is of class  or not, or even if so, its gradient may 
not be easily computed. For further such applications, we 
have therefore to combine our method with some meth- 
ods of numerical differentiations or those of differentiat- 
ing non smoothing functions numerically using func- 
tional values alone. 

1

REFERENCES 

[1] Kennedy and R. Eberhart, “Particle Swarm Optimiza- 
tion,” Proceedings of IEEE International Conference 

Copyright © 2013 SciRes.                                                                                 OJOp 



T. UCHITANE, A. YAGI 

Copyright © 2013 SciRes.                                                                                 OJOp 

51

Neural Networks, Perth, 27 November-1 December 1995, 
1942-1948. 

[2] D. Bratton and J. Kennedy, “Defining a Standard for Par- 
ticle Swarm Optimization,” IEEE Swarm Intelligence 
Symposium, Honolulu, 1-5 April 2007, pp. 120-127. 

[3] H. Liu, A. Abraham and W. Zhang, “A Fuzzy Adaptive 
Turbulent Particle Swarm Optimization,” International 
Journal of Computer Applications, Vol. 1, No. 1, 2007, 
pp. 39-47. doi:10.1504/IJICA.2007.013400 

[4] S. He, Q. Wu, J. Wen, J. Sanuders and R. Paton, “A Par- 
ticle Swarm Optimizer with Passive Congregation,” Bio-
systems, Vol. 78, 2004, pp. 135-147.  
doi:10.1016/j.biosystems.2004.08.003 

[5] M. Eslami, H. Shareef, M. Khajehzadeh and A. Mohamed, 
“A Survey of the State of the Art in Particle Swarm Op- 

timization,” Research Journal of Applied Science, Engi- 
neering and Technology, Vol. 4, 2012, pp. 1181-1197. 

[6] J. S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, 
G. Theraulaz and E. Bonabeau, “Self-Organization in Bio- 
logical Systems,” Princeton University Press, Princeton, 
2001. 

[7] C. W. Reynolds, “Flocks, Herds, and Schools: A Distrib- 
uted Behavioral Model,” Computer Graphics, Vol. 21, 
No. 4, 1987, pp. 25-34. doi:10.1145/37402.37406 

[8] T. Uchitane, T. V. Ton and A. Yagi, “An Ordinary Dif- 
ferential Equation Model for Fish Schooling,” Scientiae 
Mathematicae Japonicae, Vol. 75, 2012, pp. 339-350. 

[9] B. Øksendal, “Stochastic Differential Equations,” Sprin- 
ger, Berlin, 2007.  

 

http://dx.doi.org/10.1504/IJICA.2007.013400
http://dx.doi.org/10.1016/j.biosystems.2004.08.003
http://dx.doi.org/10.1145/37402.37406

