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Abstract 
The study of viral dynamics of HIV/AIDS has resulted in a deep understand-
ing of host-pathogenesis of HIV infection from which numerous mathemati-
cal modeling have been derived. Most of these models are based on nonlinear 
ordinary differential equations. In Bangladesh, the rate of increase of HIV in-
fection comparing with the other countries of the world is not so high. Ban-
gladesh is still considered to be a low prevalent country in the region with 
prevalence < 1% among MARP (Most at risk populations). In this paper, we 
have presented the current situation of HIV infection in Bangladesh and also 
have discussed the mathematical representation of a three-compartmental HIV 
model with their stability analysis. We have determined the basic reproduction 
number 0R  and shown the local and global stability at disease free and 
chronic infected equilibrium points. Also we have shown that if the basic re-
production number 0 1R ≤ , then HIV infection is cleared from T cell popula-
tion and it converges to disease free equilibrium point. Whereas if 0 1R > , 
then HIV infection persists. 
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1. Introduction 

HIV stands for human immunodeficiency virus. The virus attacks the immune 
system, and weakens our ability to fight infections and disease. HIV/AIDS pro- 
gresses in body slowly and its symptoms are shown after 6 - 8 years sometimes 
even later. At present, the most burning issue at the same time, the most dan-
gerous phenomena is Human Immunodeficiency Virus (HIV) [1]. Since the be-
ginning of the epidemic, more than 70 million people have been infected with 
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the HIV virus and about 35 million people have died of HIV. Globally, 36.7 mil-
lion [34.0 - 39.8 million] people were living with HIV at the end of 2015 [2]. An 
estimated 0.8% [0.7% - 0.9%] of adults aged 15 - 49 years worldwide are living 
with HIV, although the burden of the epidemic continues to vary considerably 
between countries and regions. Sub-Saharan Africa remains the most severely 
affected, with nearly 1 in every 25 adults (4.4%) living with HIV and accounting 
for nearly 70% of the people living with HIV worldwide [2]. Acquired Immuno-
deficiency Syndrome (AIDS) was first discovered in 1981, since then it has been 
considered as the most leading cause of mortality [3]. A detailed background 
and survey on HIV/AIDS is described in [4] [5] [6] [7]. HIV mainly targets CD4+ 
T cells. The continuous attack HIV causes the depletion of CD4+ T cells and this 
leads people to gradually become a victim of Acquired Immunodeficiency Syn-
drome (AIDS). For this reason, the count of CD4+ T cells is considered as the pri-
mary indicator of progression of HIV. In recent times, mathematical modeling has 
become the most powerful tool to incorporate the dynamic behaviors of infec-
tious diseases. Mathematical modeling is basically referred to as a method of si-
mulating real-life situations with mathematical equations to forecast their future 
behavior [8]. Numerous mathematical models have been developed to identify 
the characteristics of human immunodeficiency virus [9] [10] [11]. HIV dynam-
ic model, a set of ordinary differential equations (ODE) that describe the inte-
raction between HIV virus and human body cells, has been proven useful for 
understanding the pathogenesis of HIV infection and developing treatment 
strategies [12]. In this paper, we have shown the present scenario of HIV/AIDS 
in Bangladesh. Also we have studied a three-compartmental HIV model and in-
vestigated their stability at disease free and endemic equilibrium points.  

2. Current Status of HIV Infection in Bangladesh 

HIV is a worldwide curse. There is no such country where this pandemic disease 
does not exist. Although Bangladesh is still considered to be a low responded HIV 
infected country in world, the present situation indicate that the influence of this 
pandemic disease is gradually increasing. The main reason for this low prevalence 
could be the early and sustained HIV prevention programs targeting high risk 
groups backed by a state-of-the-art surveillance system. Another contributing 
protective factor could be the high rates of male circumcision. There is, however, a 
concentrated HIV epidemic among injecting drug users (IDU), primarily due to 
sharing of unclean syringes and needles. As a result, the rate of new infections is 
still on the rise and Bangladesh is the only country in the South Asia Region 
where new infections are rising [13]. 

In Bangladesh, the first case of HIV was detected in 1989 [3]. Since then, it 
has been enhanced considerably. In 2015 (December 2014 to November 2015), 
the number of newly HIV infected people is 469 and the number of HIV/AIDS 
related death is 95. Till December 2015, there were 4143 reported cases of HIV 
and among them 658 died [6]. Here we show a graphical representation of HIV 
surveillance of Bangladesh (see Figure 1) from 1989 to 2015 (except 2008) [14]. 
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Figure 1. (a) Number of HIV and AIDS cases from 1989 to 2001; (b) Number of HIV and 
AIDS cases from 2002 to 2015 (except 2008). 

3. Three-Compartmental HIV Model 

To generate a realistic model of T cell infection by HIV, we first need to consider 
the population dynamics of T cells in the absence of HIV. Our interest is to 
present a mathematical model of HIV infection and analyze the model. In this 
paper, we present a three compartmental model of HIV which has been taken 
from [15]. We have modified this model and added a drug efficacy parameter ε  
whose value is in the range between 0 and 1 [16]. The total population size N  
is divided into three stages of HIV/AIDS progression; the susceptible population 
S , HIV infected individuals I  and HIV virus .V  The total population is 
given by ( ) ( ) ( ) ( ).N t S t I t V t= + +  The population CD4+ T cells starts with a 
source or production rate Λ  and dead cells with rate α  are reduced from the  

susceptible class. It has a logistic growth with 
max

1 S IrS
S

 +
− 

 
 where r  is the  

proliferation rate. Parameters ,  α β  and γ  are natural turnover rate of unin-
fected CD4+ T cells, infected CD4+ T cells and virus. Whereas maxS  is the maxi-
mum level of CD4+ T cell concentration in the body [17]. Infected CD4+ T cells it 
has an infection rate which is concentrated as µ . The transfer diagram of the 
model is shown in Figure 2. 
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Figure 2. Transmission diagram of three compartmental HIV model. 

 
Our modified model is governed by the following ordinary differential equa-

tions:  

( )

( )

max

d 1 1 ,
d
d 1 ,
d
d .
d

S S IS rS VS
t S
I VS I
t
V I V
t

α ε µ

ε µ β

β γ

 +
= Λ − + − − − 

 

= − −

= −

            (1) 

The model is positively invariant and bounded in the region  

3, , : ( ) .S I V N t
µ+

 Λ
Ω = ∈ℜ ≤ 

   
We have determined the basic reproduction number 0R  which was first in-

troduced by Ross (1909), which is defined in epidemiological modeling as the 
average number of infected individuals produced by one infected immigrant in a 
population which is completely susceptible [18]. Finding the basic reproduction 
number 0R , we can determine the endemic result of disease in populations. If 

0 1R < , the disease vanishes and if 0 1R > , the disease spreads and goes to the 
endemic level. 

Parameter Specification 

If one wishes to use a mathematical model to make predictions about a particu-
lar individual or population, estimation of model parameters from data is cru-
cial. All the parameters and their values used for model (1) are taken from [15] 
[16] and presented in Table 1. 
 
Table 1. Parameters used for model (1). 

Description Symbols Values 

CD4+ T cell source rate Λ  0.1 mm−3∙day−1 

Natural turnover rate of uninfected CD4+ T cell α  0.02 day−1 

Natural turnover rate of infected CD4+ T cell β  0.3 day−1 

Natural turnover rate of virus γ  2.4 day−1 

Drug efficacy ε  0.5 

CD4+ T cell infection rate µ  0.0027 mm−3∙day−1 
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4. Mathematical Analysis of Model 

Here we investigate the positivity of the model, find out different equilibrium 
points, formulate the basic reproduction number and check the stability at dis-
ease free and endemic equilibrium points. 

4.1. Positivity of the Solution 

Here we check the positivity of each compartments such as susceptible S  cells, 
infected I  and HIV virus V . We must have the positive values of these bio-
logical compartments. To test the positivity of these biological compartments, 
we need the following Lemma 1. 

Lemma 1. Let (0) 0,S > (0) 0,I ≥  ( ) ( ) ( )0 0,  0 0,  0 0S I V> ≥ ≥ ∈Ω  then the 
solutions ( ) ( ) ( ), ,S t I t V t  of the model system of equations (1) are positives.  

Proof: To prove the Lemma 1, we have used the system of equations of the 
model (1).  

( )
max

d 1 1 ,
d
S S IS rS VS
t S

α ε µ
 +

= Λ − + − − − 
 

 

in order to find the positivity we have, 

d d
d d

de e .

S SS S
t t

t tIF

α α

α α

≥ Λ − ⇒ + ≥ Λ

∫∴ = ≥

                  (2) 

Multiplying both sides of (2) by e tα  we have, 

( )
( )

d de e e e e
d d

                                     d e e d .

St t t t tS S
t t

t tS t

α α α α αα

α α

+ ≥ Λ ⇒ ≥ Λ

⇒ ≥ Λ
            (3) 

Now Integrating (3) 

1e e ,t tS cα α
α
Λ

≥ +                         (4) 

where 1c  is a constant. Applying the initial condition at ( ) ( )0,  0 .t S t S= ≥
Hence from (4), 

1 1 .S c c S
α α
Λ Λ ≥ + ⇒ ≥ − 

 
 

Putting the value of 1c  into (4), we get 

e e e .t t tS S S Sα α α
α α α α
Λ Λ Λ Λ    −≥ + − ⇒ ≥ + −   

   
 

Hence 0S >  at 0t =  and t →∞ . Similarly we can find the positivity of 
I  and V  under the initial conditions.  

Therefore, it is true that, ( ) ( ) ( )( )0, 0, 0, 0S t I t V t t> ≥ ≥ ∀ ≥ . 

4.2. Disease Free Equilibrium Points 

The disease free equilibrium of the above HIV model (1) can be obtained by set-
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ting 

d d d 0
d d d
S I V
t t t
= = =  

thus we have, 

( )

( )
max

1 1 0 ,

1 0  and 0.

S IS rS VS
S

VS I I V

α ε µ

ε µ β β γ

 +
Λ − + − − − = 

 
− − = − =  

Since we have considered the disease free equilibrium, hence 0I V= = . Thus 
the above system reduces to,  

( ) ( )

2 2
0 0

0 0 0 0
max max

2
0 max 0 0 max max
2
0 0 max 0 max max

2max
0

max

0

0

4 .
2

rS rS
S rS rS S

S S

rS S rS S S S

rS rS S S S S

S rS r r
r S

α α

α

α

α α

Λ − + − = ⇒ − = −Λ

⇒ − = −Λ

⇒ − + −Λ =

 Λ
∴ = − + − + 

  

 

Thus, the disease free equilibrium is ( )0 0 ,0,0 .W S=  
Again for the endemic equilibrium point *W , we find ( )* * * *, ,W S I V= , 

where  

( ) ( )

( )

( )

2 2

* * * * max

max

, ,
1 1

1

rr
S

S I V V
r
S

µ α γµ γ
γ γ
ε µ ε β γµγ µ ε

β

Λ + − −
= = =

− −  
+ − 

 

. 

Now we calculate the basic reproduction number 0R  at 0W . 

4.3. Basic Reproduction Number 0R  

Basic reproduction number represents the average number of secondary infection 
caused by a single infected T cell in an entirely susceptible T cell population, 
throughout its period. In order to find the basic reproduction number of the mod-
el (1), we need to identify the classes which are relevant to each other. Form the 
model (1), we observe that the classes I  and V  are relevant. We find the gain 
and losses of I  and V  respectively. 

Gains to I  is ( )1 VSε µ− , gains to V  is Iβ  losses to I  is Iβ and 
losses to V  is .Vγ  Now, Matrix for the gain terms:   

( )

( )

( )

1

1

0
.

1 0

VS I
I IF

VS I
V V

F
S

ε µ β

ε µ β

β
ε µ

∂ ∂ − ∂ ∂=  
∂ ∂ − ∂ ∂ 
 

∴ =  − 

 

Since basic reproduction number is to be calculated at disease free equilibrium 
point 0W , hence 
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( ) 0

0
.

1 0
F

S
β

ε µ
 

=  − 
 

Matrix for the loss terms; 

( ) ( )

( ) ( )
,

0
.

0

I V
I IL

I V
V V

L

β γ

β γ

β
γ

∂ ∂ 
 ∂ ∂=  
∂ ∂ 

 ∂ ∂ 
 

∴ =  
 

 

Inverse of L is 1

1 0
.

10
L

β

γ

−

 
 
 ∴ =
 
 
 

 

Now we have to evaluate a matrix G  such that  

( ) ( )

1

0 0

1 00
0

, .
1 0 110 0

G FL

G G
S S

β
γβ β

ε µ ε µ
γ β

−=

  
      ⇒ = ∴ =   − −     

   

 

Hence the largest eigen value of the matrix G  is 
( ) 01 Sε µ

γ
−

. Thus, the basic 

the reproduction number of the model (1) is 
( ) 0

0

1 S
R

ε µ
γ

−
= . Now we check 

the local stability of the model (1) at disease free equilibrium point 0W  and 

chronic infection equilibrium point *W . 

4.4. Local Stability of Disease Free Equilibrium Point 0W  

Firstly, we investigate the local stability at disease free equilibrium point 0W  but 
before that we need the following theorem. 

Theorem 1: If 0 1R < , the disease free equilibrium point 0W  of system (1) is 
locally asymptotically stable. If 0 1R = , 0W  is locally stable and if 0 1R > , then 

0W  is unstable. 
Proof: To prove the above theorem, the following variation matrix is com-

puted corresponding to equilibrium point 0W . From the model (1), let  

d d d, ,
d d d
S I Vx y z
t t t

= = =   

then the system (1) reduces to, 

( )

( )
max

1 1 ,

y 1 and  .

S Ix S rS VS
S

VS I z I V

α ε µ

ε µ β β γ

 +
= Λ − + − − − 

 
= − − = −

 

The Jacobian Matrix of the system (1) is  
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( ) ( )

( ) ( )
max max max

,

1 1 1
,

1 1
0

x x x
S I V
y y yJ
S I V
z z z
S I V

S I rS rSr V S
S S S

J
V S

α ε µ ε µ

ε µ β ε µ
β γ

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ =  ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

  +
− + − − − − − − −  

  ⇒ =  − − − 
−  

  (5) 

at 0W , Equation (5) becomes 

( )
( )

( )

0 0 0
0

max max max
0

0

1 1
.

0 1
0

S rS rS
r S

S S S
J W

S

α ε µ

β ε µ
β γ

  
− + − − − − −  

  =  − − 
−    

Now we have to find out the characteristic equation. To do that, first we have 
to calculate ( )0J W Iλ−  where, λ  is a scalar and I  is identity matrix. Let 

( )0B J W Iλ= − , then 

( )

( )

( )

( )

0 0 0
0

max max max

0

0 0 0
0

max max max

0

1 1
0 0

0 1 0 0 ,
0 0 0

1 1

0 1 .
0

S rS rS
r S

S S S
B S

S rS rS
r S

S S S
B S

α ε µ
λ

β ε µ λ
β γ λ

α λ ε µ

β λ ε µ
β γ λ

  
− + − − − − −  

   
  = − − −   
 −   

 
  
  
− + − − − − − −  

  
 ∴ = − − − 

− − 
 
  

 

To find out the characteristic equation we need to perform ( )det 0B = , hence 

( )( ) ( )

( ) ( )

( ) ( )

0 0 0
0 0

max max max

20 0
0

max max

020 0

max max

1 1 0 0 0,

1 1 0,

1 S
1 1

S rS rS
r S S

S S S

S rS
r S

S S

S rS
r

S S

α λ β λ γ λ ε µβ µ

α λ βγ λ β γ λ ε µβ

ε µ
α λ λ λ β γ βγ

γ

  
− + − − − + + − − + × − × =     
   

  
 ⇒ − + − − − + + + − − =       
  −  

⇒ − + − − − + + + −    
      

( ) ( )20 0
0

max max

20 0
1 2

max max

0,

1 1 0,

1 0.

S rS
r R

S S

S rS
r a a

S S

α λ λ λ β γ βγ

α λ λ λ


=

 
  

 ⇒ − + − − − + + + − =       
  

 ⇒ − + − − − + + =       
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Thus, the characteristic equation is  

20 0
1 2

max max

1 0,
S rS

r a a
S S

α λ λ λ
  

 − + − − − + + =       
 

where 

( )
1

2 0

,
1 .

a
a R

β γ

βγ

= +

= −
 

We observe that, first root of the characteristic equation is 

0 0
1

max max

1 0.
S rS

r
S S

λ α
 

= − + − − < 
 

 

If 0 1R > , then 2 0a > . Also, ( ) 01 Sγ ε µ> − . Again 1 0a > , hence by 
Routh-Hurwitz criteria [19], 0W  locally asymptotically stable. If 0 1R = , then 

0R  and 0W  becomes locally stable. If 0 1R > , then 2 0a <  and 0W  be-
comes unstable. Now we investigate the local stability of endemic equilibrium 
point *W . 

4.5. Local Stability of Chronic Infection Equilibrium Point *W  

Now we investigate the local stability of chronic infection equilibrium point *W . 
We need the following Lemma 2. 

Lemma 2: Let M  be a 3 3×  real matrix. If ( ) ( )tr ,  detM M  and 
[ ]( )2det M  are all negative, then all of the eigen values of M  have negative 

real part [20]. 
Before we apply the Lemma 2, we need the following definition of second ad-

ditive compound matrix. 
Definition 1: Let ( )ijA a=  be an n n×  real matrix. The second additive 

compound matrix of A  is the matrix [ ] ( )2
ijA b=  defined as follows [21] [22]: 

[ ]

[ ]

2
11 22

11 22 23 13
2

32 11 33 12

31 21 22 33

2 :

3 : .

n A a a
a a a a

n A a a a a
a a a a

= = +

+ − 
 = = + 
 − + 

 

Theorem 2: The chronic infection equilibrium point *W  of the system (1) is 
locally asymptotically stable if 0 1R > . 

Proof: From Equation (5), we have 

( ) ( )

( ) ( )
max max max

1 1 1
,

1 1
0

S I rS rSr V S
S S S

J
V S

α ε µ ε µ

ε µ β ε µ
β γ

  +
− + − − − − − − −  

  ⇒ =  − − − 
−  

 

at chronic infection equilibrium point ( )* * * *, ,W S I V= , 
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( )
( ) ( )

( ) ( )

( )
( )

( ) ( )

* * * *
* *

max max max*
* *

0

*
*

*
* *

0

1 1 1
,

1 1
0

1
max         ,

1 1
0

S I rS rSr V S
S S S

J W
V KS

rSa S
S

J W
V S

α ε µ ε µ

ε µ β ε
β γ

ε µ

ε µ β ε µ
β γ

  +
− + − − − − − − −  

  =  − − − 
−  

 
− − − − 

 ⇒ =  − − − 
 − 

 

where ( )
* * *

*

max max

1 1 0S I rSa r V
S S

α ε µ
 +

= − − + + − > 
 

. 

Now the second additive compound matrix [ ] ( )2 *J W  is 

[ ] ( )
( ) ( ) ( )

( )

( ) ( )

* *

*
2 *

max
*

1 1

.

0 1

a S S
rSJ W a
S

V

β ε µ ε µ

β γ

ε µ β γ

 − + − −
 
 = − +
 
 − − + 

         (6) 

Now we compute ( )( ) ( )( ) [ ] ( )( )2* * *tr ,det ,detJ W J W J W  respectively. 

Hence 

( )( )*tr 0J W a β γ= − − − < , 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

*
* * * * *

max
*

2* * 3 * *

max

det 1 1 1 1

1 1 1 0,

rSJ W a S V S V
S
rSa S V S V
S

βγ ε βµ ε µ γ ε µ ε βµ

βγ ε βµ ε µ γ ε µ β

 = − − − + − − − − 

 = − − − + − − − < 

 

[ ] ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( )( ) ( )( )

( ) ( ) ( )

*
2 * *

max
* * *

*
*

max
* *

det 1

1 1 1

1

                       1 1 0.

rSJ W a a V
S

S S V
rSa a a V
S

S V

β γ β γ ε µ

ε µ β β γ ε µ β ε µ

β γ β γ ε β µ

ε µ β β γ ε µ

 
= − + + + − − 

 
 − − − + + − −    

= − + + + + − +

 + − + + − < 

 

Hence by Lemma 2, *W  is locally asymptotically stable. 

5. Numerical Simulations 

We have discussed the locally asymptotically stability of both infection free 
equilibrium 0W  and chronic infection equilibrium *W  above. When 0 1R > , 
the endemic equilibrium *W  may only be stable for r  small or large. Our 
numerical solutions consistently show the existence of periodic solutions when 

*W  is unstable. For the numerical result we use the parametric values used in 
Table 1 taken from [15] and [16] but with the variation of r . Considering 

3
max 1500  mmS −= , we have shown local stability of both the healthy CD4+ T 

cells and HIV virus at 0.05r =  and 3r =  (see in Figure 3 and Figure 4). 
Whereas at 0.8r = , *W  is unstable and a periodic solution exists (see in 
Figure 5).  
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(a)                                     (b) 

Figure 3. Using the parameter values of Table 1, *W  is stable, when 0.05r =  and 

0 0.5081R = . 

 

  
(a)                                     (b) 

Figure 4. *W  is stable, when 3r =  and 0 0.48431R = . 

 

  
(a)                                     (b) 

Figure 5. When 0.8r =  and 0 0.8227,R =  a periodic solution is observed. 
 

We observe *W  is unstable within the range of r  between 0.093453 and 
1.9118. From Figure 4, we observe viral load 600 mm−3 persists when 3r =  while 
it is below 100 mm−3

 at 0.05r = . Again when 3r =  the initial oscillation disap-
pears after 145+ days whereas at 0.05r =  the damped oscillation are clearly visi-
ble after 2000 days. We also note that, the values of 0R  in these three cases are 
0.5081, 0.8227 and 0.48431 respectively. 
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6. Conclusion 

Bangladesh government and several NGO’s have played a magnificent role in 
keeping the HIV prevalence low by enhancing awareness to people. But this low 
prevalence rate is increasing day by day and becoming a great threat to us. In this 
paper, we have shown a brief report of HIV/AIDS of Bangladesh from 1989 to 
2014 (except 2008). Again we have discussed the mathematical presentation of 
HIV infection in a three-compartmental model. In the model, we added a proba-
bility term ε  with the infected T cells. Then we have calculated the basic re- 

production number 
( ) 0

0

1 S
R

ε µ
γ

−
= , where 0S  is considered as equilibrium of  

CD4+ T cells in the absence of HIV infection. At disease free equilibrium point, the 
model is assumed to be stable and later we conclude the stable and unstable condi-
tion for the chronic infected equilibrium points. With the proliferation term r  
and reproduction number, we find the solution of it. We find the numerical solu-
tion at different equilibrium points and have observed the curve in periodic and 
damped oscillation. 
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