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ABSTRACT 
Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in 
the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle 
out of the sand dunes, these main targets are gradually eroded and displaced by the wind on dozens of meters. 
This experience highlights the action of wind on granular targets (clusters of sand or water slides) and motivates 
studies similar to ours, where we want to simulate impact of wind stress and breaking on the spatio-temporal 
evolution of the envelope of ocean relatively high waves: Impact which can inappropriately deflect the waves on 
ships, oil platforms or coastal infrastructures. Euler and Navier-Stokes equations allow a mathematical formula- 
tion of the gravity wave motion (ocean waves are considered in our work as a system of water particles which are 
held together by low surface tension) and wind acts on targets through friction forces or stress. Michel Talon 
stationary phase method is used to numerically solve the equations that model the impact of wind on a stationary 
Gaussian. 
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1. Introduction 
Since men have traveled on the oceans, they are im- 
pressed by these relatively hostile huge rivers that inspire 
respect and fear. As evidence of this fear, many legends 
have always circulated that such stories express the exis- 
tence of mermaids shipwrecks [1,2], the ghost ships sa- 
vagely attack ships, or even more recently beliefs about 
the Bermuda Triangle, where ships disappear inexpli- 
cably. Among these legends is that of rogue waves that 
correspond in many respects to deep water gravity waves 
[3]. Many accounts of seamen have alluded to walls of 
water rising for no reason in the middle of the sea and 
hitting ships with extraordinary violence. These stories 
were not credible until 1978, when the cargo ship “Mun- 
chen” disappeared under mysterious circumstances. This 
vessel at the forefront of naval technology was heading 
in the North Atlantic, with no apparent problems until the 

night of December 12. Given that the weather service 
recorded no storm that night, it is reasonable to believe 
that a rogue wave is the only plausible explanation for 
this shipwreck. In 1980, Philippe Lijour, captain of the 
tanker “Esso Lanuedoc”, demonstrates the existence of 
rogue waves with a photo as proof. The existence of ro- 
gue waves is now universally recognized [4-9], and many 
images on the extent of damage caused by these monsters 
of the ocean are available. However, the physical pro- 
cesses responsible for the formation and spread of the 
phenomenon and its prediction are not completely un- 
derstood. Contrary to popular belief, Mbane [10] de- 
monstrated that, the natural phenomena like rogue waves 
are not just spectacular events accessible to routine ob- 
servations and satellites images. Rogue waves are a com- 
bination of complex physical processes that occur under 
ideal conditions of temperature and humidity [10]. Nu- 
merical computations [11-23] offer tremendous oppor- 
tunities for approaches of physical phenomena for which 
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analytical solutions are at the present stage of develop- 
ment of mathematics, difficult to obtain. Our previous 
paper [24] based on application of Benjamin-Feir equa- 
tions to tornadoes’ rogues waves modulational instability 
in oceans is an important tool for acquiring information 
on the Kinematics and thermodynamics of atmosphere 
processes which trigger deep rivers gravity waves. In this 
regard, tornadoes can give birth to ocean gravity waves 
whose size varies depending mainly on depth of depre- 
ssion and sea surface temperature [24]. In the Sahara 
desert, sand dunes are gradually eroded and displaced by 
the wind on dozens of meters. This experience highlights 
the action of wind on granular targets (clusters of sand or 
water slides) and motivates studies similar to ours, where 
we want to simulate impact of wind stress and breaking on 
the spatio-temporal evolution of the envelope of ocean 
relatively high waves: Impact which can inappropriately 
deflect the waves on ships, oil platforms or coastal infra- 
structures. Euler and Navier-Stokes equations allow a 
mathematical formulation of the gravity wave motion 
(ocean waves are considered in our work as a system of 
water particles which are held together by low surface 
tension) and wind acts on targets through friction forces or 
stress. Michel Talon stationary phase method is used to 
numerically solve the equations that model the impact of 
wind on a stationary Gaussian. 

2. Basic Formulation of Stationary Phase 
Method 

2.1. Additional Assumptions 
The general continuity equation for a fluid is: 

0u v w
t x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

        (1) 

This leads to the continuity equation for an incompres- 
sible fluid 

0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
             (2) 

The velocity perpendicular to the surface of the water 
and perpendicular to the impermeable bottom is zero: 

0, at orz H z η⋅ = = − =V n          (3) 

Here n  is the surface normal. 
When the bottom is parallel to the undisturbed surface 

this simplifies to 
0,w z H= = −                  (4) 

and the kinematic boundary condition at the surface 

, ; , ,1 0,u v w
t x y
η η η ∂ ∂ ∂ − ⋅ − =  ∂ ∂ ∂   

 

z w u v
t x y
η η ηη ∂ ∂ ∂

= ⇒ = + +
∂ ∂ ∂

           (5) 

Remembering that the surface of the water is allowed 
to change with time. The last condition comes from the 
Newtonian force on a moving fluid element 

( ) ( )( ) 1 P
t

ν
ρ

∂
+ ⋅ = ⋅ − +

∂
V V V V g∇ ∇ ∇ ∇       (6) 

For an in viscid fluid this simplifies to 

( ) 1 P
t ρ

∂
+ ⋅ = − +

∂
V V V g∇ ∇           (7) 

When the flow is irrotational 
0⋅ =V∇                   (8) 

We can introduce the velocity potential 

( ), , , ,u v w
x y z
φ φ φ φ

 ∂ ∂ ∂
= = = ∂ ∂ ∂ 

V ∇        (9) 

Giving the continuity equation 
2 2 2

2 2 2 0
x y z
φ φ φ φ∂ ∂ ∂

+ + = ∇ =
∂ ∂ ∂

        (10) 

The kinematic boundary condition at the bottom 
0, z Hφ ⋅ = = −n∇              (11) 

The kinematic boundary condition at the surface 

, z
z t
φ η φ η η⊥ ⊥

∂ ∂
= + ∇ ⋅∇ =

∂ ∂
 

When integrating (7) with respect to x, y, z we get the 
Bernoulli equation, the arbitrary functions of integration 

( )1 , ,C y z t , ( )2 , ,C x z t , ( )3 , ,C x y t  must be the same 
function C(t), which can be absorbed by the velocity po- 
tential yielding exactly the same flow 

( )21 ,
2

Pg z
t
φ φ η η

ρ
∂

+ + = − =
∂

∇  

Here we have made the assumption that g  is con- 
stant ( )0,0, g= −g  making the gravitational force con- 
servative and making it possible to define a potential 
energy. 

Furthermore we have made the assumption that the 
surface tension can be neglected. At the surface, z = 
η,  for water flows the space above the water is the at- 
mosphere in where the pressure is almost constant along 
the surface, as the density of air only about 1/800 times 
that of water. As this constant pressure has no important 
influence on the solution, we can put P = 0 giving the 
dynamical boundary condition at the surface of the water. 

( )21
2

g O
t
φ φ η∂

+ + =
∂

∇  

Equations (10), (11), (12), (14) are basis for all the 
following calculations. By introducing the stream func- 
tion ( ), ,x y tψ , defined by ( ) ( ), , , , ,x y t x y tψ φ η= , 
Equations (12) and (14) become: 
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( ) ( ) ( )( )2. 1 0t zη η ψ φ η⊥ ⊥+ − + =∇ ∇ ∇      (15) 

( ) ( )( )2 221 1 1 0
2 2t gψ η ψ φ η⊥ ⊥+ + − + =∇ ∇    (16) 

2.2. Stationary Phase Formulation of Euler  
Equations 

The spatio-temporal evolution of the surface elevation 
( ), ,x y tη  can be described by the reduced Equation (17) 

of a linear wave 
2

2

a ai
X T

∂ ∂
=

∂ ∂
               (17) 

The general solution of the surface elevation can be 

expressed as a Fourier integral 

( ) ( ) ( ), exp da X T a i k X T
+∞

−∞
= Ω ⋅ ⋅ − Ω Ω  ∫   (18)

 
where ( )a Ω  is obtained from (19) and  

( ) ( )0, exp da X T a i T
+∞

−∞
= = Ω ⋅ ⋅Ω ⋅ Ω∫        (19) 

( ) ( )0, exp dXa X T ik a i T
+∞

−∞
= = ⋅ Ω ⋅ ⋅Ω ⋅ Ω∫     (20) 

Boundary conditions below are used: ( )0, 0Xa T = ; 
( ) ( )00,a T a T= . Fourier inverse transformation gives: 

( ) ( ) ( )0
1 exp d

2π
a a T i T T

+∞

−∞

Ω = ⋅ − ⋅Ω ⋅∫     (21) 

Which solution is  
 

( ) ( ) ( ) ( )0
1, exp exp d d

2π
a X T a T i T i k X T T

+∞ +∞

−∞ −∞

= − Ω ⋅ ⋅ − Ω Ω  ∫ ∫  

Using stationary phase method [25,26], we obtain the surface elevation ( ), ,x y tη  expression  

( )
( )

( )

( ) ( )

22 2
00

1 4 2 2 2
4 2 2 2 04

0

22 2 2
0 0 0

4 2 2 2
0
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1 16

2 1 16
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2 1 16
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g
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k x
k x

k x w t x c k x

k x

η
ε

ε

ε ε

ε

 −Ω ⋅ − = ×
 + Ω ⋅ ⋅ ⋅

+ Ω ⋅ ⋅ ⋅  

 Ω ⋅ ⋅ ⋅ Ω ⋅ − ⋅ ⋅ ⋅ × − −
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 

 

where ε corresponds to the wave steepness; k0, the wave number;  

0
1 4max 4 21 16

a
a

x
=

 + Ω 
; ( ) ( ) 4

4 2

arg 8,
1 16

a t xt x
t x

∂ Ω ⋅
Ω = = −

∂ + Ω  
 
3. Results and Discussions 
Figures presented in this manuscript provide evidence of 
winds stress and breaking barrier impacts on Gaussian 
waves. Figure 1 shows the Gaussian primary profile of 
the wave which is used as the target throughout the si- 
mulations. Amplitude A0 and Gaussian steepness will 
undergo deformations that depend on the magnitude of the 
wind and the proximity of the barrier (wave-barrier) lo- 
cated 20 m from x coordinate origin. On Figure 2(a), 
colors variation gives a precise idea of the impact of winds 
stress on the Gaussian. One can immediately notice the 
existence of an intense activity of wind (dark red) in the 
region bounded by x and t values listed in quotes {−8< x < 
−6; t >0}. Otherwise, the wind attacks the Gaussian basis 
like it was trying to move the entire structure parallel to its 
direction. It should however be noted that water particles 
located in the center of the Gaussian suffer no winds’ 
influence (due to the dark blue color at x = 0), the entire 
movement of Gaussian is then excluded and the only way 
allowed to the upstream side particles is to climb the 
Gaussian and then due to gravity fall on downstream side 
as illustrated on Figure 2(b). Hence the dark red color of 

the region bounded by {3 ˂ x˂ 8; t ˂ 0} which predicts 
(as t < 0) activity on the downstream side of the Gaus- 
sian. 

Figures 3(a)-(d) describe the Amplification Factor 
(A/A0) as a function of wind-magnitude. Amplification 
Factors are listed in Table 1. According to this table, 
Amplification Factor increases exponentially. All these 
simulations give an indication of the height to impose a 
barrier to prevent it being crossed by rogue waves. 

Figures 4(a)-(d), give a 3D representation of surface 
elevation ( )x t,η  as a function of space and time. 

One can see exactly how the target is pushed towards 
the barrier as the green color representing a calm 
ocean surface, gradually gains space when going from 
Figures 4(a)-(d). 

4. Conclusion 
Winds, as confirmed by the results obtained in this work 
are a serious threat to the activities on the oceans and 
shorelines. The wind moves the waves they meet on their 
way and creates relatively high waves when it causes 
severe depression over the oceans (e.g., tornadoes or  

OPEN ACCESS                                                                                       OJMS 



A. DAIKA  ET  AL. 21 

 
Figure 1. Profile of the primarily wave (Gaussian). 

 

 
(a) 

 
(b) 

Figure 2. (a) Magnitude of winds stress impacts on the target 
(k0 = 4 and å = 0.4): k0 = fundamental wave number; å = 
small parameter of nonlinearity; (b) Rogue waves’ down- 
stream steepness. 
 
Table 1. Amplification factor as function of wind magni- 
tude. 

Uwind(m/s) Amplification Factor (dB) 
14 0 
20 1 
30 250 
50 9 × 109 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a)-(d) Amplification factor for winds stress and 
breaking barrier impacts on a Gaussian as function of wind 
magnitude. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a)-(d) Impacts of winds stress and breaking bar-
rier on Surface elevation (3D-representations). 

cyclones rogue waves). These results have improved our 
understanding of the way in which the wind acts on the 
granular targets and showed how difficult it is to build 
fences to guard against rogue waves. The choice of in- 
puts of our model (K0 = 4, ε = 0.4) is crucial for the re- 
sults. But any errors can be corrected by adjusting these 
inputs progressively as laboratory experiments (or scien- 
tific observations) require that, if any. The oceans hostil- 
ity is associated with both oceans’ impressive size that 
made lose all sense of direction (hence the need to em- 
bark compass and GPS) and the fear of unpredictable 
winds that trigger rogue waves. 
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List of Symbols 
Physical Symbols 
b: Complex surface function 
Bi: Main component of the complex surface function (i = 
0,1,2,3) 

iB′ : Smaller component of the complex surface function 
(i = 0,1,2,3) 

iB′′ : Smallest component of the complex surface func- 
tion (i = 0,1,2,3) 
g: Acceleration of gravity 
g : Three-dimensional acceleration of gravity 
H: Water depth 
ki: Wave number (i = 0,1,2,3) 

ik : Wave number vector (i = 0,1,2,3) 
P: Pressure 
t: fast time scale 
t1: Slower time scale 
t2: Slowest time scale 
Vi: Interaction coefficient (i = 0,1,2,3) 
w: Vertical velocity of particle 
Wi: Interaction coefficient 
β(ki) = βi: Main component of the complex surface func-
tion (i = 0,1,2,3) 

ε: Measure of non-linearity’s (steepness) 
φ: Velocity potential 
η: Surface elevation 
ηt: Derivative of the surface elevation η with respect to 
time 
ψ: Stream function 
ψt: Derivative of the stream function ψ with respect to 
time 
ω(ki) = ωi: Angular frequencies of interaction waves 

Mathematical Symbols 

δ: Dirac’s δ-function 
∇ : Three-dimensional gradient 

⊥∇ : Vertical component of the gradient 
*: complex conjugate 

Dispersion Coefficients 
Cx,y = Group velocity components 
τ, ς, ϑ = Group dispersion coefficients 
ξ = Non-linear coefficient 
ζ = Coupling coefficient 
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