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Abstract 
The reason of this research is to identify the favorable areas for copper, zinc, 
and lead mineralization in the western part of the 1:100,000 Tafresh geological 
Sheet in the Urmia-Dokhtar structural zone of Iran. Effective data layers for 
mineralization, such as geology, geochemistry, structures, and satellite images, 
were analyzed and then integrated using the AHP-OWA method to identify 
favorable areas. Geochemical stream samples were analyzed by univariate, 
multivariate, and classical statistical methods and revealed the first, second, 
and third class anomalies for copper, zinc, and lead in the study region. De-
tection of hydrothermal alteration zones by Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) satellite imagery in various al-
gorithms, such as Relative absorption Band Depth (RBD), Minimum Noise 
Fraction (MNF), and Least Square Fit (LS-Fit), shows that argillic, phyllic, 
propylitic, and iron oxide alterations develop around the faults in the area 
under study. The favorable areas for copper, zinc, and lead mineralization 
have been identified by a combination of evidence maps of lithology, faults, 
dikes, geochemistry, and alteration data layers. Field observations in the area 
under study have confirmed the results. 
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1. Introduction 

Stream sediment geochemistry is a useful technique for identifying important 
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deposits [1]. The aim of this research is to examine the efficacy of stream sedi-
ment geochemical survey for locating copper, zinc, and lead in the area under 
study.  

The elemental correlations were calculated by applying the Pearson correla-
tion method, factor analysis, and classical method to elemental concentration 
data to study copper, zinc, and lead paragenesis and to define geochemical ano-
maly thresholds to find copper, zinc, and lead prospects in the region. 

The use of Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) satellite imagery in mineral exploration has developed in recent 
years [2]. In this research, hydrothermal alteration zones were detected using 
ASTER data in different algorithms: Relative absorption Band Depth (RBD), 
Minimum Noise Fraction (MNF), and Least Squares Fit (LS-Fit). 

Geospatial data, such as geochemical, geological, structural, and remotely 
sensed data, are particularly suitable to extract information that is useful in min-
eral prospecting [3]-[9].  

The application of the analytic hierarchy process (AHP) method is useful for 
binary index overlay modeling, as well as for multi-class index overlay modeling 
and fuzzy logic modeling [10].  

The ordered weighted averaging (OWA) model provides a continuous fuzzy 
between fuzzy intersection (AND) and union (OR) [11] [12]. The AHP is used 
to deduce attribute weights and the OWA operator function is used to produce a 
wide variety of decisions [13]. Combining information layers with AHP-OWA is 
an effective method to produce mineral potential mapping in the region. Field 
observations have confirmed the results. 

2. Geology Setting 

The area under study is situated between 50˚E to 50˚15'E and 34˚30'N to 35˚N in 
the Urmia-Dokhtar structural zone of Iran [14]. The Urumieh-Dokhtar mag- 
matic belt (UDMB) hosts porphyry copper deposits [15]-[21]. 

The oldest outcrops in the region are the Middle Triassic sandy shale rocks 
(the Nayband formation). Eocene volcanic rocks (mostly tuff and andesitic rocks 
with limestone interlayers compositions) with a thickness of approximately 3000 
meters cover most of the area. Intrusive tonalite to granodiorite has been in-
jected into Eocene volcanic rocks and has metamorphosed in greenschist facies 
[22]. The Lower Red, Qom, and Upper Red formations, with sedimentary rocks, 
outcrop in the northern parts of the area. Eocene dykes with micro-diorite and 
andesitic and Neogene dykes with basaltic-andesitic compositions have greatly 
spread in the area under study (Figure 1).  

3. Materials and Methods 

520 stream sediment samples gathered and analyzed by the Geological Survey of 
Iran (GSI) in 2006. The samples were chemically analyzed by ICP-MS for 19 
elements (Ag, As, Au, Ba, Bi, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Sc, Sn, Sr, V, W, Y, 
and Zn), with detection limit of 0.05 ppm for copper, zinc, and lead. Thompson  
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Figure 1. The simple geology map of study area and its location in UDMB. 

 
control diagrams and relative error calculations were used to control the accu-
racy of the analysis. 

The elemental correlation coefficients and paragenesis were found by applying 
bivariate and multivariate statistical analysis [23] [24] to the geochemical data 
using SPSS 18 statistical software package. Bivariate matrix of correlation coeffi-
cients was calculated by the Pearson correlation method [25].  

Hydrothermally altered minerals and lithological mapping have been suc-
cessfully recognized through remote sensing instruments for mineral explora-
tion [26] [27] [28] [29] [30]; therefore, in this research, the ASTER image has 
been used and data analyses were done by ENVI 4.2 software. This work mainly 
focused on mapping of hydrothermal alterations in the volcano-plutonic belt; 
therefore, the sedimentary rocks and quaternary deposits outside the volcanic 
and plutonic rocks were masked. Evidence maps were produced from the data 
layers using ArcGIS 9.3 software and potential maps were generated by the 
AHP-OWA method using IDRISI 17.0 software. After data processing, the va-
lidity of the results was confirmed by field work. 

4. Geochemical Data 

In this study, Pearson correlation confirmed a strong correlation between Pb  
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Table 1. Pearson correlation coefficients for chemical analyses of samples from the area under study. 

 
Ag As Ba Bi Cd Co Cr Cu Hg Ni Pb Sb Sc Sn Sr V W Y Zn 

Ag 1 
                  

As 0.856 1 
                 

Ba 0.933 0.851 1 
                

Bi −0.242 −0.422 −0.213 1 
               

Cd −0.671 −0.602 −0.811 0.135 1 
              

Co −0.645 −0.599 −0.773 0.168 0.931 1 
             

Cr 0.207 0.398 0.188 −0.687 −0.182 −0.209 1 
            

Cu −0.273 −0.119 −0.454 −0.347 0.637 0.553 0.441 1 
           

H
g 

−0.334 −0.278 −0.513 0.078 0.706 0.671 −0.093 0.617 1 
          

Ni −0.189 0.021 −0.260 −0.558 0.254 0.187 0.785 0.698 0.167 1 
         

Pb 0.850 0.788 0.931 −0.225 −0.847 −0.803 0.252 −0.494 −0.626 −0.167 1 
        

Sb −0.466 −0.261 −0.587 0.197 0.835 0.763 −0.127 0.543 0.642 0.204 −0.624 1 
       

Sc 0.487 0.581 0.536 −0.624 −0.620 −0.608 0.794 0.011 −0.435 0.447 0.596 −0.509 1 
      

Sn 0.570 0.424 0.716 0.238 −0.916 −0.826 −0.109 −0.764 −0.640 −0.500 0.729 −0.746 0.361 1 
     

Sr −0.679 −0.618 −0.821 0.183 0.958 0.904 −0.180 0.641 0.699 0.253 −0.848 0.801 −0.601 −0.852 1 
    

V 0.523 0.646 0.558 −0.558 −0.564 −0.552 0.781 0.038 −0.379 0.433 0.606 −0.405 0.930 0.324 −0.559 1 
   

W 0.331 0.449 0.216 0.021 0.139 0.077 0.084 0.245 0.326 0.072 0.139 0.408 −0.058 −0.141 0.097 0.064 1 
  

Y −0.635 −0.563 −0.779 0.171 0.993 0.920 −0.185 0.633 0.713 0.253 −0.814 0.862 −0.630 −0.906 0.948 −0.557 0.209 1 
 

Zn −0.601 −0.586 −0.502 0.606 0.356 0.375 −0.334 −0.185 −0.029 −0.075 −0.359 0.342 −0.453 −0.149 0.360 −0.392 −0.149 0.382 1 

 
and As, Pb and Ag, and Pb and Ba (Table 1). Reduction of variables was accom-
plished by factor analysis, and 19 elements were classified into three factors. Ta-
ble 2 shows that: 

Factor 1 (43.64% of variance) is strongly positively correlated to Y, Cd, Sr, Sb, 
Co, Hg, and Cu and negatively correlated to Pb and Sn, with very weak correla-
tion to Zn.  

Factor 2 (21.85% of variance) is strongly positively correlated to Cr, Ni, Sc, 
and V and negatively correlated to Bi.  

Factor 3 (19.15% of variance) is strongly positively correlated to As, Ag, W, and 
Ba, negatively correlated to Zn, and weakly correlated to Pb. Statistically signifi-
cant correlation was not found between Pb and Zn in the area under study. 

The catchment basins produced by a digital elevation model (DEM) in ARCGIS 
software (Figure 2).  

We separated the background and anomaly populations by classical statistics 
method [31] as three classes for zinc, lead, and copper in the area under study 
(Figure 3). X S+  is normally considered as the threshold value, 2X S+  as a 
possible anomaly, and 3X S+  as a probable anomaly. 

5. Remote Sensing 

Recent years, remote sensing images are used to identify hydrothermally altered  
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Table 2. Varimax rotated factor matrix for 19 elements in 520 stream sediment samples 
of the area under study. 

Elements 
Rotated Component Matrix 

Factor 1 Factor 2 Factor 3 

Y 0.946 −0.138 −0.228 

Cd 0.936 −0.114 −0.284 

Sr 0.904 −0.117 −0.316 

Sb 0.88 −0.15 0.025 

Co 0.866 −0.152 −0.305 

Hg 0.823 −0.079 0.101 

Cu 0.769 0.515 0.025 

Sn −0.904 −0.218 0.217 

Pb −0.738 0.149 0.564 

Cr −0.034 0.936 0.121 

Ni 0.351 0.841 −0.137 

Sc −0.502 0.789 0.205 

V −0.426 0.749 0.304 

Bi 0.018 −0.819 −0.179 

As −0.354 0.305 0.835 

Ag −0.487 0.112 0.806 

W 0.396 −0.067 0.763 

Ba −0.67 0.083 0.699 

Zn 0.151 −0.405 −0.567 

Proportion of total variance % 43.645 21.849 19.153 

 
rocks and to produce the maps of geology, faults, and fractures [32]. In this 
study, an ASTER image has been used to detect alteration zones.  

5.1. ASTER Data 

ASTER is one of the recently designed generations of medium resolution mul-
tispectral satellite remote systems that are reported to have substantial applica-
tions in geological mapping [2]. ASTER has 14 bands: Three visible and near 
infrared radiation (0.52 to 0.86 μm) (VNIR, 15 m); six shortwave infrared radia-
tion (1.6 to 2.43 μm) (SWIR, 30 m) and five thermal infrared radiations (8.125 to 
11.65 μm) (TIR, 90m) [33] [34]. Many investigations have been carried out using 
ASTER [35] [36]. The ASTER spectral properties were used to map iron oxide, 
argillic, phyllic, and propylitic alteration zones by RBD, MNF, and LS-Fit me-
thods in the present study.  

5.2. Image Processing Methods on ASTER Imagery 
5.2.1. Relative Absorption Band Depth (RBD) 
An RBD image is produced by dividing the sum of the maximum reflectance  
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Figure 2. Locations of 520 stream sediment samples and their watersheds in the area under study. 
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Figure 3. Geochemical anomaly maps of Zn, Pb and Cu in the area under study. 
 

bands to maximum absorption band [37] [38]. Phyllic alteration with abundance 
of illite and sericite has strong absorption at 2.20 µm (ASTER band 6) [39]. The 
argillic alteration (kaolinite and alunite), has strong absorption at 2.17 µm 
(ASTER band 5) [40], and propylitic alteration dominated by chlorite, epidote 
and carbonates, has strong absorption in the 2.335 µm (ASTER band 8) (Figure 
4). Table 3 shows the common band combinations that were used to create the 
maps of argillic, phyllic, and propylitic alteration zones in the present study 
(Figure 5). 

5.2.2. Minimum Noise Fraction (MNF) 
Because spectral anomalies are related to hydrothermal mineralization, this me-
thod is more interest to exploration geologists [41] [42] [43]. MNF Bands 7, 6, 4, 
and 3 have been used for, propylitic argillic, phyllic, and iron oxide alterations in 
the present study (Figure 6). 

5.2.3. Least Squares Fitting (LS-Fit) 
The superiority of this method compared to other methods is the reduction of 
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noise in images [44]. To identify alteration zones, visible and near-infrared 
(VNIR) bands used as the input bands and band 1 as the modeled band for Iron 
oxide, band 4 for argillic, band 6 for phyllic and band 9 for propylitic (Figure 7). 

6. Generation of Information Layers for Study Area 
6.1. Fault Layer 

Mineralization is more probable along a fault; therefore, faults are considered as 
one of the most significant elements in mineralization [45]. The presence of 
these geological features indicates enhanced structural permeability of the rocks 
in the subsurface, which facilitates upward migration of ground water that has 
come in contact with and has leached substances from buried deposits. These 
arguments suggest that the significance of multi-element stream sediment ano-
malies in sample catchment basins can be screened for or examined further us-
ing fault density as a factor [46]. In this research, the map of fault distributions  

 

 
Figure 4. Laboratory spectra of muscovite, kaolinite, alunite, epidote, calcite, and chlorite 
resampled to ASTER band passes. 

 
Table 3. Common ratio and band combinations for mapping alteration zones in the area 
under study. 

Feature band or ratio Comments Reference 

Sericite/muscovite/illite/smectite (5 + 7)/6 Phyllic alteration 
Rowan (USGS); 

Hewson (CSIRO) 

Alunite/kaolinite/pyrophyllite (4 + 6)/5 Argillic altration Rowan (USGS) 

Carbonate/chlorite/epidote (7 + 9)/8 Propylitic Rowan 
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Figure 5. Argillic, phyllic, propylitic and iron oxide images were prepared by RBD method. 

 

 
Figure 6. The argillic, phyllic, propylitic and iron oxide images were prepared by MNF method. 



M. Mahbouby Niyeh et al. 
 

542 

 
Figure 7. Argillic, phyllic, propylitic and iron oxide images were prepared by Ls-fit method. 
 

was derived from the 1:100,000 geological map of Tafresh (Figure 8). The fault 
map was used to create a fault density map (Figure 8) and reclassified into ten 
classes in ArcGIS. The highest number had the strongest preference (Figure 8). 

6.2. Lithology Layer 

This layer was derived from the 1:100,000 geological map of Taferesh. The most 
important component in this layer is the volcanic rocks (i.e., andesitic basalt, 
basaltic andesite, and andesite). The units of the geologic map were reclassified 
into ten classes according to their mineralization ability (Figure 9). The sedi-
mentary rocks and younger geological units, such as the older and younger ter-
races, were assigned the smallest value. 

6.3. Dike Layer 

The abundance of dikes interpreted from geological map in the area under study 
was applied to create separate linear structural features. A dike evidence map 
was generated by reclassifying the dike buffer map (Figure 10) into nine classes. 

6.4. Alteration Layer 
The present research used different algorithms to excavate the most common 
hydrothermal alterations, namely iron oxide, phyllic, argillic, and propylitic, by 
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processing ASTER images. The alteration evidence map was produced by com-
bining the results from different algorithms and reclassifying to ten classes 
(Figure 11). 

6.5. Geochemical Layer 

The geochemical evidence map for three elements, zinc, lead, and copper, was 
produced after providing geochemical maps, combining them, and reclassifying 
to ten classes in ArcGIS software (Figure 12). 

 

 
Figure 8. The fault layer of the area under study: fault map (left), fault density map (center) and fault density reclassified map 
(right). 
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Figure 9. The lithology layer of the area under study. 
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Figure 10. The dike layer of the area under study: Dike buffer map (left) and dike buffer reclassified map (right). 
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Figure 11. The alteration layer of the area under study. 
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Figure 12. (a) Pb geochemical layer. (b) Zn geochemical layer. (c) Cu geochemical layer. (d) The geochemical evidence layer of the 
area under study 

7. Integration of the Layers and Mapping the Potential Area 

The mineral potential map of the area under study multiple layers (lithology, 
fault, dike, alteration, and geochemistry) were produced by combining them by 
the AHP-OWA method. 

7.1. The Analytical Hierarchy Process (AHP) Method 
7.1.1. The AHP Hierarchy 
The hierarchical diagram has four main levels: goals, objectives, attributes, and 
alternatives [47]. The hierarchical diagram was produced for information layers 
of the area under study (Figure 13).  

7.1.2. Pairwise Comparisons 
In the AHP method, the pairwise comparison is the fundamental measurement 
mode [47]. Table 4 shows the values from 1 to 9 that were used to rate the rela-
tive preferences for two elements of the hierarchy in the area under study. The 
pairwise comparison matrix and calculated weights for the objectives of the 
present study area were calculated using IDRISI software (Table 5). 
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Figure 13. Hierarchical diagram of exploration layers in the area under study. 
 

Table 4. Scale for pair-wise comparisons [48]. 

Scales for pairwise comparisons 

Intensity of importance Verbal judgment of preference 

 

1 

 

Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values between adjacent scale values 

Note: Adapted from Saaty (1980). 
 

Table 5. Pairwise comparison matrix of the level of objectives and calculated weights. 

 
Fault Lithology Dyke Alteration Geochemistry AHP weight 

Fault 1 
    

0.4918 

Lithology 1/3 1 
   

0.2689 

Dyke 1/4 1/3 1 
  

0.1281 

Alteration 1/7 1/5 1/3 1 
 

0.0689 

Geochemistry 1/7 1/6 1/3 1/3 1 0.0424 

7.2. The Ordered Weighted Averaging (OWA) 

The OWA prepares a proper status of AND, Average and OR degree [49] [50] 
[51] (Figure 14).  

7.3. The AHP-OWA Model 

To identify the most suitable area in the present research, three outcomes have 
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been generated by AHP-OWA procedures at AND, OR, and Average for 
achieving the favorable areas (Figure 15). 

 

 
Figure 14. Decision making strategy space in OWA method [52]. 

 

 
Figure 15. Favorable area maps which have been generated by AHP-OWA procedures in the area under study. 
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Figure 16. Targets in the area under study. 

8. Field Checking 

The accuracy of the results from AHP-OWA (Average) model was verified by 
selecting four accessible locations in the area under study (Figure 16).  

8.1. Target 1 

This area is located along a thrust fault (50˚10'38"E, 34˚53'08"N) that placed 
older rocks (Eocene Volcanic Rocks) over younger Oligo-Miocene sedimentary 
rocks. Argillic, propylitic, and iron oxide alterations affected the rocks. Copper 
mineralization (malachite) was observed in a barite vein that is perpendicular to 
the thrust fault trend. The Zn-bearing minerals were detected with Zinc-Zap, 
which reacts with Zn-bearing minerals to form bright scarlet stains [53], while 
Fe sulfide minerals, primarily pyrite, cause a dark blue color [54] and other 
minerals do not react with the zap. In this site, testing the barite vein with this 
zap gave blue reaction paint, shows the presence of Fe-subfield minerals, and a 
red reaction color, and indicates the presence of Zn-bearing minerals (Photo 1).  

8.2. Target 2 

This area is located along the fault between Oligo-Miocene sedimentary rocks 
and Eocene andesitic rocks (50˚09'30"E, 34˚52'37"N). Propylitic and iron oxide 
alterations have been seen in this area. The barite veins with copper mineraliza-
tion (malachite) have occurred in volcanic rocks. In this site, barite veins tested 
with Zinc-zap gave a blue reaction color, indicating the presence of Fe-subfield 
minerals (Photo 2). 

8.3. Target 3 

This site is located in 50˚04'51"E, 34˚48'27"N. The most important observations 
here are that numerous Eocene dioritic dikes, ranging in width from 1 to about 3 
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meter, have intruded into the Eocene volcanic rocks. Argillic alteration has af-
fected a wider area around Eocene dikes. Field checking revealed that minerali-
zation has not occurred in this site (Photo 3). 

8.4. Target 4 

The last site for checking was located in 50˚12'25"E, 34˚44'06"N. In this site, in- 
 

 
Photo 1. The observations of the target 1 in the area under study. 
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Photo 2. The observations of the target 2 in the area under study 
 

trusive igneous rock (g) (tonalite-granodiorite) has intruded into the Eocene 
volcanic rocks. Evidence of extensive hydrothermal alteration and mineraliza-
tion has not been observed in this outcrop. Pyrite has altered to iron oxide min-
erals in these rocks (Photo 4).  

9. Results 

The area under study is located in Urmia-Dokhtar structural zone of Iran. The  
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Photo 3. The observations of the target 3 in the area under study. 

 

 
Photo 4. The observations of the target 4 in the area under study. 
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Urumieh-Dokhtar magmatic belt (UDMB) is the main copper-bearing region in 
Iran. We have obtained the following results from this research. 

9.1. Chemical Analysis Results 

The chemical analysis of stream sediment samples in the area under study shows 
that: 
• A strong correlation exists between Pb and Ba, Pb and Ag, and Pb and As, 

but no statistically significant correlation is evident between Pb and Zn. 
• Factor analysis suggests that the element community can be related to parent 

rocks or mineralization of copper, zinc, and lead. 

9.2. Remote Sensing Results 

We mapped the distribution of hydrothermal alterations using ASTER data and 
obtained the following results in the area under study: 
• The main alteration types in the region are phyllic, argillic, propylitic, and 

iron oxide. 
• The development of hydrothermal alteration halos occurred around the 

faults and dikes. 
• The integration of the RBD, MNF, and LS-Fit algorithms create complete and 

accurate information regarding the distribution of hydrothermal alteration 
zones in the region. 

9.3. Integration of the Layer Results 

When several themes were combined using the AHP-OWA technique, the fol-
lowing results were achieved for the area under study:  
• Faults have played a significant role in mineralization in this area. 
• No mineralization has occurred in intrusive rocks.  
• Based on the final combined models generated by AHP-OWA, the “Average” 

model was considered for field checking. 

9.4. Field Checking Results 

Limited field checking was done to verify the validity of the results in this study. 
Based on field observation, the following results were obtained: 
• The results from remote sensing study have been verified by direct observa-

tion. 
• Copper and zinc mineralization have been discovered in the area under 

study. 
• Mineralization has not been found in the contact of dikes and country rocks. 
• Mineralization has not been found inside and contact of intrusion. 
• Field checking confirmed the accuracy of results from this study. 

10. Conclusion 

To produce the mineral exploration map for copper, zinc, and lead mineraliza-
tion, we used fuzzy AHP and OWA technique on the basis of evidence layers de-
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rived from geological, geochemical, and remotely sensed data. Field anomaly 
checking demonstrates that the results of the fuzzy AHP-OWA model are relia-
ble for the predicted areas of mineral potential. 
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