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Abstract 
Flows of a rarefied gas between coaxial circular cylinders with nonuniform 
surface properties are studied on the basis of kinetic theory. It is assumed that 
the outer cylinder is a diffuse reflection boundary and the inner cylinder is a 
Maxwell-type boundary whose accommodation coefficient varies in the cir-
cumferential direction. Three fundamental flows are studied: 1) a flow caused 
by the rotation of the outer cylinder (Couette flow), 2) a flow induced be-
tween the cylinders at rest kept at different temperatures (heat transfer prob-
lem), and 3) a flow induced by the circumferential temperature distribution 
along the cylindrical surfaces (thermal creep flow). The linearized ES-BGK 
model of the Boltzmann equation is numerically analyzed using a finite dif-
ference method. The time-independent behavior of the gas is studied over a 
wide range of the gas rarefaction degree, the radii ratio, and a parameter cha-
racterizing the distribution of the accommodation coefficient. Due to an ef-
fect of nonuniform surface properties, a local heat transfer occurs between 
the gas and the cylindrical surfaces in Couette flow; a local tangential stress 
arises in the heat transfer problem. However, the total heat transfer between 
the two cylinders in Couette flow and the total torque acting on the inner cy-
linder in the heat transfer problem vanish irrespective of the flow parameters. 
Two nondegenerate reciprocity relations arise due to the effect of nonuniform 
surface properties. The reciprocity relations among the above-mentioned three 
flows are numerically confirmed over a wide range of the flow parameters. 
The force on the inner cylinder, which also arises due to the effect of nonuni-
form surface properties in Couette flow and the heat transfer problems, is 
studied. 
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Interaction, Reciprocity Relations 

 

1. Introduction 

Internal flows of a rarefied gas have wide applications, e.g., in vacuum science 
and micro engineering, and have been studied extensively on the basis of kinetic 
theory (see Refs. [1]-[7] and the references therein). One of the characteristics of 
a rarefied gas flow is that the transports of mass and energy are strongly coupled 
due to the nonequilibrium effect. For example, in a flow between plane parallel 
walls caused by a pressure gradient (Poiseuille flow), or in a flow caused by a 
tangential motion of the wall (Couette flow), heat flows are induced in the gas 
simultaneously with the motion of the gas. These heat flows are, however, paral-
lel to the wall surfaces, and do not contribute to a heat transfer between the gas 
and the wall surfaces. 

On the other hand, another characteristic of a rarefied gas flow is that it is af-
fected by the gas-surface interaction law (surface properties, in short). Therefore, 
a nonuniformness of the surface properties can cause special phenomena. Ex-
amples of the flows between plane parallel walls with unequal surface properties 
are studied, e.g., in Refs. [8]-[13]. Flows between parallel walls with nonuniform 
surface properties along the wall surface are studied, e.g., in Refs. [14] [15] [16] 
[17] [18]. In Refs. [15] [17], it is assumed that one wall is a diffuse reflection 
boundary and the other wall is a Maxwell-type boundary whose accommodation 
coefficient varies periodically in the flow direction. The following four flows are 
studied: a flow induced by a temperature distribution along the wall surfaces 
(thermal creep flow), a flow induced between the walls at rest kept at different 
temperatures (heat transfer problem), and the above-mentioned Poiseuille and 
Couette flows. In this setting, the flow is no longer parallel, and thus, a heat 
transfer between the gas and the wall surfaces occurs due to the combined effects 
of gas rarefaction and nonuniform surface properties. In fact, a tangential mo-
tion of the wall causes a local heat transfer on the wall surface in Couette flow. In 
the heat transfer problem, on the other hand, a temperature difference between 
the walls induces a gas motion and a tangential stress on the wall surface. One of 
the interesting results in Ref. [17] is that the integrals of these heat flux and the 
tangential stress over one period of the variation of the accommodation coeffi-
cient vanish irrespective of the gas rarefaction degree and the distribution of the 
accommodation coefficient. To the best of the author’s knowledge, this vanish-
ing property has not yet been derived from the Boltzmann equation and the 
theory of reciprocity [19] [20]. It is possible that this property may have some 
connection with “the nonexistence of one-way flow’’ in a pipe or channel by a 
periodic temperature distribution in rarefied gas dynamics [7]. Naturally, a 
question arises whether this vanishing property is a special characteristic limited 
to the plane channel flow or it has a universality over a wider class of flow prob-
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lems. 
In this paper, we study slow rarefied gas flows between coaxial circular cy-

linders with nonuniform surface properties on the basis of kinetic theory. In ac-
cordance with Refs. [15] [17], we assume that the outer cylinder is a diffuse ref-
lection boundary and the inner cylinder is a Maxwell-type boundary whose ac-
commodation coefficient varies in the circumferential direction. The following 
three flows are studied: 1) a flow caused by the rotation of the outer cylinder 
(Couette flow), 2) a flow induced between the cylinders at rest kept at different 
temperatures (heat transfer problem), and 3) a flow induced by a circumferential 
temperature distribution along the cylindrical surfaces at rest (thermal creep 
flow). The linearized ES-BGK model [21] [22] of the Boltzmann equation is nu-
merically analyzed using a finite difference method. The time-independent be-
havior of the gas is studied over a wide range of the gas rarefaction degree, the 
radii ratio, and a parameter characterizing the distribution of the accommoda-
tion coefficient. Special attention is focused on the heat flux and the tangential 
stress on the cylindrical surfaces that arise due to the effect of nonuniform sur-
face properties, and on the resultant heat transfer between and the torque acting 
on the cylinders. The goals of this paper are as follows. First, it is clarified 
whether or not the net heat transfer in Couette flow and the torque in the heat 
transfer problem vanish irrespective of the flow parameters. Second, three reci-
procity relations among the above-mentioned three flows are numerically con-
firmed over a wide range of the flow parameters. Note that in a conventional 
Couette flow and heat transfer problems in which the accommodation coeffi-
cient is uniform, it is obvious that the flow is axially symmetric and the cylinders 
are subject to no force. The third goal is therefore to study the force acting on 
the inner cylinder arising from the effect of nonuniform surface properties. To 
the best of the author’s knowledge, studies on relations among several flows be-
tween boundaries with tangentially nonuniform surface properties are not 
available except in Refs. [17] [18] and in the present paper. In this paper, we use 
the simplest model, i.e., the Maxwell-type boundary condition, to model the 
nonuniform surface property. For, this model is characterized by only one pa-
rameter (accommodation coefficient), and thus convenient to study over various 
distributions of the surface property and other parameters. Incidentally, the flow 
problems considered in this paper are simple models of micro lubrication and 
heat transfer between a journal and a bearing in which the journal is partially 
soiled or fabricated with various materials. Studies on these flows are therefore 
technically valuable in designing a micro lubrication and a heat transfer in mi-
cro-electro-mechanical systems (MEMS). 

This paper is organized as follows. The problem, basic equations, and basic 
properties of the solutions are described in Section 2. The numerical method, 
computational condition, and the results of accuracy tests are summarized in 
Section 3. The results and the discussion are presented in Section 4. Finally, a 
conclusion is given in Section 5. 
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2. Problem and Basic Equation  
2.1. Problem 

Let us consider a rarefied gas between the coaxial circular cylinders placed at 
2 2 2
1 2 0X X r+ =  and 2 2 2

1 2 1X X r+ = , where ( )1 2 3, ,X X X  is a Cartesian  
coordinate system and 0r  and 1r  are constants such that 0 10 r r< <  (Figure 
1(a)). The outer cylinder is a diffuse reflection boundary, whose temperature is 
denoted by 1wT . The inner cylinder is a Maxwell-type boundary at rest whose 
accommodation coefficient α  varies in the circumferential direction. To be 
specific, by introducing the cylindrical coordinates ( ), ,r zθ  defined by  

( )1 2 3cos , sin , 0 2π ,X r X r X zθ θ θ= = = ≤ <            (1) 

α  is the function of the azimuthal angle θ :  

( )
( )

( ) ( )

2 1 2 1

2 1 2 1

cos 0 2π ,
2 2 2

2πcos 2π 2π .
2 2 2 1

C
C

C
C

α α α α θ θ
α θ α α α α θ θ

+ − + ≤ ≤=  + − − + < <
−

        (2) 

Here, 1 2,α α , and C are constants such that 10 1α≤ ≤ , 20 1α≤ ≤ , 0 1C< <  
(see Figure 1(b)). The temperature of this wall is denoted by 0wT . We study the 
following three flows: 1) a flow caused by the rotation of the outer cylinder 
(Couette flow), where the angular velocity is Ω  and the cylinders are kept at 
the uniform temperature 0 1 0w wT T T= = ; 2) a flow induced between the cylinders 
at rest kept at different temperatures 0 0wT T=  and ( )1 0 HT1wT T= + ∆  (heat 
transfer problem); and 3) a flow induced by the temperature distribution 

( )0 1 0 TC 1 01w wT T T X r= = + ∆  along the cylindrical surfaces at rest, where 

0 HT,T ∆ , and TC∆  are constants. The time-independent behavior of the gas is 
studied on the basis of kinetic theory. 
 

 
Figure 1. Schematic view of the system. (a) Schematic view from the 3X  direction 

and (b) distribution of the accommodation coefficient ( )α θ  along the surface of 

the inner cylinder (Equation (2)). In panel (a), the white part of the surface of the 
inner cylinder represents the interval in which α  is close to the minimum value 

1α . In panel (b), the distribution ( )α θ  is plotted for 0.25C = .  
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In this paper, we assume that the gas behavior is governed by the ES-BGK 
model of the Boltzmann equation with the Prandtl number 2/3. It is also as-
sumed that the causes of the flows are so small that the equation and the boun-
dary condition may be linearized. To be specific, we assume that 1 0 1r VΩ  , 

HT 1∆  , and 1
1 0 TC 1r r− ∆  , where ( )1 2

0 02 BV k T m= , Bk  is the Boltzmann 
constant, and m  is the mass of a molecule. 

2.2. Basic Equation 

Let us take 0 0,r V , and 0ρ  as the reference length, the reference speed, and the 
reference density of the system, where 0ρ  is the mean density of the gas over 
the annulus domain 0 1r r r< < , 00 z r< < . We use the dimensionless variables 
r̂  and ẑ  for the spatial coordinates r and z , and ( ), ,r zιζ ι θ=  for the 
molecular velocity components ιξ  [7]:  

0 0 0

ˆ ˆ, , .r zr z
r r V

ι
ι

ξ
ζ= = =                      (3) 

The dimensionless molecular velocity is also denoted by ζ . The perturbation 
φ  of the velocity distribution function f  from the equilibrium state at rest 
with the density 0ρ  and the temperature 0T  is defined by  

3
0 0

1,f
V E

φ
ρ −= −                         (4) 

where ( ) ( )3 2 2π expE ζ−= −ζ  with 2 2 2 2
r zθζ ζ ζ ζ= + + . Correspondingly, the 

perturbations of the macroscopic variables , , , , ,u P P Qι ιγ ιω τ   
( ), , ; , ,r z r zι θ γ θ= =  for the density ρ , the flow velocity vι , the temperature 
T, the pressure p, the stress tensor pιγ , and the heat flow vector qι  are defined 
by  

( )
0 0 0

0 0 0 0

1, , 1,
1, , ,

u v V T T
P p p P p p Q q p V

ι ι

ιγ ιγ ιγ ι ι

ω ρ ρ τ

δ

= − = = −

= − = − =
         (5) 

where 0 0 0Bp k T mρ= . 
The linearized ES-BGK model of the Boltzmann equation with the Prandtl 

number 2/3 in the time-independent and axially uniform ( ˆ 0zφ∂ ∂ = ) state is 
written in the cylindrical coordinate system as  

( )

2

2

2 2 2 2

ˆ ˆ ˆ ˆ

2 32 2
2π

1 2 ,
2

r
r

r

r r

r rr z zz r r

r r r r

u u
Kn

P P P P P

θ θ θ

θ

θ θ

θ θθ θ θ

ζ ζ ζ ζφ φ φ φζ
θ ζ ζ

φ ω ζ ζ ζ τ

ζ ζ ζ ζ ζ ζ

∂ ∂ ∂ ∂
+ + −

∂ ∂ ∂ ∂

  = − + + + + −   
− + + + − 

            (6) 

d ,Eω φ= ∫ ζ                           (7) 

d ,u Eι ιζ φ= ∫ ζ                          (8) 

22 3 d ,
3 2

Eτ ζ φ = − 
 ∫ ζ                       (9) 
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,P ω τ= +                          (10) 

2 d ,P Eιγ ι γζ ζ φ= ∫ ζ                       (11) 

2 5 d .
2

Q Eι ιζ ζ φ = − 
 ∫ ζ                    (12) 

In (6), 0Kn r=   is the Knudsen number;   is the mean free path of the gas 
in the equilibrium state at rest with the density 0ρ  and the temperature 0T . 
The mean free path   is related to the viscosity µ  and the heat conductivity 
λ  of the gas as [23]  

0 0

0 0

π 5 π, .
3 4

Bp k p
V mV

µ λ= =   

In (7)-(12) and in what follows, d d d dr zθζ ζ ζ=ζ , and the range of integration 
with respect to ιζ  is its whole space unless otherwise stated. 

The boundary conditions on the cylindrical walls are  

( ) ( ) ( ) ( ) ( ) ( )

( )
*

2
0 * * * *0

1 2 2 π d

ˆ 1, 0 ,
r

r r w r

r

E

r
ζ

φ ζ α φ ζ α ζ τ ζ φ

ζ
<

 = − − + − −  
= >

∫ ζ ζ ζ
 (13) 

( ) ( ) ( ) ( )
*

2
1 * * * *0

ˆ2 2 2 π d , 0 ,
r

w w r ru E r Rθ ζ
φ ζ ζ τ ζ φ ζ

>
= + − + = <∫ ζ ζ ζ  (14) 

where ( )α α θ= , 1 0R r r=  is the radii ratio, and ( )rφ ζ±  denotes the ab-
breviation for ( )ˆ, , , ,r zr θφ θ ζ ζ ζ± . The 0 1,w wτ τ , and wu  are defined by  

( )
( )

( )

0 1 CF

0 1 HT

0 1 TC

0, Couette flow ,

0, , 0 heat transfer problem ,

cos , 0 thermal creep flow ,

w w w

w w w

w w w

u R

u

R u

τ τ

τ τ

τ τ θ

= = = ∆

= = ∆ =

= = ∆ =

        (15) 

where CF 0 0r V∆ = Ω . The periodic condition at the cross section 2πθ =  is  

( ) ( ) ( )ˆ ˆ,0, , , , 2π, , , 0 ,r z r zr rθ θ θφ ζ ζ ζ φ ζ ζ ζ ζ= >            (16) 

( ) ( ) ( )ˆ ˆ, 2π, , , ,0, , , 0 .r z r zr rθ θ θφ ζ ζ ζ φ ζ ζ ζ ζ= <            (17) 

Finally, from the definition of the average density 0ρ , the solution should sa-
tisfy  

2π

0 1
ˆ ˆd d d 0.

R
rr Eθ φ =∫ ∫ ∫ ζ                    (18) 

From (6)-(18), it is easily seen that we can seek the solution φ  that is symme-
tric with respect to zζ . 

From now on, we denote the solution for Couette flow, heat transfer, and the 
thermal creep problems, respectively, by the subscript CF, HT, and TC, e.g., CFφ , 
if necessary. The subscript is frequently represented by the dummy letter J, e.g., 

Jφ  with J = CF, HT, and TC. 
The boundary value problem (6)-(18) is characterized by the following di-

mensionless parameters  

1
1 2

0 0

, , , and .
rKn R C

r r
α α= =

               (19) 
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We will solve the problem over a wide range of the parameters (19). Among the 
parameters (19), 1 2,α α , and C are those characterizing the distribution of the 
accommodation coefficient ( )α θ  in (2). The last parameter C represents a de-
gree of asymmetry of the distribution ( )α θ  with respect to πθ = ; the ( )α θ  
is symmetric when 1 2C =  and the degree of asymmetry increases as 1 2 C−  
increases. 

Multiplying (6) by , 2E Eθζ , and 2 Eζ , and integrating with respect to ζ , 
we obtain the conservation of mass, momentum, and energy:  

ˆ1 1 0,
ˆ ˆ ˆ

r uru
r r r

θ

θ
∂∂

+ =
∂ ∂

                     (20) 

2

2

ˆ1 1 0,
ˆ ˆˆ

rr P P
r rr
θ θθ

θ
∂ ∂

+ =
∂ ∂

                    (21) 

ˆ1 1 0.
ˆ ˆ ˆ

r QrQ
r r r

θ

θ
∂∂

+ =
∂ ∂

                      (22) 

Integrating (20)-(22) over 0 2πθ< <  and applying the boundary condition 
(13) or (14), we obtain  

2π 2π 2π2
1 20 0 0

ˆ ˆd 0, d , d ,r r ru r P c r Q cθθ θ θ= = =∫ ∫ ∫            (23) 

where 1c  and 2c  are constants. The second relation of (23) is the conservation 
law of angular momentum. 

2.3. Force, Torque, Heat Flow Rate, and the Reciprocity Relations 

Once the macroscopic variables, e.g. ( )ˆ,rP rθ θ , are obtained, the force, torque, 
and the heat flow rate on the cylinders are obtained by the integral of the ma-
croscopic variables as follows. The Cartesian components ( )1 2, ,0F F  of the 
force acting on the inner cylinder per unit length in the axial direction are given 
by  

( )2π1

0
20 0

cos sin1 ˆd 1 .
sin cos

rr r

rr r

P PF
r

P PFp r
θ

θ

θ θ
θ

θ θ
−  

= − =   +   
∫           (24) 

For the convenience of the following discussion, we define the normalized tor-
que ( )J r̂  acting on and the heat flow rate ( )J r̂  onto the surface 
ˆ ˆ,0 2πr r θ= ≤ <  from the outer per unit length in the ẑ  direction:  

( ) ( )2π 2
J J0

J

1ˆ ˆ ˆ, d ,rr r P rθ θ θ= −
∆ ∫                 (25) 

( ) ( )2π
J J0

J

1ˆ ˆ ˆ, d ,rr rQ r θ θ= −
∆ ∫                  (26) 

where J = CF, HT, and TC. The J  and J  are independent of r̂  due to the 
conservation laws (23), so that the position r̂  of evaluation may be omitted. 
The dimensional torque and the heat flow rate are, respectively, given by 

2
0 0 J Jp r ∆   and 0 0 0 J Jp r V ∆  . 
From the symmetric relation of the linearized Boltzmann equation [2] [19] 
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[20], the following three reciprocity relations hold among the three flow prob-
lems (J = CF, HT, and TC) for arbitrary values of the parameters (19):  

( ) ( )CF HT ,R R= −                       (27) 

( )TC CF ,R =                         (28) 

( )TC HT ,R = −                        (29) 

where  

( ) ( )2π 2
J J J0

J

1 , 1, cos d .r rR Q R Qθ θ θ θ = − ∆ ∫            (30) 

Equations (27)-(29) will be numerically confirmed over a wide range of the pa-
rameters (19). 

2.4. Cases of Uniform or Symmetric Distribution of the  
Accommodation Coefficient 

When the accommodation coefficient ( )α θ  in the boundary condition (13) is 
uniform (conventional case, in short), the solutions of the boundary value prob-
lem (6)-(18) are simplified as follows. The solutions for the conventional cases 
are reported, e.g., in Refs. [24] [25] for Couette flow and Ref. [26] for the heat 
transfer problem. 

Couette flow and the heat transfer problems reduce to axially symmetric 
problems, i.e., 0φ θ∂ ∂ = , in the conventional case. In Couette flow problem, 
further, it is easily seen that the distribution function φ  is an odd function with 
respect to θζ . Consequently from (7)-(12), we directly obtain  

CF CF CF CF CF CF CF 0,r rr zz ru P P P Qθθω τ= = = = = = =           (31) 

and thus  

1CF 2CF CF CF 0.F F= = = =                    (32) 

In the heat transfer problem, similarly, the distribution function φ  is an even 
function with respect to θζ . By using the conservation laws (23) and the boun-
dary condition (13) or (14), we obtain  

HT HT HT HT 0,r ru u P Qθ θ θ= = = =               (33) 

and  

1HT 2HT HT HT 0.F F= = = =                (34) 

In the thermal creep flow problem, in contrast, the boundary value problem re-
mains a spatially two dimensional one for r̂  and θ . Because of the special 
form of the temperature distribution 0wτ  and 1wτ  in (15), however, we find 
that the solution cos sine oφ φ θ φ θ= +  is compatible with the boundary value 
problem (6)-(18), where eφ  and oφ  are independent of θ  and, respectively, 
even and odd functions with respect to θζ . From this form, we see that 

TC sinrPθ θ , TC cosrrP θ , and TC cosrQ θ  are independent of θ , and thus  

2TC TC TC 0.F = = =                       (35) 
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To summarize, when the accommodation coefficient is uniform, both sides of 
all the reciprocity relations (27)-(29) vanish; obviously, the cylinders are subject 
to no force in Couette and heat transfer problems. Probably because of this rea-
son, the reciprocity relations are rarely discussed in the flow problems between 
coaxial circular cylinders. In the case of nonuniform accommodation coefficient 
to be studied in this paper, in contrast, (32), (34), and (35) do not generally hold, 
and all the three reciprocity relations (27)-(29) are of interest. The numerical 
confirmation of the reciprocity relations (27)-(29) is one of the important goals 
of this paper. 

Special attention is focused on the quantities in (27). In Refs. [15] [17], flow 
problems between plane parallel walls in which one of the walls has a periodic 
distribution of the accommodation coefficient were studied. In Ref. [17], due to 
the effect of the nonuniform accommodation coefficient of the solid boundary, a 
local heat transfer across the wall surface occurs in plane Couette flow, and a lo-
cal tangential stress on the surface occurs in the plane heat transfer problem. The 
numerical solution in Ref. [17] showed, however, that the integrals of the heat 
flux and the tangential stress over one period of the distribution of the accom-
modation coefficient vanish irrespective of the flow parameters (see Section 1). If 
this phenomenon has a universality beyond the flows between plane parallel 
walls, both sides of (27) may vanish. To clarify this point is an important moti-
vation of this study. 

Let us discuss another special case that the accommodation coefficient ( )α θ  
is nonuniform but symmetric with respect to πθ =  (symmetric case, in short). 
This is the case of 1 2C =  in (2). In this case, all the reciprocity relations 
(27)-(29) degenerate as follows. The derivation is quite similar to that in Ref. [15] 
and thus omitted. In Couette flow problem, in this case, the macroscopic va-
riables CF CF, ru Pθ θ , and CFQθ  are symmetric with respect to πθ = , whereas 

CF CF CF CF, , ,r rru Pω τ , and CFrQ  are antisymmetric. Therefore,  

1CF CF CF 0.F = = =                      (36) 

In the heat transfer and the thermal creep problems, J J J J, , ,r rru Pω τ , and JrQ  (J 
= HT and TC) are symmetric with respect to πθ = , whereas J J, ru Pθ θ , and JQθ  
are antisymmetric. Therefore,  

( )2J J 0 J HT and TC .F = = =                (37) 

That is, all the reciprocity relations (27)-(29) degenerate also in the symmetric 
case. In this paper, therefore, the cases other than 1 2C =  are included. 

3. Numerical Analysis  
3.1. Numerical Method 

A few preliminary processes are explained. First, the new variables ρζ  and ζθ  
are introduced in place of rζ  and θζ  [7]:  

( )cos , sin 0, π π .r ρ ζ θ ρ ζ ρ ζζ ζ θ ζ ζ θ ζ θ= = > − < ≤         (38) 
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Then, the number of derivative terms in (6) is reduced from four to three, which 
is convenient for the numerical analysis. Second, by introducing the marginal 
distribution functions Φ  and Θ  defined by [7]  

( ) ( )2 2 21 2exp d , exp d ,
π πz z z z zφ ζ ζ ζ φ ζ ζ

∞ ∞

−∞ −∞
Φ = − Θ = −∫ ∫       (39) 

the molecular velocity component zζ  can be eliminated from the boundary 
value problem (6)-(18). Then, we are led to a boundary value problem for the 
four independent variables ˆ, ,r ρθ ζ , and ζθ . 

In the numerical analysis, the infinite interval 0ρζ >  is replaced by a finite 
one 0 Dρζ ζ< ≤ , where Dζ  is a constant. The computational grid system is 
arranged in the four-dimensional space ˆ1 r R≤ ≤ , 0 2πθ≤ ≤ , 0 Dρζ ζ< ≤ , 
and π πζθ− ≤ ≤ . Then, a finite difference scheme of the second order with re-
spect to ˆ,r θ , and ζθ  is constructed. The time-independent solution is ob-
tained by an iteration method. 

A few remarks on the numerical method are given below. First, the solution 
φ  of the boundary-value problem is discontinuous across the surfaces  

ˆ sin 1, π 2, 0 2π,r ζ ζθ θ θ= ± ≤ ≤ ≤             (40) 

in the ( )ˆ, ,r ζθ θ  space. Therefore, a conventional finite difference scheme can-
not be applied directly. In this study, the hybrid scheme of finite difference and 
characteristic coordinate methods devised in Refs. [27] [28] is adopted. Inciden-
tally, if the outer cylinder is the Maxwell-type boundary as well, the discontinui-
ty staring from the inner cylinder reflects on the outer cylinder, and the discon-
tinuous surfaces are present also in the region of π 2ζθ > . In this case, the 
construction of the numerical scheme is more difficult. On the other hand, if the 
inner cylinder rotates, the problem is obviously a time-dependent one and ela-
borate to analyze. This is the reason why we chose the situation that the outer 
cylinder is a diffuse reflection boundary and the inner cylinder is at rest in this 
paper. Second, it is difficult to obtain an accurate solution at small Knudsen 
numbers because of the numerical error arising from the collision term [5]. To 
avoid this difficulty, we subtract the asymptotic solution [5] [23] for small 
Knudsen numbers from the numerical solution in calculating the collision term, 
or (7)-(12). In this paper, the asymptotic solution is constructed approximately 
using the numerical values of the macroscopic variables. This subtraction 
process is adopted when ( )1 1Kn R − ≤ . 

3.2. Computational Condition 

The computational grid points are arranged as follows. For the coordinate r̂ , 

rN  grid points are arranged in the interval ˆ1 r R≤ ≤ , where grid size is uni-
form ( ( )2 1rd R= − ) in ( ) ( )ˆ 1 1 1 2 0.34r R− − − <  and nonuniform otherwise; 
the grid size is minimum ( ( )1 1rd R= − ) at ˆ 1r =  and R. For the coordinate θ , 
101 grid points are arranged uniformly in the interval 0 2πθ≤ ≤ . For the coor-
dinate ρζ , 31 grid points are arranged uniformly in 0 Dρζ ζ≤ ≤ , where we 
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chose 5Dζ = . For the coordinate ζθ , Nθ  grid points are arranged uniformly 
in π πζθ− ≤ ≤ . Here, 1, ,r rN N dθ , and 2rd  are constants chosen depending 
on the parameters (19) as follows:  
( ) ( )5 3

1 2, , , 1281,401,2.7 10 ,1.3 10r r rN N d dθ
− −= × ×  when 0.2Kn ≤  and 5R = , 

or ( ) ( )5 3
1 2, , , 641,641,5.4 10 ,2.5 10r r rN N d dθ

− −= × ×  otherwise. 

3.3. Results of Accuracy Tests 

The accuracy of the numerical solutions is tested as follows. The following tests 
are conducted over all the combinations of 1.2, 2,5R = , 0.1,0.25C = , 1 0.5α = , 

2 1α = , and 0.1,1,10Kn =  of the parameters (19). 
1) Conservation law. The solution of the boundary value problem (6)-(18) 

should satisfy the conservation laws (23). That is, the left-hand sides in (23) 
should be independent of r̂ . Therefore, the maximum variation of the 
left-hand side in the numerical solution in ˆ1 r R≤ ≤  serves to estimate the 
numerical error. The maximum variations of the left-hand side of the second 
relation of (23) in Couette and thermal creep problems are, respectively, less 
than 0.63% and 0.45% relative to the value at ˆ 1r = . The maximum variations 
of the left-hand side of the third relation in heat transfer and thermal creep 
problems are, respectively, less than 0.072% and 2.4% relative to its value at 
ˆ 1r = . As we will see in Section 4, the left-hand side of the second relation in 

heat transfer problem and that of the third relation in Couette flow vanish 
( 1 2 0c c= = ), so that the relative error cannot be defined. Instead, the maxi-
mum variations of these two quantities relative to the maximum of the respec-
tive integrands 2

HTˆ rr Pθ  and CFˆ rr Q  over the cylindrical surfaces are, re-
spectively, 0.008% and 0.13%. The first relation of (23) is not used for the error 
estimate because the integrand ru  vanishes identically on the cylindrical sur-
faces by (13) and (14). 

2) Re-computation using a different computational grid system. For a test of 
accuracy, we also conducted re-computations using a coarser grid system. In 
the coarser system, the grid sizes in ˆ,r θ , and ζθ  are two times coarser, that 
in ρζ  is approximately 1.4 times coarser, and the upper limit Dζ  of ρζ  is 
reduced to 4.5Dζ = , simultaneously. The error of the numerical solution us-
ing the grid system of Section 3.2 is estimated from the difference between the 
two numerical solutions. The estimated numerical error in the values of the 
normalized torque CF  and TC  (Equation (25)) at ˆ 1r =  is 0.076% and 
0.35%, respectively; the error in the normalized heat flow rate HT  and TC  
(Equation (26)) at ˆ 1r =  is 0.0072% and 0.36%, respectively. The other quan-
tities CF  and HT  will be shown to vanish in Section 4. The numerical er-
ror in the force ( )1 2,F F  (Equation (24)) is estimated to be less than 0.14%, 
0.32%, and 0.44% in Couette flow, heat transfer, and thermal creep problems, 
respectively. 

The reciprocity relations (27)-(29) also serve to estimate the accuracy of the 
numerical solutions. The result will be presented in Section 4.4. 
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It may be noted that the accuracy in the numerical solution, e.g., the value of 

TC , in this paper is worse than that in our previous paper of the flow between 
plane parallel walls [17]. This is probably because that the basic Equation (6) is 
complicated (three derivative terms in place of two in Ref. [17]), and that the 
substantial Knudsen number ( )1 0r r−  based on the gap size 1 0r r−  can be 
very small when 1 0r r R=  is large. At small Knudsen numbers, it is difficult to 
obtain an accurate numerical solution not only because the numerical error 
arising from the collision term is non-negligible [5], but also because the quanti-
ties of interest are very small. For example, the worst case of the energy conser-
vation law (2.4%) in the item 1) occurs in the thermal creep flow at 
( ) ( ), , 0.1,5,0.1Kn R C = . In this case, the normalized energy flow rate TC  is 

32.9 10−× , which is extremely small. Note that the normalized distribution func-
tion TC TCφ ∆  is of the order of unity whereas the heat flow rate TC  is ex-
tremely small due to a drastic cancellation in the successive integrals (12) and 
(26). 

4. Results and Discussion  

In this paper, the numerical computation is conducted for all the combinations 
of the parameters (19) as follows: 1.2, 2,5R = , 0.1,0.25,0.5C = , 1 0.5α = , 

2 1α = , and 15 Knudsen numbers Kn  ranging between 0.1 and 10. The results 
of the numerical analysis are presented in this section. In the following discus-
sion, we also use the dimensionless Cartesian coordinates  

1 1 0 ˆ cosx X r r θ= =  and 2 2 0 ˆ sinx X r r θ= = , and the vector components  

1 2cos sin , sin cos ,r ru u u u u uθ θθ θ θ θ= − = +            (41) 

and so on. Further, it is assumed that CF HT,∆ ∆ , and TC∆  in (15) are positive 
without loss of generality. 

4.1. Couette Flow 

First, some examples of the flow field of Couette flow are presented in Figure 2. 
The flow velocity and the heat flow for the radii ratio 2R =  and the Knudsen 
numbers 0.1,1Kn = , and 10 are presented in Figures 2(a)-(c), respectively; 
those for 5R =  and the same Kn ’s are presented in Figures 2(d)-(f), respec-
tively ( 1 20.5, 1, 0.25Cα α= = = ). The arrow represents the normalized flow ve-
locity ( )1CF 2CF CF,u u ∆  at its starting point, the magnitude of which is shown by 
the arrow at the upper right corner of each panel. The dotted line represents the 
“stream line’’ of the heat flow vector ( )1CF 2CF,Q Q , i.e., the isoline of the func-
tion Ψ  defined by  

1CF 2CF
2 1

, .Q Q
x x
∂Ψ ∂Ψ

= = −
∂ ∂

                 (42) 

The accommodation coefficient ( )α θ  is minimum at π 2θ =  when 
0.25C = ; the white part along the surface of the inner cylinder represents the 

part in which α  is close to the minimum ( 0.5 0.55α≤ ≤ ). Now let us examine  

https://doi.org/10.4236/ojfd.2019.91002


T. Doi 
 

 

DOI: 10.4236/ojfd.2019.91002 34 Open Journal of Fluid Dynamics 
 

 
Figure 2. Flow fields of Couette flow ( 1 20.5, 1, 0.25Cα α= = = ). (a, b, c) 2R = , (d, e, f) 

5R = , (a, d) 0.1Kn = , (b, e) 1Kn = , and (c, f) 10Kn = . Arrow: the normalized flow 
velocity ( )1CF 2CF CF,u u ∆  at its starting point, the magnitude of which is represented by 

the arrow at the upper right corner of each figure. Dotted line: “stream line’’, or isoline 
constΨ =  (Equation (42)), of the heat flow vector; the arrow on the dotted line 

represents the direction of the heat flow vector. The white part along the surface of the 
inner cylinder represents the interval of 0.5 0.55α≤ ≤ .  
 
the results for 2R = , focusing our attention on the heat flow field. The rotation 
of the outer cylinder causes the motion of the gas and the heat flow simulta-
neously. When the Knudsen number is very small, according to the asymptotic 
theory of the Boltzmann equation [5] [7], the heat flow is present mainly in the 
Knudsen layers; the heat flow is a clockwise circulation flow along the outer cy-
linder and is a counterclockwise one along the inner cylinder. The heat flow is 
enhanced on passing the white part of small accommodation coefficient [29]. 
Then, the direction of the heat flow slightly shifts from the tangential direction 
due to the conservation on energy. As the Knudsen number increases (Figure 
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2(a)), the heat flow spreads into the bulk region, and forms a roll over the white 
part. This roll of the heat flow is not special to the present cylindrical Couette 
flow, but is observed also in the plane Couette flow in Ref. [17]. As the Knudsen 
number increases further (Figure 2(b)), the outer part of the roll is absorbed by 
the outer cylinder, and an outflow and an inflow of heat across the cylindrical 
surface occur. When the Knudsen number is sufficiently large (Figure 2(c)), the 
roll of the heat flow extends and merges at approximately 7π 4θ = , and a 
one-way flow of heat from one part to the other part of the outer cylinder is es-
tablished; the direction is approximately ( ) ( )1 2, 1, 1x x = − − . When the radii ratio 
is large ( 5R = , Figures 2(d)-(f)), the behavior of the gas is qualitatively similar. 
For a small Knudsen number (Figure 2(d)), the heat flow is almost absent near 
the outer cylinder. This is because the breaking effect on the gas motion by the 
inner cylinder is small, and thus the gas flow near the outer cylinder is nearly a 
rigid-body rotation; therefore, the velocity distribution function is nearly Max-
wellian, and thus the heat flow vanishes. 

From the flow fields in Figure 2, one expects nonuniform distributions of 
the tangential stress and the heat flux along the cylindrical surfaces, which are 
examined in Figure 3 in detail. The dimensionless tangential stress CFrPθ  
along the cylindrical surfaces at ˆ 1r =  and r̂ R=  for the case of Figure 2(b) 
( 1, 2Kn R= = ) is shown in Figure 3(a) as a function of the azimuthal angle θ . 
In this figure, 2

CFˆ rr Pθ  is plotted because rPθ  decays approximately 2ˆrP rθ
−

  
due to the conservation law (23). Note that CF 0rPθ− >  means that the tangen-
tial stress acts in the θ+  ( θ− ) direction on the inner (outer) cylinder. The 
magnitude of the tangential stress on the inner cylinder is minimum at ap-
proximately π 2θ = , i.e., the minimum position of ( )α θ . The dotted line 
represents the average ( ) ( )2π1 12

CF CF CF0
ˆ2π d 2πrr Pθ θ− −− ∆ =∫  , where CF  is the 

normalized torque defined by (25). The dotted lines at ˆ 1r =  and r̂ R=  are 
indistinguishable according to the conservation law (23). Incidentally from 
Figure 3(a), we can estimate that the inner cylinder is subject to a force (24) 
from the gas as follows. The tangential stress in the hemicircle of approx-
imately π 4 5π 4θ< <  is less than the average. Therefore, the contribution to 
the force from this hemicircle and that from the other do not cancel out. Con-
sequently, a force approximately in the direction of ( ) ( )1 2, 1,1x x = , or 

π 4θ = , is expected. The force acting on the inner cylinder is discussed in de-
tail in Section 4.6. 

Similarly, the normal component CFrQ  of the dimensionless heat flow vector 
on the cylinders for the same case (Figure 2(b)) is presented in Figure 3(b). 
Note that CFˆ rrQ  is plotted (Equation (23)), and that CF 0rQ >  means a heat 
flow from the cylinder to the gas (from the gas to the cylinder) on the inner 
(outer) cylinder. Obviously, there is a distribution of inflow and outflow of heat 
along the cylindrical surfaces. The heat transfer is significant on the outer cy-
linder, which is easily seen from the flow field in Figure 2(b). The dotted line 
represents the average ( ) ( )2π1 1

CF CF CF0
ˆ2π d 2πrrQ θ− −∆ = −∫  , where CF  is the  
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Figure 3. Distribution of the dimensionless tangential stress CFrPθ  and the normal 
component CFrQ  of the heat flow along the cylindrical surfaces in Couette flow 

( 1 21, 2, 0.5, 1, 0.25Kn R Cα α= = = = = ; cf. Figure 2(b)). Solid line in (a): 2
CF CFˆ rr Pθ ∆ ; 

solid line in (b): CF CFˆ rrQ ∆ . Dotted line in (a): the average ( )
2π1 2

CF CF0
ˆ2π drr Pθ θ−− ∆ ∫  at 

ˆ 1r =  and r̂ R= ; dotted line in (b): the average ( )
2π1

CF CF0
ˆ2π drrQ θ−∆ ∫  at ˆ 1r =  and 

r̂ R= ; the dotted lines at ˆ 1r =  and r̂ R=  are indistinguishable (Equation (23)).  
 
normalized heat flow rate defined by (26). The dotted lines at ˆ 1r =  and r̂ R=  
are indistinguishable according to the conservation law (23). Note that the aver-
age, or CF , is very small; to be specific, ( ) 1

CF2π −   at ˆ 1r =  and r̂ R=  is 
less than 0.004% of the maximum of the integrand CF CFˆ rrQ ∆  ( 21.3 10−= × ) 
over the cylindrical surfaces. This property is common to every set of the val-
ues of the parameters (19); the average ( ) 1

CF2π −   is less than 0.15% of the 
maximum of CF CFˆ rrQ ∆  over all the cases of the parameters (19) conducted 
in this paper. In view of the accuracy tests in Section 3.3, these small values are 
of the same order as the inevitable numerical error. Therefore, we may con-
clude that  

CF 0=                              (43) 

irrespective of the values of the parameters (19). That is, although a local heat 
transfer between the gas and the cylindrical surfaces occurs due to the effect of 
nonuniform accommodation coefficient, the total heat transfer between the two 
cylinders vanishes identically. Note that, nevertheless, a one-way heat flow from 
one part to the other part of the outer cylinder is present, as shown in Figure 2 
and Figure 3(b). 

4.2. Heat Transfer Problem 

Next, some examples of the flow field of the heat transfer problem are presented 
in Figure 4. The parameters (19) in Figures 4(a)-(f) are the same as those in 
Figures 2(a)-(f). In the figures, the isothermal line HT constτ =  is represented 
by the solid line. The meanings of other lines and symbols are similar to those in 
Figure 2. Due to an effect of the nonuniform accommodation coefficient, a flow 
is induced between the cylinders at rest kept at different temperatures. The me-
chanism of this flow is similar to that in the plane heat transfer problem [17].  
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Figure 4. Flow fields of the heat transfer problem ( 1 20.5, 1, 0.25Cα α= = = ). 

Arrow: the normalized flow velocity ( )1HT 2HT HT,u u ∆ ; dotted line: “stream 

line’’ of the heat flow vector ( )1HT 2HT,Q Q ; solid line: isothermal lines 

HT 0.8,0.6,τ =   from the outer. See the caption of Figure 2.  

 
Because of the nonuniformness of the accommodation coefficient, the tempera-
ture jump of the gas at the cylindrical surfaces is nonuniform. Consequently, a 
temperature distribution of the gas is formed along the cylindrical surfaces; the 
temperature of the gas on the inner cylinder is the highest near the white part of 
small accommodation coefficient. Then, gas flows are induced along the cylin-
drical surfaces toward the hot part by the same mechanism as that of the thermal 
creep flow. Two major flows from both sides along the inner cylinder collide at 
approximately 3π 4θ = , and finally two rolls are formed in the annulus; the 
one in approximately 3π 4 7π 4θ< <  is counterclockwise and the other is 
clockwise. Incidentally, from Figure 4, it is expected that the inner cylinder is 
subject to a force approximately in the direction of ( ) ( )1 2, 1, 1x x = −  by the 

https://doi.org/10.4236/ojfd.2019.91002


T. Doi 
 

 

DOI: 10.4236/ojfd.2019.91002 38 Open Journal of Fluid Dynamics 
 

reaction of these thermal-creep type flows. The force on the inner cylinder will 
be presented in Section 4.6.  

The distributions of the tangential stress HTrPθ  and the normal component 

HTrQ  of the heat flow vector along the cylindrical surfaces for the case of Figure 
4(b) are presented in Figure 5(a) and Figure 5(b), respectively. The dotted lines 
represent the averages ( ) ( )2π1 12

HT HT HT0
ˆ2π d 2πrr Pθ θ− −∆ = −∫   and  

( ) ( )2π1 1
HT HT HT0

ˆ2π d 2πrrQ θ− −− ∆ =∫  , respectively (see (25) and (26)). The aver-
age value of the tangential stress, or the normalized torque HT , is very small, 
and this property is common to every set of the values of the parameters (19). To 
be specific, the value ( ) 1

HT2π −   is less than 0.03% of the maximum of the in-
tegrand 2

HTˆ rr Pθ  over the cylindrical surfaces for every set of the values of the 
parameters (19). Therefore, following the same criterion as that given in the 
discussion on Figure 3(b), we concluded that  

HT 0=                           (44) 

irrespective of the values of the parameters (19). That is, although a local tan-
gential stress is induced on the cylinders, the total torque acting on the inner cy-
linder vanishes identically irrespective of the parameters (19). Equation (44) is a 
counterpart of (43). 

4.3. Thermal Creep Flow 

Similarly, some examples of the flow field of the thermal creep flow are pre-
sented in Figure 6. Note that the distributions of the dimensionless wall tem-
perature 0wτ  and 1wτ  are 0 1 TC 1w w xτ τ= = ∆  in the Cartesian coordinates. 
Thermal creep flows are induced by this temperature distribution along the four 
parts of the cylindrical surfaces: the 2 0x >  parts of the surfaces of the outer 
and inner cylinders, and the 2 0x <  parts of those of the outer and inner cy-
linders. These flows interact, and a flow field of multi rolls is formed. Note  
 

 
Figure 5. Distribution of the dimensionless tangential stress HTrPθ  and the normal 
component HTrQ  of the heat flow along the cylindrical surfaces in the heat transfer 
problem ( 1 21, 2, 0.5, 1, 0.25Kn R Cα α= = = = = ; cf. Figure 4(b)). Solid line in (a): 

2
HT HTˆ rr Pθ ∆ ; solid line in (b): HT HTˆ rrQ ∆ . Dotted line: the average at ˆ 1r =  and 

r̂ R= . See the caption of Figure 3.  
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Figure 6. Flow fields of the thermal creep flow ( 1 20.5, 1, 0.25Cα α= = = ). Arrow: 

the normalized flow velocity ( )1TC 2TC TC,u u ∆ ; dotted line: “stream line’’ of the 

heat flow vector ( )1TC 2TC,Q Q . See the caption of Figure 2.  

 
that these thermal creep flows are induced even in the conventional case. The 
effect of the nonuniform accommodation coefficient works to make the flow 
asymmetric with respect to 2 0x = . The degree of asymmetry is, however, not so 
strong. The heat flow, denoted by the dotted line, is basically a one-way flow 
from the hotter side to the colder side of the outer cylinder. 

The distributions of the tangential stress TCrPθ  and the normal component 

TCrQ  of the heat flow vector along the cylindrical surfaces for the case of Figure 
6(b) are presented in Figure 7(a) and Figure 7(b), respectively. Note that 

TC sinrPθ θ  and TC cosrQ θ  are independent of θ  in the conventional case 
(cf. Section 2.4). A weak deviation from this θ-dependence is observed in Figure 
7(a) and Figure 7(b). The dotted lines represent the averages  
( ) ( )2π1 12

TC TC TC0
ˆ2π d 2πrr Pθ θ− −∆ = −∫   and ( ) ( )2π1 1

TC TC TC0
ˆ2π d 2πrrQ θ− −∆ = −∫  , 
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respectively (see (25) and (26)). Note that the average values are small but do not 
vanish. To be specific, ( ) 1 3

TC2π 5.394 10− −− = ×  at ˆ 1r =  and 35.392 10−×  at 
r̂ R=  in Figure 7(a), and ( ) 1 2

TC2π 2.112 10− −− = − ×  at ˆ 1r =  and 
22.105 10−− ×  at r̂ R=  in Figure 7(b). The magnitudes of these values are 

much larger than the estimated error (cf. Section 3.3). The values at ˆ 1r =  and 
r̂ R=  agree well; the relative differences are only 0.04% and 0.3%, respectively, 
which are of the same order as the numerical error. We also obtain nonzero val-
ues of TC  and TC  for every set of the values of the parameters (19) except 

TC  at 0.5C =  (Equation (37)). That is, we find that both the torque TC  
and the heat flow rate TC  in the thermal creep flow do not generally vanish 
in contrast to (43) and (44). These two quantities appear in the reciprocity re-
lations (28) and (29). In this way, we obtain two nondegenerate reciprocity re-
lations by the effect of nonuniform accommodation coefficient. The reciproci-
ty relations (28) and (29) are numerically confirmed in the next subsection. 
From Figure 7(a), incidentally, we can estimate the force (24) acting on the 
inner cylinder as follows. The contribution of the tangential stress from 
0 πθ< <  and that from π 2πθ< <  combine to produce a resultant force 
approximately in the 1x−  direction. Note that, in contrast to Couette flow 
and heat transfer problems, a force acts even in the conventional thermal creep 
flow; this force is similar to the thermal force on a body with a nonuniform 
surface temperature, e.g., in Ref. [7]. From Figure 7(a), it is expected that the 
direction of the force is weakly affected by the nonuniformness of the accom-
modation coefficient. 

4.4. Reciprocity Relations 

The reciprocity relations (27), (28), and (29) are numerically confirmed now. 
From (43) and (44), which are numerically obtained in Sections 4.1 and 4.2, we 
directly have  

( ) ( )CF HT 0R R= − =                      (45) 

irrespective of the parameters (19). We now examine the other two relations (28) 
and (29), which do not generally vanish, over the range of the parameters stated 
at the beginning of Section 4 except 0.5C = . From the numerical results, the 
relative difference between the left-hand and right-hand sides of (28) is less than 
1.0%; the relative difference between the left-hand and right-hand sides of (29) is 
less than 0.43%. In view of the accuracy tests in Section 3.3, these small differ-
ences are of the order of the numerical error. Therefore, we may conclude that 
the reciprocity relations (28) and (29) are numerically confirmed over the 
above-mentioned range of the parameters (19). It may be noted that the relative 
agreement in the nonvanishing equalities (28) and (29) is worse than the cor-
responding reciprocity equalities in the plane channel flows [17]. The reason 
may be attributed to the difficulty in obtaining accurate numerical solutions at 
small Knudsen numbers and a large radii ratio in the present paper (see the last 
paragraph in Section 3.3). 
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Figure 7. Distribution of the dimensionless tangential stress TCrPθ  and the normal 
component TCrQ  of the heat flow along the cylindrical surfaces in the thermal creep 
flow ( 1 21, 2, 0.5, 1, 0.25Kn R Cα α= = = = = ; cf. Figure 6(b)). Solid line in (a): 

2
TC TCˆ rr Pθ ∆ ; solid line in (b): TC TCˆ rrQ ∆ . Dotted line: the average at ˆ 1r =  and r̂ R= . 

See the caption of Figure 3.  
 

When the accommodation coefficient ( )α θ  is uniform or symmetric with 
respect to π , both sides of all the reciprocity relations (27), (28), and (29) va-
nish identically (Section 2.4). In this paper, therefore, we especially considered 
the nonuniform and asymmetric distribution of the accommodation coefficient 
to avoid the degeneracy of the reciprocity relations. As a result, we obtained 
nondegenerate relations (28) and (29), although the magnitude is small. Never-
theless, both sides of (27) vanish irrespective of the values of the parameters (19). 
Note that the meaning of the second equality in (45) is completely different from 
that in (32), (34), (36), and (37) in the conventional or symmetric case; the inte-
grands CFrQ  and HTrPθ  of CF  and HT  do not vanish identically nor do 
not have any antisymmetry with respect to θ  (cf. Figure 3(b) and Figure 5(a)). 
In the plane channel flow problem in Ref. [17], a degeneracy corresponding to 
(45) was found between plane Couette flow and plane heat transfer problems. To 
clarify whether a similar property holds also in the flows between coaxial cylind-
ers or not is one of the important goals of the present paper. The answer turned 
out to be affirmative. This result suggests that this degeneracy property may 
have a universality over a wider class of flows beyond the flows in a plane chan-
nel or an annulus. 

In rarefied gas dynamics, a phenomenon referred to as “nonexistence of 
one-way flow’’ is known [7]. Consider a rarefied gas in a straight pipe with an 
arbitrary cross section, an arbitrary uniform accommodation coefficient, and an 
arbitrary periodic surface temperature distribution in the longitudinal direction. 
Then, a flow is induced due to a rarefaction effect. However, net mass flow is 
never induced through the pipe. The degeneracy properties observed in the 
present paper show a similarity to this phenomenon, and there may be some re-
lation between them [17].  
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4.5. Torque on the Inner Cylinder and the Heat Flow Rate  
between the Cylinders 

The torque acting on the inner cylinder and the heat flow rate between the two 
cylinders in the three flow problems are presented here over a wide range of the 
parameters. In the rest of Section 4, the Knudsen number  

1 0 1D
KnKn

r r R
= =

− −
                     (46) 

based on the gap size 1 0r r−  is used to present the results, because it is conve-
nient to observe the similarity between the results for different radii ratios R. 
The normalized torque CF  of Couette flow is presented in Figure 8 as a func-
tion of DKn  for various values of R and C. Note that the parameter C 
represents the degree of asymmetry of the accommodation coefficient ( )α θ  
(see the explanation below (19)). The markers represent the numerical results. 
The torque is an increasing function of both the Knudsen number DKn  and the 
radii ratio R. The torque is, however, almost independent of the parameter C; a 
similar property was observed also in plane Couette flow [17]. The solid line 
represents the estimate formula proposed in Ref. [14]:  

( )CF CF1 CF21 ,η η= + −                   (47) 

where CF1  and CF2  are normalized torque in the conventional Couette flow 
problem with ( ) 1constα θ α= =  and ( ) 2constα θ α= = , respectively. The fac-
tor η  is the constant defined by  

( ) ( )2π
1 2 0

11 d .
2π

ηα η α α θ θ+ − = ∫              (48) 

For (2), 1 2η =  irrespective of C. The estimate formula approximates the nu-
merical results very well. 

Next, the normalized heat flow rate HT  between the cylinders (from the 
outer cylinder to the inner) in the heat transfer problem is presented in Figure 9. 
The heat flow rate is an increasing function of both DKn  and R. A very weak 
dependence on the parameter C is observed also in this heat flow rate. The solid 
line represents the estimate formula, i.e., the counterpart of (47). The estimate 
formula approximates the numerical results very well. 

Similarly, the normalized torque TC  and the heat flow rate TC  in the 
thermal creep flow are presented in Figure 10(a) and Figure 10(b), respectively. 
The torque TC  and the heat flow rate TC  vanish in the conventional case 
(Equation (35)). In other words, the nonzero values in Figure 10(a) and Figure 
10(b) are essentially due to the effect of nonuniform accommodation coefficient. 
(Note that the dotted lines in Figure 7(a) and Figure 7(b) are divided by 2π .) 
The torque and the heat flow rate increase with an increase in the Knudsen 
number. The dependence on the parameter C is perceptible. When C increases 
to approach 0.5, the torque TC−  decreases to vanish (Equation (37)), whereas 
the heat flow rate TC  increases and takes the maximum when 0.5C = . The 
estimate formula, the counterpart of (47), is omitted because it vanishes identi-
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cally. 

4.6. Force Acting on the Inner Cylinder 

Finally, the force acting on the inner cylinder in the three flow problems is pre-
sented in Figure 11. The figure shows the dimensionless magnitude ĴF  and 
the direction angle Jϑ  (J = CF, HT, and TC) of the force defined by  

( ) ( )1J 0 0 J J 2J 0 0 J J J
ˆ ˆcos , sin , 0.9π 1.1πF p r F F p r Fϑ ϑ ϑ= = − < ≤    (49) 

 

 
Figure 8. Normalized torque CF  acting on the inner cylinder as a function of ,DKn R , 
and C in Couette flow ( 1 20.5, 1α α= = ). Markers: numerical solutions; diamonds for 

1.2R = , circles for 2R = , and squares for 5R = ; closed symbols for 0.1C = , symbols 
with plus for 0.25C = , and open symbols for 0.5C =  (see the key in the figure). Solid 
line: estimate formula (47) for 1.2,2R = , and 5 from the bottom.  

 

 
Figure 9. Normalized heat flow rate HT  between the cylinders as a function of ,DKn R , 
and C in the heat transfer problem ( 1 20.5, 1α α= = ). Markers: numerical solutions (see 
the key in the figure). Solid line: estimate formula (cf. (47)) for 1.2,2R = , and 5 from the 
bottom.  
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Figure 10. Normalized torque TC  acting on the inner cylinder and the heat flow rate 

TC  between the cylinders as a function of ,DKn R , and C in the thermal creep flow 
( 1 20.5, 1α α= = ). (a) Normalized torque TC  and (b) the heat flow rate TC . Markers: 
numerical solution (see the key in the figure). The TC  vanishes when 0.5C =  (Equa-
tion (37)).  
 

 
Figure 11. Dimensionless force acting on the inner cylinder as a function of ,DKn R , and 

C ( 1 20.5, 1α α= = ). (a, b, c) The magnitude ĴF  and (d, e, f) the direction Jϑ  (Equa-

tion (49)). (a, d) Couette flow, (b, e) heat transfer problem, and (c, f) thermal creep 
flow. Markers: numerical solution (see the key in Figure 11(a)). Solid line in Figure 11(c) 
and Figure 11(f): estimate formula (cf. (47)) for 1.2,2R = , and 5 from the bottom.  
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as functions of the Knudsen number DKn . In the conventional Couette flow 
and the heat transfer problems, the flow is axially symmetric and, obviously, the 
inner cylinder is subject to no force. That is, the forces in these two problems, 
which are shown in Figures 11(a)-(e), arise essentially due to the effect of non-
uniform accommodation coefficient. The magnitude ĴF  is an increasing func-
tion of the Knudsen number DKn ; the dependence on the parameter C is per-
ceptible (Figure 11(a) and Figure 11(b)). In contrast, the direction Jϑ  is only 
weakly dependent on DKn  and R, and is determined almost solely by C. In 
Couette flow at 0.25C =  (Figure 11(d)), the direction is approximately 

CF π 4ϑ = , which agrees with the estimate given in the discussion on Figure 3(a). 
As C increases and approaches 0.5, the position θ  of the minimum of the ac-
commodation coefficient approaches π , and thus the direction CFϑ  of the 
force increases and approaches CF π 2ϑ =  (Equation (36)). The direction HTϑ  
in the heat transfer problem increases to approach zero from a negative value as 
C increases and approaches 0.5 (Equation (37)). This behavior may also be un-
derstood from Figure 4. 

In the thermal creep flow in Figure 11(c) and Figure 11(f), in contrast, the 
cylinder is subject to a force even in the conventional case. The influence of the 
nonuniform accommodation coefficient on the direction TCϑ  of the force is 
weak (Figure 11(f)), in agreement with the estimate in the discussion on Figure 
7(a). The direction TCϑ  is nearly equal to π , which is the direction in the 
conventional case (Equation (35)). The solid line represents the estimate formula 
corresponding to (47). The estimate formula approximates the numerical results 
very well. 

Couette flow considered in this paper is a simple model of micro lubrication 
between a journal and a bearing in which the journal is partially soiled or fabri-
cated with various materials. As shown in Figure 11, a force acting on the inner 
cylinder arises due to the effect of nonuniform surface properties of the journal. 
Note that the magnitude of the force is not weak. For example, the magnitude of 
the force is approximately 95% of the torque divided by the radius of the inner 
cylinder when 1, 1.2DKn R= = , and 0.25C = ; the magnitude of the force in-
creases as the clearance between the cylinders shrinks (or R decreases). This 
phenomenon poses a serious problem in micro engineering, because this force 
may cause an eccentricity of the journal and may affect the lubrication process. 
In this study, however, the model is not sufficiently good for some reasons, e.g., 
the inner cylinder is at rest, and the gap is not so narrow. A more realistic study 
focusing on the engineering applications, which is beyond the scope of this pa-
per, will be conducted in a separate paper. 

5. Conclusion  

In this paper, we studied the flows of a rarefied gas between coaxial circular cy-
linders with nonuniform surface properties on the basis of kinetic theory. We 
assumed that the outer cylinder is a diffuse reflection boundary and the inner 
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cylinder is a Maxwell-type boundary whose accommodation coefficient varies in 
the circumferential direction. Couette flow, the thermal creep flow, and the heat 
transfer problem were studied. The linearized ES-BGK model of the Boltzmann 
equation was numerically analyzed using the finite difference method. The 
time-independent behavior of the gas was studied over a wide range of the 
Knudsen number, radii ratio, and the parameter characterizing the distribution 
of the accommodation coefficient. Due to the effect of nonuniform surface 
properties, a local heat transfer between the gas and the cylindrical surface oc-
curs in Couette flow; a local tangential stress arises in the heat transfer problem. 
However, the total heat transfer between the two cylinders in Couette flow and 
the total torque acting on the inner cylinder in the heat transfer problem vanish 
irrespective of the flow parameters. Two nondegenerate reciprocity relations 
arise due to the effect of nonuniform surface properties. The reciprocity rela-
tions among the above-mentioned three flows were numerically confirmed over 
a wide range of the flow parameters. The force acting on the inner cylinder, 
which also arises due to the effect of nonuniform surface properties in Couette 
flow and the heat transfer problems, was studied in detail.  
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