
Open Journal of Fluid Dynamics, 2015, 5, 275-294 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/ojfd 
http://dx.doi.org/10.4236/ojfd.2015.54029      

How to cite this paper: Krishna, M.V. and Prakash, J. (2015) Hall Current Effects on Unsteady MHD Flow in a Rotating Par-
allel Plate Channel Bounded by Porous Bed on the Lower Half—Darcy Lapwood Model. Open Journal of Fluid Dynamics, 5, 
275-294. http://dx.doi.org/10.4236/ojfd.2015.54029  

 
 

Hall Current Effects on Unsteady MHD Flow 
in a Rotating Parallel Plate Channel 
Bounded by Porous Bed on the Lower 
Half—Darcy Lapwood Model 
M. Veera Krishna1, Jagdish Prakash2* 
1Department of Mathematics, Rayalaseema University, Kurnool, India 
2Department of Mathematics, University of Botswana, Gaborone, Botswana 

    
 
Received 14 July 2015; accepted 25 October 2015; published 28 October 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate 
channel bounded on one side by a porous bed under the influence of a uniform transverse mag-
netic field taking hall current into account. The perturbations are created by a constant pressure 
gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow 
in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equa-
tions are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the 
porous medium consist of steady state and transient state. The time required for the transient 
state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived 
analytically and also its behaviour is computationally discussed with reference to different flow 
parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically 
and their behaviour is computationally discussed. 
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1. Introduction 
Flow of a viscous fluid in rotating channels is of considerable importance due to the occurrence of various natu-
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ral phenomena and for its application in various technological situations which are governed by the action of 
Coriolis force. The broad subjects of oceanography, meteorology, atmospheric science and limnology all contain 
some important and essential features of rotating fluids. The viscous fluid flow problems in rotating medium 
under different conditions and configurations are investigated by many researchers in the past to analyze various 
aspects of the problem. The study of simultaneous effects of rotation and magnetic field on the fluid flow prob-
lems of a viscous incompressible electrically conducting fluid may find applications in the areas of geophysics, 
astrophysics and fluid engineering. An order of magnitude analysis shows that, in the basic field equations, the 
effects of Coriolis force are more significant as compared to that of inertial and viscous forces. Furthermore, it 
maybe noted that Coriolis and magnetohydrodynamic forces are comparable in magnitude and Coriolis force 
induces secondary flow in the flow-field.  

A large variety of processes of interest to industry and society involve the flow of fluids through porous me-
dia. Examples include the use of filtration to purify water and treat sewage, membranes to separate gases, the 
chemical reactors having porous catalysts supports. The mathematical modelling and simulation of the flow of 
fluids through porous media are important for designing and controlling a number of industrial processes in-
cluding the production of fluids from underground reservoir and remediation of underground water resources. 
The simulation of flow is carried out using constitutive and conservative relations based on a macroscopic rep-
resentation of porous media. There is a considerable interest in the recent years in the study of flow past a natu-
rally permeable bed, with appropriate boundary conditions at a naturally permeable boundary. The usual condi-
tions are: the normal flux is continuous and the tangential velocity is zero. The former is completely satisfactory 
but the latter is clearly only an approximation. As an alternative to these no-slip boundary conditions postulated 
for the first time (Beavers and Joseph [1]), the slip boundary condition which they had verified experimentally. 
The existence of the slip at the porous bed, due to the transfer of momentum from the free flow to Darcy flow 
which sets up the drag, is connected with presence of a very thin boundary layer of stream wise moving fluid 
just beneath the nominal surface of the permeable material. The fluid in this layer is pulled along by the flow in 
the channel. Although the experiments were performed by Beavers and Joseph to test the validity of the pro-
posed slip boundary conditions, owing to in adequate apparatus and instruments, the accuracy of experimental 
results was not sufficient to permit conclusive evaluation of the proposed analytical model although the exis-
tence of a slip velocity was confirmed qualitatively. 

Later experiments by Beavers, Sparrow and Magnuson [2], Taylor [3] and Rajashekara [4] further confirmed 
the existence of the slip at the nominal surface. Saffman [5] gave a rigorous theoretical proof for the existence of 
the slip at the nominal surface postulated by Beavers and Joseph [1]. Rajasekhar et al. [6] investigated a steady 
laminar flow of forced convection through a channel having on porous bounding wall. They have taken into ac-
count the velocity slip at the surface of the porous medium and the contribution of heat due to viscous dissipa-
tion. Although the slip at the nominal surface was established based on the extension of a thin boundary layer 
just beneath the nominal surface attention was not focused on the analytical determination of the boundary layer 
thickness. Later Chennabasappa and Ramanna [7] discussed the effect of the thickness of the porous material on 
the parallel plate channel. Valanis and Sun [8] investigated the Poiseuille flow of fluid with couple stress with 
Applications to blood flow. Claire Jacobs [9] explained the transient motions produced by disks oscillating 
about a state of rigid rotation. Debnath [10] gave the exact solutions of the unsteady hydrodynamic and hydro 
magnetic boundary layer equations in a rotating fluid system. Blood flow through narrow tube with periodic 
body acceleration in the presence of magnetic field and its applications to cardiovascular diseases was discussed 
by Rani [11]. Also Rathod et al. [12] discussed blood flow through stenosed inclined tubes with periodic body 
acceleration in the presence of magnetic field and its applications to cardiovascular diseases. Rajasekhara [4] has 
performed the experiments to study the laminar flow characteristics in a composite channel considering 
Poiseuille flow, Couette flow and free surface flow. The aim of his experimental study was to determine the 
values of the slip parameter lower than that of Beavers & Joseph [1]. Such lower values are of importance in the 
design of porous bearings. Auxiliary experiments were also conducted to measure the values of k, the perme-
ability of the porous medium. His experiments showed that for aparticular porous materials namely natural sand 
α = 0.01 as compared with α = 0.1 of Beavers & Joseph [1] for foametal, and is independent of the depth of flow 
above bed. His experimental results were found to be in fair agreement with the analytical model which contains 
slip velocity at the permeable surface, except the mass flow rate which shows a slight deviation between ex-
perimental and theoretical data. Rudraiah and Veerabhadraiah [13] have pointed out that this deviation may be 
due to the neglecting of buoyancy force. Rao and Krishna [14] discussed the Hall effects on free and forced 
convective flow in a rotating channel. Rao et al. [15] investigated the Hall effects on the Stokes and Ekman 
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problems in Magneto Hydro Dynamics. Sarojamma and Krishna [16] studied transient hydromagnetic convec-
tive flow in a rotating channel with porous boundaries. Later Sasthry [17] studied the effect of the thickness of 
the porous lining on one side of the plate flow through a rotating parallel plate channel. And he discussed the 
flow in a rotating parallel plate channel with porous lining on both sides. Siva Prasad [18] discussed convection 
flows through planar channels in Magneto Hydro Dynamics. 

Recently M. V. Krishna et al. [19] discussed the unsteady flow of an incompressible viscous fluid in a rotat-
ing parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse 
magnetic field making use of Darcy Lapwood model. D. V. Krishna et al. [20] discussed the unsteady hydro-
magnetic flow of an incompressible viscous fluid in a rotating parallel plate channel with porous lining under 
theinfluence of uniform transverse magnetic field normal to the channel and it was extended by M.V. Krishna et 
al. [21]. M. V. Krishna et al. [22] studied the steady hydro magnetic flow of a couple stress fluid through a 
composite medium in a rotating parallel plate channel with porous bed on the lower half subjected to subjected 
to normal to the channel and extended the problem taking hall current into account by M. V. Krishna et al. [23]. 
M. V. Krishna and S. G. Malashetty [24] discussed the unsteady flow of an in compressible electrically con-
ducting second grade fluid in rigidly rotating parallel plate channel bounded below by a sparsely packed por-
ousbed subjected to normal to the channel and extended the problem taking hall current into account by M. 
Veera Krishna and S. G. Malashetty [25]. Mention may be made of the research studies of Greenspan and How-
ard [26], Holton [27], Walin [28], Siegman [29], Puri [30], Puri and Kulshrestha [31], Mazumder [32], Ganapa-
thy [33], Hayat and Hutter [34] and Hayat et al. [35] on MHD flows through rotating channels. 

Motivated in view of the above discussions, in this paper, we discuss the unsteady flow of an incompressible 
viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a 
uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant 
pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the 
clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on 
Darcy-Lapwood model. 

2. Formulation and Solution of the Problem 
We consider the unsteady flow of an in compressible viscous fluid in a rotating parallel plate channel bounded 
on one side by a porous bed subjected to a uniform transverse magnetic field normal to the channel. In the initial 
undisturbed state both the plates and the fluid rotate with the same angular velocity Ω . At t > 0 the fluid is 
driven by a constant pressure gradient parallel to the channel walls and in addition the upper plate perform non- 
torsional oscillations in its own plane. 

We choose a Cartesian system O(x,y,z) such that the boundary walls are at z = 0 and z = l. Z-axis being the 
axis of rotation of the plates. The fluid medium consists of two zones namely zone 1and zone 2. Zone 1 consists 
of clean fluid governed by Navier-Stokes equations and zone 2 corresponds to the flow through porous bed go-
verned by Darcy-Lapwood equations. At the interface the fluid satisfies the continuity condition of velocity and 
shear stress. The unsteady hydromagnetic equations governing the incompressible viscous fluid in zone 1 under 
the influence of transverse magnetic field with reference to a frame rotating with a constant angular velocity Ω  
are 
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where (u, v) and (up, vp) are velocity components along O(x, y) directions respectively. ρ the density of the fluid , 
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σ  the conductivity of the medium, µe the magnetic permeability, ν  the coefficient of kinematic viscosity, 
effν  the coefficient of effective kinematic viscosity, k the permeability of the medium, oH  is the applied mag-

netic field and δ  is the porosity. Since the plates extends to infinity along x and y directions, all the physical 
quantities except the pressure depend on z and t alone. Hence u, v and up, vp are function of z and t alone and 
hence the respective equations of continuity are trivially satisfied. When the strength of the magnetic field is 
very large, the generalized Ohm’s law is modified to include the Hall current, so that 

( )
0

e e
eJ J H E q H

H
ω τ

σ µ+ × = + ×                               (2.5) 

where q is the velocity vector, H is the magnetic field intensity vector, E is the electric field, J is the current density 
vector, eω  is the cyclotron frequency, eτ  is the electron collision time, σ  is the fluid conductivity and eµ  
is the magnetic permeability. In Equation (2.5) the electron pressure gradient, the ion-slip and thermo-electric 
effects are neglected. We also assume that the electric field E = 0 under assumptions reduces to 

0x y eJ mJ H vσµ+ =                                     (2.6) 

0y x eJ mJ H uσµ− = −                                    (2.7) 

where e em ω τ=  is the hall parameter.  
On solving Equations (2.6) and (2.7) we obtain 

( )0
21

e
x

H
J v mu

m
σµ

= +
+

                                   (2.8) 

( )0
21

e
y

H
J mv u

m
σµ

= −
+

                                   (2.9) 

and similarly we obtain 
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Using the Equations (2.8) and (2.9) the equations of the motion with reference to rotating frame zone 1 are 
given by 

( ) ( )
2 22
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The Darcy-Lapwood equations governing the flow through porous medium with respect to the rotating frame 
zone 2 are given by  

( ) ( )
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Let , , .p p pq u iv x iy  q u ivξ= + = − = +  
Now combining Equations (2.12) and (2.13), we obtain 
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and combining Equations (2.14) and (2.15) , we obtain 

( ) ( )
2 2

0
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1 12 1
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                   (2.17) 

The boundary and initial conditions are 

e e ,i t i tq a b z lω ω−= + =                                  (2.18) 

0, 0, 0pq t z= ≠ =                                    (2.19) 

0, 0, 0, for allpq q t z= = =                              (2.20) 

At the interface we allow slip governed by Beaver-Joseph condition 
(Dimensional form) 

( )1 2 atB p
q D q q z h
z

α −∂
= − =

∂
                            (2.21) 

where Bq  is the slip velocity and α  is the non-dimensional number (slip parameter). Also at the interface, 
, atBq q z h= =                                   (2.22) 

We introduce the following non dimensional variables are 
2 2

* * * * * * * * *
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Introducing these non-dimensional variables, the governing non-dimensional equations are (dropping the as-
terisks) 
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where, 
2 2 2

2 0e H l
M
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=  is the Hartmann number, 
2
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− =  is the Inverse Darcy Parameter, 2E
l
ν

=
Ω
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Ekman number, e em ω τ=  is the hall parameter, pP
ξ
∂
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∂

 is the applied pressure gradient 

The corresponding non-dimensional boundary and initial conditions are 

e e , 1i t i tq a b zω ω−= + =                                 (2.25) 

0, 0, 0pq t z= ≠ =                                   (2.26) 

0, 0, 0, for allpq q t z= = ≤                              (2.27) 

The Beaver-Joseph condition reduces to 

( )1 2 ,B p
q D q q z h
z

α −∂
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The interfacial condition is 
,Bq q z h= =                                     (2.29) 

Taking Laplace transforms of Equations (2.23) and (2.24) using initial condition (2.27) the governing equa-
tions in terms of the transformed variable reduces to 
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The relevant transformed boundary condition is 
a bq

s iω s iω
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− +
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The transformed Beavers-Joseph Condition and relevant boundary conditions are 
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Solving Equation (2.30) subjected to the condition (2.31), we get 
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From Equation (2.32) 
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and from (2.34) 
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Equating Equations (2.37) and Beaver-Joseph condition (2.33) using (2.36) we get 
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From interfacial conditions (2.29) and (2.38) reduces to 
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Solving Equations (2.35) and (2.39) we obtain, 
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and 
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Taking inverse Laplace transforms to the Equations (2.36), (2.40) and (2.41), we obtain 
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             (2.44) 

The shear stresses on the upper plate and lower plate are given by 

1

d
dU

z

q
z

τ
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 

 and d
dL

z h

q
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We also determine the mass flux by the formula, 
1

2 2d , . ., Mass fluxx y x y
h

Q iQ q z i e Q Q Q+ = = = +∫  

3. Results and Discussion 
The porous bed is bounded by the lower plate in the rotating channel which executes non-torsional oscillations. 
The clean fluid region (zone 1) is governed by the Navier-Stokes equations and is bounded by the upper plate of 
the channel at rest relative to the rotating frame. The governing Darcy-Lapwood model equation in the porous 
medium being linear cannot satisfy more than one condition. Hence for compatibility we introduce an interfacial 
condition namely the Beavers-Joseph condition (B-J Condition) which allows the fluid to slip with velocity qB at 
the interface. We combine the equations in both clean fluid region as well as the porous region. The equation 
governing the flow in the clean fluid region (zone 1) reduced to a second order partial differential equation for 
the dependent variable q u iv= + , which is solved by using Laplace transform method. The equation governing 
the flow in porous bed (zone 2) is a first order differential equation for the dependent variable p p pq u iv= + , 
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which reduces to an algebraic equation on taking the Laplace transform. On taking the inverse Laplace trans- 
form the solution for the combined velocity q consists of the steady state terms, the quasi steady state terms and  

the transient terms which ultimately decay in times 
1 2 1 4 1
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.  

Once the transient terms decay the expression corresponding steady and oscillatory flows are given by 
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The transient term in qp decay at time 
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The ultimate Darcy velocity qp in the porous bed after the decay of the transient term is  
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The slip velocity qB has been calculated using B-J condition (2.33) and is governed by the expression 
(2.44).The velocity profiles for u and v in the clean fluid region have been drawn Figures 1-16 for the variations 
in the governing parameters and fixing the other parameters ( )1, 1, 0.3, 0.5, 1.2, π 4a b δ α β ω= = = = = = . 
Figures 1-4 corresponds to these profiles for the thickness of porous bed is small while Figures 5-8 corresponds 
to these profiles when the thickness of the porous bed is large. We notice that u enhances with E or m and re-
duces with M or D−1 in either case of smaller and larger thickness of porous bed (Figures 1-8). The magnitude 
of the velocity component v enhances with E but reduces with M, m and D−1 in either cases of smaller and larger 
thickness of porous bed (Figures 9-16). The resultant velocity however enhances with E and m and reduces with 
M and D−1 irrespective of the thickness of the porous bed and is always directed away from the central axis of 
the channel with phase difference greater than 7π 4  from the direction of the imposed pressure gradient tabu-
lated. The slip velocities uB and vB have been calculated at tabulated in the Table 1 and Table 2 for the different 
variations in the governing parameters. The slip velocity uB enhances with its magnitude with increasing in E, m, 
M and D−1 for the smaller and larger thickness of porous bed (Table 1). The slip velocity vB enhances with its 
magnitude increase in E or m while reduces with increases in M (or) D−1 for the irrespective thickness of porous 
bed (Table 2). 

The shear stresses of the upper and lower plate are evaluated and tabulated in Tables 3-6. Table 3 indicates 
xτ  for variations in the governing parameters in case of smaller and larger thickness of the porous bed. Table 4 

represents to these variations for yτ  for the upper plate. We find that xτ  and yτ  reduces with E or m irres-
pective of thickness (0.2 & 0.5), and an increasing in M or D−1 enhances xτ  and yτ  reduces irrespective of 
thickness (0.2 & 0.5). On the lower plate Table 5 indicates that for variations in governing parameters in case of 
smaller and larger thickness of porous bed for xτ  and the Table 6 represent to these variations for yτ . We notice 
that an increase E, m, M or D−1 enhances xτ  however yτ  reduces with increase in M or D−1 enhances with in-
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crease in E or m. This is true in either case of smaller and larger thickness of porous bed (Table 5 & Table 6). 
The Table 7 corresponds to the behaviour of mass flux and we notice that which increases with E or m but re-
duces with increase in M or D−1 in either case of the thickness of porous bed. 

4. Graphs and Tables 
4.1. Velocity Profiles for u & v When the Thickness of the Porous Bed (h = 0.2) Is Small 

 
Figure 1. The velocity profile for u against E with M = 2, 
D−1 = 1000, m = 1.                                           

 

 
Figure 2. The velocity profile for v against E with M = 2, 
D−1 = 1000, m = 1.                                           

 

 
Figure 3. The velocity profile for u against M with E = 
0.01, D−1 = 1000, m = 1.                                          

 

 
Figure 4. The velocity profile for v against M with E = 
0.01, D−1 = 1000, m = 1.                                            
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Figure 5. The velocity profile for u against D−1 with E = 0.01, M = 2, 
m = 1.                                                                   

 

 
Figure 6. The velocity profile for v against D−1 with E = 0.01, M = 2, 
m = 1.                                                                   

 

 
Figure 7. The velocity profile for u against m with E = 0.01, M = 2, 
D−1 = 1000.                                                                   

 

 
Figure 8. The velocity profile for v against m with E = 0.01, M = 2, 
D−1 = 1000.                                                                   
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4.2. Velocity Profiles for u & v When the Thickness of the Porous Bed (h = 0.5) Is Large 

 
Figure 9. The velocity profile for u against E with M = 2, D−1 = 
1000, m = 1.                                                                   

 

 
Figure 10. The velocity profile for v against E with M = 2, D−1 = 
1000, m = 1.                                                                   

 

 
Figure 11. The velocity profile for u against M with E = 0.01, 
D−1 = 1000, m = 1.                                                                   

 

 
Figure 12. The velocity profile for v against M with E = 0.01, 
D−1 = 1000, m = 1.                                                                   
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Figure 13. The velocity profile for u against D−1 with E = 0.01, 
M = 2, m = 1.                                                                   

 

 
Figure 14. The velocity profile for v against D−1 with E = 0.01, 
M = 2, m = 1.                                                                   

 

 
Figure 15. The velocity profile for u against m with E = 0.01, 
M = 2, D−1 = 1000.                                                                   

 

 
Figure 16. The velocity profile for v against m with E = 0.01, 
M = 2, D−1 = 1000.                                                                   
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Table 1. The slip velocity uB.                                                                                                                                     

h I II III IV V VI VII VIII IX 

0.2 0.12252 0.15228 0.18856 0.1133 0.0633 0.1245 0.0688 0.2002 0.2265 

0.5 0.28554 0.33225 0.38856 0.2402 0.2125 0.2568 0.2245 0.3522 0.4526 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

 
Table 2. The slip velocity vB.                                                                                                                                     

h I II III IV V VI VII VIII IX 

0.2 −0.0842 −0.0912 −0.1065 −0.0811 −0.0744 −0.072 −0.065 −0.1022 −0.1062 

0.5 −0.1156 −0.1339 −0.1652 −0.1109 −0.1028 −0.1058 −0.1025 −0.1339 −0.1652 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

 
Table 3. The shear stress ( )xτ  on the upper plate.                                                                   

h I II III IV V VI VII VIII IX 

0.2 2.49444 1.49775 0.77973 3.96435 4.38864 3.54346 5.71434 1.25563 1.02256 

0.5 2.49512 1.58992 0.79145 3.45126 4.12855 3.57835 5.82945 1.28596 1.05266 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

 
Table 4. The shear stress ( )yτ  on the upper plate.                                                                   

h I II III IV V VI VII VIII IX 

0.2 −0.5224 −0.4209 −0.3665 −0.6985 −0.7854 −0.8544 −1.2232 −0.3556 −0.1445 

0.5 −0.6878 −0.5988 −0.4874 −0.7488 −0.8556 −9.2565 −2.0013 −0.4745 −0.3568 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 
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Table 5. The shear stress ( )xτ  on the lower plate.                                                                   

h I II III IV V VI VII VIII IX 

0.2 0.12545 0.21455 0.32256 0.25564 0.36652 0.366562 0.65589 0.25546 0.45585 

0.5 0.35524 0.48875 0.63025 0.52246 0.75548 0.996656 1.22132 0.62552 0.85507 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

 
Table 6. The shear stress ( )yτ  on the lower plate.                                                                   

h I II III IV V VI VII VIII IX 

0.2 −0.0654 −0.0855 −0.1245 −0.0352 −0.0144 −0.0254 −0.0052 −0.0854 −0.1526 

0.5 −0.0858 −0.1425 −0.1988 −0.0698 −0.0351 −0.0452 −0.0114 −0.1895 −0.2668 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

 
Table 7. The mass flux (Q).                                                                                      

h I II III IV V VI VII VIII IX 

0.2 2.54478 2.96658 3.45589 2.35526 2.14105 2.10206 1.88693 2.84454 3.12256 

0.5 3.61155 4.65547 5.98856 3.00254 2.84475 2.52604 1.66256 3.85982 4.33209 

 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D−1 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

5. Conclusions 
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded 
on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into 
account. The conclusions are made as the following: 
1) The slip velocity qB has been calculated using B-J condition. The slip velocity uB enhances with its magni-

tude with increasing in E, M and D−1 for the smaller and larger thickness of porous bed. The slip velocity vB 
enhances with its magnitude increase in E or m while reduces with increases in M (or) D−1 for the irrespec-
tive thickness of porous bed. 

2) The magnitude of the velocity component u enhances with E or m and reduces with M or D−1 in either case 
of smaller and larger thickness of porous bed.  

3) The magnitude of the velocity component v enhances with E but reduces with M, m and D−1 in either cases 
of smaller and larger thickness of porous bed.  

4) The resultant velocity however enhances with E and m and reduces with M and D−1 irrespective of the 
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thickness of the porous bed and is always directed away from the central axis of the channel with phase dif-
ference greater than 7π 4  from the direction of the imposed pressure gradient.  

5) The magnitude of the stresses xτ  and yτ  reduces with E or m irrespective of thickness and an increasing 
in M or D−1 enhances xτ  and yτ  reduces irrespective of thickness on the lower plate for variations in go-
verning parameters. 

6) An increase E, M or D−1 enhances xτ  however yτ  reduces with increase in M or D−1 enhances with in-
crease in E. This is true in either case of smaller and larger thickness of porous bed.  

7) The behaviour of mass flux and we notice that which increases with E or m but reduces with increase in M or 
D−1 in either case of the thickness of porous bed. 
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