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ABSTRACT 

In this study, the magnetohydrodynamic (MHD) flow through a circular pipe under the influence of a transverse mag- 
netic field when the outside medium is also electrically conducting is solved numerically by using FEM-BEM coupling 
approach. The coupled partial differential equations defined for the interior medium are transformed into homogenous 
modified Helmholtz equations. For the exterior medium on an infinite region, the Laplace equation is considered for the 
exterior magnetic field. Unknowns in the equations are also related with the corresponding Dirichlet and Neumann type 
coupled boundary conditions. Unknown values of the magnetic field on the boundary and for the exterior region are 
obtained by using BEM, and the unknown velocity and magnetic field inside the pipe are obtained by using SUPG type 
stabilized FEM. Computations are carried for very high values of magnetic Reynolds numbers Rm1, Reynolds number 
Re and magnetic pressure Rh of the fluid. The results show that using stabilized method enables us to get stable and 
accurate numerical approximations consistent with the physical configuration of the problem over rough mesh which 
also results a cheap computational cost. 
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1. Introduction 

The objective of this work is to present MHD pipe flow 
of circular cross-section under the influence of a trans- 
verse magnetic field numerically by using FEM-BEM 
coupling approach when the outside medium is also elec- 
trically conducting. It is already known that there are 
many applications of MHD pipe flow such as the design 
of the cooling systems with liquid metals for nuclear re- 
actors, electromagnetic pumps, MHD generators, and 
flowmeters measuring blood pressure, etc. The exact 
solution of the problem can be obtained only for some 
special cases [1,2]. Therefore, there are many numerical 
methods applied to the solution of the MHD pipe flow 
(see [3-9] and references there in). 

The boundary element method is a technique which 
offers a great advantage to analyze stationary problems 
especially with infinite domains [10]. BEM has the ad- 
vantage of discretizing only the pipe wall and gives the 
solution both in the exterior and interior regions at any 
point. Due to the regularity conditions, it is possible to 
limit the discretization to a finite boundary. 

The finite element method is one of the most prefer- 
able numerical method applied to the solution of many  

physical and engineering problems. Applications of the 
finite element method to MHD problems are already per- 
formed by many researchers [11-14]. But, in standard 
Galerkin formulations, there exist numerical instabilities 
for the high Hartmann number value cases. It is possible 
to eliminate these, either using finer mesh which in- 
creases the computational cost, or considering stabilized 
finite element methods [15-18]. One of the most popular 
of such numerical methods is referred as the streamline 
upwind Petrov-Galerkin (SUPG) method [19]. The finite 
element method of the SUPG type reduces the oscilla- 
tions in the standard Galerkin method and achieves sta- 
bility by adding mesh-dependent perturbation terms to 
the formulation. These terms enhance the coercivity of 
the formulation by acting like artificial diffusion in the 
direction of the flow. 

The present paper deals with the solution of the ge- 
neral MHD problem inside of a pipe when the surround- 
ing medium is also electrically conducting, and has small 
magnetization compared to the fluid inside the pipe. The 
flow is assumed as incompressible and viscous, and the 
fluid inside the pipe is electrically conducting. The 
outside medium has also electrical conductivity which 
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is small compared to fluid. However, the continuity of 
both induced magnetic fields inside and outside of the 
pipe is maintained through the conducting wall of the 
pipe. Therefore, this problem is a generalization of the 
special cases of MHD flow through a pipe. Thus, we 
consider in this paper, the most general case of MHD 
flow in a pipe which has electrically conducting wall 
with the same conductivity of outside infinite medium. 
This way, partial differential equations defined inside the 
pipe and outside infinite region are solved simultane- 
ously with the coupled induced current conditions on the 
pipe wall. Equations defined inside the pipe are decoupl- 
ed and transformed to homogenous modified Helmholtz 
equations for which the BEM formulations are given 
with fundamental solution  0K x . BEM formulation in 
the exterior region is carried with the logarithmic fund- 
amental solution of Laplace equation. Using this formu- 
lation, unknown magnetic field values are obtained on 
the boundary of the pipe. 

The paper is organized as follows: In Section 2, we 
describe the mathematical modelling of the equations. 
BEM and FEM coupling numerical solution procedure is 
presented in Section 3. Application of the prescribed 
algorithm is discussed in Section 4 by presenting some 
numerical experiments obtained from different values of 
magnetic Reynolds numbers 1 , Reynolds number 

 and magnetic pressure  of the fluid. Conclu- 
sions are drawn in Section 5. 

Rm
RhRe

2. Mathematical Model 

The MHD flow is governed by a set of coupled PDE’s 
obtained from Navier-Stokes equations for conducting 
fluids, and Maxwell’s equations for electromagnetic field 
through Ohm’s law. We consider MHD flow in a straight 
pipe (channel, duct) of sufficient length, and of cross- 
section a circle in the xy -plane. The fluid is flowing 
through the pipe due to an applied constant pressure gra- 

dient 
p

z




, and is viscous, incompressible, electrically  

conducting. The electrical permitivity and magnetic per- 
meability of the fluid are assumed to be close to those of 
the external space. The axis of the pipe is coincident with 
the z-axis, and the y-axis is parallel with the magnetic 
induction at infinity. Thus, externally applied magnetic 
field with an intensity 0  is assumed to be in - 
direction. It determines the appearance within the fluid of 
an induced magnetic field (induced current). We assume 
that the wall of the pipe and the outside medium are also 
electrically conducting having the same electrical con- 
ductivity and magnetic permeability since the thickness 
of pipe wall is assumed to be very small (Figure 1). 

B y

Thus, the non-dimensional form of the equations to be 
solved inside the pipe and its exterior are [20,21] 

  

Figure 1. Problem definition (left) and discretization of the 
domain (pipe and external region) (left). 
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with the no-slip condition on the pipe wall 

0 on inV                     (3) 

and continuity conditions for the induced magnetic fields 
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where  and n n  are unit outward normals on   for 
the regions in  and ext , respectively. 1  and Rm2  
are the magnetic Reynolds numbers inside the pipe and 
in external medium. 

Rm

MHD Equation (1) are decoupled first by denoting  

1V V  and 1

ReRh
B B

M
 , where 1M ReRhRm  is  

the Hartmann number of the fluid, the system (1) be- 
comes [1,20] 
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As a further transformation, define new variables 
 1 ,U x y  and  2 ,U x y

U V

 as 

1 1

2 1

B

U V B

  1

1 
                    (8) 

in order to decouple the Equations (7) as 
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For obtaining homogeneous equations, let’s define 
 1 ,W x y  and  2 ,W x y  

1 1

2 2

1

1
W U y

W U y
M

M

 
                (10) 

which result in 
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Finally, the transformation with 
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             (12) 

here 2k M , reduces the equ
ous modified Helmholtz equatio

ations to two homo- 
gene ns 

2 2
1 1

2 2 0.

u k u

u k u

  

  
 

2 2

            (15) 

with the boundary conditions (4)-(6) on  which are 
also transformed in terms of new variable

0          

0
              (13) 

Now, the system of Equations (1) and (2) are trans- 
formed to 

2 2
1 1

2 2
2 2

0

0
in
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
s [21] 
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3. FEM-BEM Coupling 

Using the Equations (14)-(15) with the boun
ditions (16)-(18), it is possible to obtain  

dary con- 

1 2
1 2

Bu u
, , , , , ext

extu u
 

he boundary of the pipe  

exterior values 
of again using BEM
th own values  and at any point inside the 

B
n n n  

 on t

wall using boundary element method only discretizing 
the boundary. After calculating these unknown values on 
the boundary, one can also able to obtain 

extB  
e unkn

. It is also possible to calculate 
V B  

pipe as done in [21]. 
However, for the large values of 1Rm , Re  or Rh  

which increase the value of the Hartmann number M , 

BEM solutions obtained using less number of discreti- 
zation points brings some num ical instabilities because 
of the convection dom

er
inated behavior of the Equation (1). 

Th olve ove se

ization, transformed 
fo

erefore, these equations should be s d r coar  
mesh using stabilization technique. 

One of the well-known stabilization method is stream- 
line upwind Petrov-Galerkin (SUPG) finite element me- 
thod [19] which is applicable for the convection domi- 
nated case of the convection diffusion type equations. 

In order to apply SUPG stabil
rm of the equations 
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with the boundary conditions 

1 1 2 1and onU B U B     

are used. The weak formulation of the p oblem (9) can be 
stated as [22]: Find 

r
 21

1 2 0,U U V H    such that 

   

   2
2 , ,

U
U v M


     

1
1, ,

U
U v M v

 
     1,

, .

1,

v
y

v v
y

    

    

   (19) 

To introduce a finite element method, we begin by 
partitioning the domain into triangular elements in a 
standard way (e.g. no overlapping, no vertex on 
of a neighboring elements, etc.) and let  be such a 
partition of 

v V


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h
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w
nsional s h

hich is related to the choice of partition and satisfies 

hV V . Now the Galerkin finite element formulation of 
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h h

M

Finally, if we insert the stabilization terms to the 
formulation, the SUPG type stabilized FEM variational
formulation is written as [18,19]: find 
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with the stabilization parameter h hv V   

2
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where Kh  is the diameter of the element K ,  

6
K

K

Mh
Pe   is the Peclet number. It is seen from t  

formulation that the SUPG method is computationally 
cheap an t is also very 
effective way solutions 
for convection dominated problems. 

4. Numerical Results 

We consider a long pipe of circle cross-section defined 
f  

regi
stant 

ob- 
tion in order t un- 
ary are solv  the 

uations obtained f

on

2, fo es 

ly are almost equal. Therefore, only the high values of 
the 1Rm , Re  and Rh = 10 are presented. From Figure 

r the valu 1 1000Rm  , 
10, it is seen that, although induced m

2 1Rm  , 

d practically easy to implement. I
 of obtaining numerically stable 

by   2 2: 1x y x y  . The boundary o the circular,
on in 2IR  is discr

bounda

r DGESV and eq
n for the unknown 

sing

etized by using 64N   con- 
ry elements on which the node is at the 

center. Also, in order to calculate unknown on internal 
and external region, 316 points (corresponding to 694 
triangular elements) inside the pipe and 720 points 
(corresponding 1408 triangular elements) are used 
(Figure 1). Discretized system of linear equations 

o obtain 
ed by using

K whic

tained from BEM formula
known values at the bound
solve rom FEM formu- 
latio values inside the pipe region are 
solved by u  the sparse solver UMFPAC h are 
LAPACK driver routines from Netlib library. The be- 
haviors of the velocity of the fluid and inside and outside 
induced currents (induced magnetic fields) are visualized 
in terms of contour plots for very high values of mag- 
netic Reynolds numbers 1Rm , Reynolds number Re  
and magnetic pressure number Rh  of the fluid. 

Before we present numerical results, let’s define the 
notations; Labels “F-BEM”, “BEM” and “Ref” refers to 
solutions FEM and BEM Coupling, BEM only and 
Reference solutions, respectively. As a Reference solu- 
tion, we take the solution of the same problem over very 
fine mesh. 

For the small values of the Hartmann number, both 
solution obtained either FEM-BEM Coupling or BEM

Re = 1 and Rh = 
agnetic field 

(induced current) solution are almost same and smooth, 
for the velocity values, there are some numerical in- 
stabilities in the solutions obtained from BEM only me- 
thod which are source from the convection dominated 
behavior of the Equations (21). However, FEM-BEM 
coupling solution technique eliminates these disturbances 
and shows the well-known characteristic of the MHD 
flow that is the existence of the boundary layer formation 
as Hartmann number getting large. 

Figure 3 shows equal velocity and induced current 
lines, respectively, for very large value of Reynolds 
number Re = 100 when Rm1 = 100, Rm2 = 1 and Rh = 10. 
It seen from that, the effect of the stabilization in FEM- 
BEM Coupling is also seen from the induced current 
solution additional to the velocity solutions. The similar 
behaviour is also seen for the high value of the magnetic 
pressure number Rh = 100 from Figure 4. The accuracy 
of the FEM-BEM Coupling approach to BEM only is 
also displayed in terms of the maximum values of the 
velocity and induced currents by comparing with the 
Reference solution (Table 1). It is known that, for large 
values of the parameters, the problem has unstable 
numerical results especially in maximum and minimum 
values. This is also seen from the table that BEM solu- 
tions give higher maximum values compared to reference 
solution. 

5. Conclusion 

We consider a FEM-BEM coupling approach for the 
approximate solution of the MHD flow through a circular 
pipe under the influence of a transverse magnetic field 
when the outside medium is also electrically conducting. 
Coupled equations with coupled boundary conditions are 
solved first on the boundary of the pipe by transforming 
the modified Helmholtz equations and Laplace equation. 
Then, velocity and induced magnetic field inside the pipe 
are calculated by considering SUPG typed stabilized 
finite element method, and induced magnetic on the 
external region is calculated with constant boundary ele- 

le 1  values of the velocity and induced current. 

ity Induced Current 

 
Tab . Comparison maximum

Parameters Veloc

1Rm  Re  Rh  F-BEM BEM Ref F-BEM BEM Ref 

1000 1 10 0.0089 0.0096 0.0091 0.078 0.091 0.085 

100 100 10 0.0022 0.0028 0.0016 0.0008 0.001 0.0009 

100 1 100 0.0052 0.0058 0.0052 0.0081 0.0091 0.0087 
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ty] [Veloci

      
[Induced currents] 

Figure 2. F-BEM (left) and BEM (right) contours for Rm1 = 1000, Rm2 = 1, Re = 1, Rh = 10. 
 

      
[Velocity] 
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[Induced currents] 

Figure 3. F-BEM (left) and BEM (right) contours for Rm1 = 100, Rm2 = 1, Re = 100, Rh = 10. 
 

      

Figure 4. F-BEM (left) and BEM (right) velocity contours for Rm1 = 100, Rm2 = 1, Re = 1, Rh = 100. 
 
ment method due to the regularity conditions at infinity. 
Obtained solutions show the accuracy and efficiency of 
the proposed numerical scheme for the high values of the 
Hartmann number. Stabilized FEM-BEM Coupling ap- 
proach is very effective not only in removing disturb- 
ances in numerical solutions but also in the maximum 
and minimum values of the unknowns. 
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