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ABSTRACT 

This paper examines a boundary layer flow over a continuously moving heated flat surface with velocity  U x  in a 

streaming flow with velocity  and with temperature dependent viscosity,  U x  T . The momentum and the en- 

ergy equations are coupled through the viscous dissipation term. The coupled boundary layer equations are transformed 
into a self-similar form using an appropriate similarity variable. An efficient numerical technique is used to solve the 
self-similar boundary layer equations. It is shown that at low enough values for the velocity ratio  , an increase in 

viscous dissipation enhances greatly the local heat transfer leading to temperature overshoots adjacent to the wall. The 
viscosity variation parameter is shown to have significant effects on the temperature dependent viscosity and the veloc-
ity and temperature distribution within the boundary layer. 
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1. Introduction 

Studies on heat and mass transfer in boundary layers over 
continuously moving or stretching surfaces have been in- 
creasing due to their wide variety of applications in 
manufacturing processes such as glass-fibre production, 
metal extrusion, materials-handling conveyors and paper 
production. 

One of the earliest studies on boundary-layer flow past 
moving surfaces was initiated by Sakiadis [1], who in- 
vestigated momentum transfer for a flow over a con- 
tinuously moving plate in quiescent fluid. The results of 
Sakiadis were later verified experimentally by Tsou et al. 
[2]. Over recent years studies of boundary layer past mo- 
ving or stretching surfaces in otherwise quiescent fluids 
included the work of Ali [3] who investigated similarity 
solutions for a thermal boundary layer over a power-law 
stretching surface with suction or injection; Elbashbeshy 
[4] who studied heat transfer over a stretching surface 
with suction or injection; Magyari and Keller [5] who 
studied similarity solutions for boundary layer flow over 
an exponentially stretching surface and Mureithi [6] who 
examined linear stability properties of a boundary layer 
flow over a moving surface in a streaming flow. 

Studies on free-stream effects on boundary-layer flows 

over moving or stretching surfaces included the work of 
Abdelhafez [7] and Chappidi and Gunnerson [8] who 
independently considered flows over moving surfaces in 
which both the surface and the free stream moved in the 
same direction. In their studies, they formulated two sets 
of boundary value problems for the cases U U   and 
U U  . Afzal [9] formulated a single set of equations 
using as reference velocity a composite velocity given by 
U U U  . Later Lin and Huang [10] used Afzal’s 
formulation to study momentum and heat transfer for a 
flow over a surface moving parallel or reversely to the 
free stream with temperature dependent viscosity. A 
study by Afzal [11] investigated momentum transfer on a 
power law stretching surface with free-stream pressure 
gradient. 

The current study investigates a boundary layer flow 
over a moving surface in a streaming flow with a tem- 
perature dependent dynamic viscosity, . The Ling 
and Dybbs [12] model for  is used in this study. 

 T
 T

In Section 2, we formulate the problem. In Section 3, 
boundary layer equations are reduced to the self-similar 
form. In Section 4, numerical solutions for the self-si- 
milar boundary layer equations are presented and dis- 
cussed and conclusions are drawn in Section 5. 
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2. Problem Formulation 

An incompressible flow past an infinite surface con- 
tinuously moving with velocity U  in a streaming flow 
with velocity  and with temperature dependent vis- 
cosity , is investigated. The fluid is of density 

U

 T  , 
thermal conductivity  and specific heat capacity  pc  
(at constant pressure). The boundary layer equations are 
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The boundary conditions for this flow are 
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for a flow over an impermeable surface  ,0 0v x  . 
The following temperature dependent viscosity model 

due to Ling and Dybbs [12] is used here: 
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where   is a constant,   is the constant reference 
viscosity in the absence of heating. The case 0   
corresponds to the constant viscosity situation.  

3. Self-Similar Boundary Layer Equations 

The basic flow is rendered in non-dimensional form 
through setting 
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where  U x U U    is the reference velocity (Afzal  
et al. [9]),  , x y

 f
 is the boundary-layer similarity vari- 

able and   and     are the scaled free-stream 
velocity and temperature, respectively. The parameter 

xRe  is the local Reynolds number defined as  

x

Ux
Re


 . 

In non-dimensional form, the Lings-Dybbs model be- 
comes 

1

1
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where    is the dimensionless dynamic viscosity 
and  is the variable viscosity parameter. 
The case  is equivalent to the case 

T T  
0


0   corre- 

sponding to constant viscosity. 
From the equation of continuity we have 

 

Figure 1. Schematic diagram for the problem. 
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where the parameter   reduces to the pressure gradient 
parameter 

0
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We assume power-law variations in the free-stream 
velocity and wall velocity of the form  

 so that. 0 ,n
eU U x U U x   n

     0
n n

eU U x U x U U x Ax       

and 0 n   . The dimensionless similarity boundary- 
layer equations take the form 
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The parameter  is the Prandtl number and  is 
the Eckert number. The flow is self-similar if one of the 
following is satisfied: 

Pr Ec

1. n = 0 for any Ec. 
2. Ec = 0 for any n (negligible viscous dissipation). 

remarks 
We have assumed that both the wall and the free 

stream move in the same direction so that 0   . The 
case when 0   is corresponds to a wall moving in an 
otherwise quiescent fluid  0U  , 1 

0
 corresponds 

to flow over a stationary wall  and U   1 2   is 
equivalent to U U   so that the wall and the free- 
stream move with the same speed. When 0 1 2  , 
the wall moves faster that the free-stream while the case 
when 1 2 1   corresponds to the free-stream moving 
faster than the wall. 

The surface shear stress and surface heat transfer are 
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represented using the local skin friction factor, fC , and 
the local Nusselt number, xNu , respectively defined as 
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4. Numerical Solution and Discussion of 
Results 

The coupled self-similar boundary layer Equations (3) 
and (4) together with the boundary conditions (5) are 
solved numerically using a shooting method coupled 
with the fourth-order Runge-Kutta scheme. 

The results presented here are for the cases when 
. Self-similar solutions were obtained for two 

cases. Case one is the flow viscous dissipation and 
. Case two corresponds to the case with 

0.72Pr 

0n  0n   but 
without viscous dissipation effects. 

Figures 2 and 3 show that the effect of varying the 
fluid viscosity variation parameter  on the temperature- 
dependent dynamic viscosity, 


   and the stream- 

wise velocity  f  , within the boundary layer. At any 
location within the boundary layer    decreases 
with increase in the viscosity parameter, . The boun- 
dary layer thickness is found to decrease with increase in 

. The parameter  is a measure of fluid viscosity vari- 
ation. 



 

The effect of varying viscous dissipation parameter, 
, and the velocity ratio Ec   on the temperature distri- 

bution in the boundary layer is shown in Figures 4 and 5. 
Figure 4 shows that for 0.1 

Ec

, increasing  results 
in temperature over-shoot near the wall, with peaks in 
creasing with increase in . Figure 5 illustrates the 
effect of varying the velocity ratio on the temperature 
distribution. For the case when , the results 
show that the temperature peaks are realized for 

Ec

0.5Ec 
0.3   

and the peaks amplitudes increase with decrease in  . 
 

 

Figure 2. Effects of viscosity variation parameter on the 
dynamic viscosity for  

0, 0.8, 0.5, 0.2,0.4,0.6,0.8,1.n Ec      

 

Figure 3. Effects of viscosity variation parameter on velo- 
city profiles for  

0.0, 0.8, 0.5, 0.2,0.4,0.6,0.8,1n Ec     . 

 

 

Figure 4. Effects of varying Ec
0.1,n E

 on temperature distribu- 
tion for 0.0, 0.1, 0.1,0.3,0.5c     . 

 

 

Figure 5. Effects of viscosity variation on the temperature 
distribution profiles for  

0.0, 0.1, 0.1,0.2,0.3, 0.5n Ec     . 
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The skin-friction is presented as a function of  in 
Figures 6 and 7. These figures show the effect of varying 



  on the local skin friction coefficient for the case when 
0.5 1   and 0 0.5  . For the case when  
0.5 1  , the local skin friction coefficient is positive 
and hence the fluid exerts a dragging force on the wall. 
For this case, increasing  results in increase in the skin 
friction coefficient. For the case when 


0 0.5  , the 

local skin friction coefficient is negative, which is an 
indication that the wall drags the fluid. Also, increasing 

 results in a decrease in the skin friction. 
In Figure 8, the effect of varying   on local Nusselt 

number is shown as a function of   for the cases 
when 0.5 1  . The results show that the heat transfer 
coefficient decreases with increase in   and increases 
with increase in . 

The results shown in Figure 9 are interesting. It is 
shown that for 0 0.3  , the local Nusselt number is 
 

 

Figure 6. The skin friction coefficient against   for the 
case when 0.0, 0.5, 0.6,0.7,0.8,0.9n Ec    . 

 

 

Figure 7. The skin friction coefficient against   for the 
case when 0, 0.5, 0.15,0.2,0.3n Ec   . 

 

Figure 8. The heat transfer coefficient against  for the 
case when 


0, 0.5, 0.6,0.7,0.8,0.9n Ec    . 

 

 

Figure 9. The heat transfer coefficient against  for the 
case when 


0, 0.5, 0.15,0.2,0.25,0.3n Ec    . 

 
negative, changing sign to positive for 0.3  . This 
explains the results observed in Figure 7 where tem- 
perature over-shoot were observed adjacent to the wall. 
These results show that for low enough values for  , 
the heat transfer from wall to the fluid is greatly en- 
hanced resulting in temperature over-shoots adjacent to 
the wall. 

The effect of varying  on the velocity and tempera- 
ture distribution within the boundary layer is presented in 
Figures 10 and 11 for the case when wall is moving 
faster than the free-stream. The results show that velocity 
boundary layer thickness decreases with increase  and 
that the temperature peaks decrease with increase in . 
This shows that the increasing  results in a decrease in 
heat transfer from the wall to the fluid. 








5. Conclusions 

A self-similar boundary layer flow has been presented  
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Figure 10. Effects of varying  on the velocity distribution 
 f   for 0.0, 0.2, 0.5n Ec    and . 0,0.3,0.6 

 

 

Figure 11. Effects of varying  on the temperature distri- 
bution 


    for n = 0.0, ξ = 0.2, Ec = 0.5 and  = 0, 0.3, 

0.6. 



 
for a flow over a continuously moving heated surface in 
a fluid with temperature dependent viscosity. The self- 
similar equations were solved numerically and the results 
are presented in graphs. 

In this study the effects of varying the viscosity vari- 
ation  and the velocity ratio    are investigated for 
the case when the surface moves in the same direction as 
the free-stream. 

For low enough values for the velocity ratio ξ, the lo- 
cal heat transfer is found to be negative, indicating the 
heat transfer from the wall to the fluid is greatly en- 
hanced near the wall as the Eckert number increases. 
This is seen in the temperature distribution profiles where 
temperature peaks are observed adjacent to the wall. 
For the case when the wall moves faster than the fluid, 
the skin friction coefficient is negative, indicating that 

wall drags the fluid. The reverse occurs for the case when 
0.5 1   where the skin friction is positive and hence 
the free-stream exerts a dragging force on the boundary 
layer. 
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