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ABSTRACT

The unsteady MHD Couette flow of an incompressible viscous electrically conducting fluid between two infinite non-
conducting horizontal porous plates under the boundary layer approximations has been studied with the consideration of
both Hall currents and ion-slip. An analytical solution of the governing equations describing the flow is obtained by the
Laplace transform method. It is seen that the primary velocity decreases while the magnitude of secondary velocity in-
creases with increase in Hall parameter. It is also seen that both the primary velocity and the magnitude of secondary
velocity decrease with increase in ion-slip parameter. It is observed that a thin boundary layer is formed near the sta-
tionary plate for large values of squared Hartmann number and Reynolds number. The thickness of this boundary layer

increases with increase in either Hall parameter or ion-slip parameter.
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1. Introduction

The magnetohydrodynamic (MHD) flow between two
parallel plates, one in uniform motion and the other held
at rest known as MHD Couette flow, is a classical prob-
lem that has many applications in MHD power genera-
tors and pumps, accelerators, aerodynamic heating, elec-
trostatic precipitation, polymer technology, petroleum
industry, purification of crude oil and fluid droplets and
sprays. A lot of research work concerning the MHD
Couette flow has been obtained under different physical
effects. In most cases, the Hall and ion slip terms were
ignored in applying Ohm's law as they have no marked
effect for small and moderate values of the magnetic
field. However, the current trend for the application of
magnetohydrodynamics is towards a strong magnetic
field, so that the influence of electromagnetic force is
noticeable [1]. Under these conditions, the Hall currents
and ion slip are important and they have a marked effect
on the magnitude and direction of the current density and
consequently on the magnetic force term. Soundalgekar
[2] has studied the Hall and ion-slip effects in MHD
Coutte flow with heat transfer. Attia [3] has studied the
unsteady Couette flow with heat transfer considering ion-
slip. The transient Hartmann flow with heat transfer con-
sidering the ion slip has been investigated by Attia [4-6].
Attia [7] has obtained the analytical solution for flow of a
dusty fluid in a circular pipe with Hall and ion slip effect.
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Seddeek [8] has studied the effects of Hall and ion-slip
currents on magneto-micropolar fluid and heat transfer
over a non-isothermal stretching sheet with suction and
blowing. The effects of Hall and ion-slip currents on free
convective heat generating flow in a rotating fluid have
studied by Ram [9]. Mittal and Bhat [10] has discussed
the forced convective heat transfer in a MHD channel
with Hall and ion slip currents. Jana and Datta [11] has
described the Couette flow and heat transfer in a rotating
system. The Hall effect on unsteady Couette flow under
boundary layer approximations has been analysed by
Kanch and Jana [12]. Attia [13] has studied the ion slip
effect on unsteady Couette flow with heat transfer under
exponential decaying pressure gradient. The combined
effect of Hall and ion-slip currents on unsteady MHD
Couette flows in a rotating system have been investigated
by Jha and Apere [14].

The present paper is devoted to study the combined
effects of Hall current and ion-slip on the unsteady MHD
Couette flow between two infinite horizontal parallel
porous plates under the boundary layer approximations.
The upper plate is moving with a uniform velocity U
while the lower plate is held at rest. The fluid is acted
upon by a constant pressure gradient and a uniform suc-
tion/injection at the plates. A uniform magnetic field B,
is applied perpendicular to the plates. It is found that the
primary velocity decreases while the magnitude of the
secondary velocity increases with increase in Hall pa-
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rameter. It also is found that both the primary velocity
and the magnitude of secondary velocity decrease with
increase in ion-slip parameter. Asymptotic behavior of
the solution has been analyzed for large values of squared
Hartmann number and Reynolds number. It is observed
that a thin boundary layer is formed near the stationary
plate for large values of the magnetic parameter and
Reynolds number. The thickness of this boundary layer
increases with increases in either Hall parameter or
ion-slip parameter. Further, it is seen that the shear stress
components 7, and 7, due to the primary and sec-
ondary flows at the stationary plate 7 =0 increase with
increase in Hall parameter for fixed value of squared
Hartmann number and ion slip parameter. It is also seen
that for fixed value of both squared Hartmann number
and Hall parameter, 7z, increases while 7z, decreases
with increase in ion-slip parameter.

2. Mathematical Formulation and Its
Solution

Consider the viscous incompressible electrically con-
ducting fluid bounded by two infinite horizontal parallel
porous plates separated by a distance h. Choose a Car-
tesian co-ordinate system with X-axis along the lower
stationary plate in the direction of the flow, the y-axis is
normal to the plates and the z-axis perpendicular to Xy-
plane (see Figure 1). Initially, at time t=0, both the
plates are at rest. At time t >0, the upper plate suddenly
starts to move with uniform velocity U along x-axis. A
uniform magnetic field B, is applied perpendicular to
the plates. The velocity components are (u,v, W) rela-
tive to a frame of reference. Since the plates are infinitely
long, all physical variables, except pressure, depend on
y and t only. The equation of continuity then gives
B y B

0 0

0 F

8

Figure 1. Geometry of the problem.
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v=-Vy, everywhere in the flow where V, is the suction
velocity at the plates.

Taking the effects of ion-slip, the generalised Ohm’s
law is

j:O'(E+qu)—%(ij)—%§’Bi[(ij)xB},

0 0

M
where B, E, q, j, 0, w,, 7, and B are re-
spectively, the magnetic field vector, the electric field
vector, the fluid velocity vector, the current density vec-
tor, the conductivity of the fluid, the cyclotron frequency,
the electron collision time and S the ion-slip parame-
ter.

We shall assume that the magnetic Reynolds number
for the flow is small so that the induced magnetic field
can be neglected. This assumption is justified since the
magnetic Reynolds number is generally very small for
partially ionized gases. The solenoidal relation V-B =0
for the magnetic field gives B, =B = constant every-
where in the flow where B = (BX, B, BZ) . The equation
of the conservation of the charge V-j=0 gives j, =
constant. This constant is zero since j, =0 at each
plate which is electrically non-conducting. Thus j, =0
everywhere in the flow. Since the induced magnetic
fields are neglected, the Maxwel’s equation

VxE = _%} becomes VxE =0 which gives

oE oE S
*=0 and —%=0. This implies that E, = con-
0z z
stantand E, = constant everywhere in the flow.
In view of the above assumption, Equation (1) gives

(l+ﬂeﬂi)jx_ﬂejz:Ex_o-BOW= (2)
(1+8.5) i, + B.ix =E, +oByu, 3)

where [, = w,r, is the Hall parameter. Solving for j,
and j,, we get

i .o
Y (1 BB) + B @)
X|:(1+ﬂeﬂi )(Ex - BOW)+ﬂe(Ez + Bou)}’
_ O
C(1+B.B) + B 5)

<[ (1+ 8.8 )(E, + Byu)- B.(E, - B,w)].
On the use of Equations (4) and (5), the equations of
motion along X- and y-directions are
ou_,ou_ 10p V@_ 0B
¥ p(1+4A) +ﬂ§} 6)

ot oy
[(1+4.8)(E, +Bu)-4.(E, -~ Bw)]

p OX
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0= P ™
p oy

ow ow_ 1op dw oB,

— Vg —=———tV— - 5

Ny paz  pl+pA) B s
x[(1+ 8.8 )(E, - Bw)+ B, (E, +Bu)]|

where p, v and p are respectively the fluid density,
the kinematic coefficient of viscosity and the fluid pres-
sure.

The boundary conditions are

u=w=0 fort<0 forally,
u=w=0 aty=0 fort>0, )
u=U,w=0 aty=h fort>0.

Equation (7) shows the constancy of pressure along
y-axis. Also, the fluid flow within the channel is induced
due to uniform motion of the upper plate y=h. There-
fore, using boundary condition at y=h in Equations (6)
and (8) we get

1 op oB,
0=-—P_ —
P OX p[(l+ﬂeﬂi) +ﬂe:| (10)
x[(1+.8)(E, +BU)-AE,],
:_l@_ aB,
p oz p|:(1+ﬂeﬁi )2+ﬁ§J (11)

[ (1+ BB )E, + B.(E,+BU) .

On the use of (10) and (11), Equations (6) and (8),
under the usual boundary layer approximations become

@_ @:V@_ O'BO2

a oy oy PlU+AAY+A] (2
<[(1+4.6)(u-U)+ pw],

ow ow  o*w oB;

__Vo_:V_z_ 2 2

oy o pluepsy B (3
[ (1+ B ) W= B, (u-U)],

Introducing the non-dimensional variables

y u w vt
I ulza, VV1:U, TZF? (14)

Equations (12) and (13) become

]7:

ET AL 3
M gl _w_ M
or on om [(1+pB) +5 | (15)

x[(1+ 8 ) (W =1)+ B ],

oW ow 2w, M?

o on om [(+pA)+B| (6
X|:(1+ﬂeﬂi )Vvl _ﬂe(ul _1)]’
where M = (iT B,h| is the Hartmann number and
PV
Re= M the Reynolds number.
v

Equations (15) and (16) can be combined into the fol-
lowing equation

OF L OF _OF_ M {(1+B,8)-if.}
or  on on’ (1+B.8) +

]F , (17)

where
F=u+iw -1, i=+-1. (18)
The initial and boundary conditions for F (77, z’) are

F(I],O)ZO for all 7,

19
F(0,z)=-1and F(0,7)=0 forz>0 (19)

Taking Laplace transform, Equation (17) becomes

d&’F  _ dF =
a7 +Rea—(a+s)F =0, (20)
where
F(n,s)=[ e F(n.r)dr 1)
and
a= M {(1+ﬁeﬂi)_iﬂe} . (22)

(I+5.8) + 52
The boundary conditions (19) become

ﬁ(o,s):—ls and F(1,s)=0. (23)

The solution of the Equation (20) subject to the bound-
ary condition (23) is

Copyright © 2012 SciRes.

1
2 2
_%,, s % cosh {Rj + a] + S} R %
© cosh Re +al+sy n- sinh R—e+a +Sp 1. (24)
4 : 4
2 2
sinh {[R: + a] + S}
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Taking inverse transform of (24) and on using (18), we
get (see Equation (25))
where

o] —

K
|
5=
—
7~ N\
ke
+
N
N—
o
+
=,
[S)]
+
VR
o
+
N
N——

_ 1 |]J{Re ’ » 5_ Re’ (26)
B = 2{(4 +a]+ﬂ} (4 +a]

CM1AA)

(1+B.8) +52

s=-n'n’— (e, - ).

M?5,
(1+B8.8) +152

On separating into real and imaginary parts one can
easily obtain the velocity components U, and w, from
Equation (25). The solution given by (25) exists for both
Re <0 (corresponding to V, <0, for the blowing at the
plates) and Re >0 (corresponding to V, >0, for the
suction at the plates).

Solution at Small Times

In this case, method used by Carslaw and Jaegar [15] is
used since it converges rapidly for small times. For small
time 7 which correspond to large S, Equation (24)
becomes

1 0
ﬁ(?]j S) =—e 2R 7 z l|:ef(2m+z7)r _ e—(2m+2—z7)r :| (27)
m=0 S
The inverse transform of (27) is

Re Re

-— ——21— r > 2 "
F(n.r)=—e 2T XZ[R: +a] (4r)ni2"T2n,

m=0

(28)
where inerfc(x) denotes the repeated integrals of the
complementary error function given by

i"erfe(x) = ["i"erfe(£)dé,n=0,1,2,--,
i’erfc(x) = erfe(x), (29)

ilerfe(X) = ie”‘2 )

NE

On the use of (18), we have
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w, = —e_[%ﬁﬁ*rj x |:A(7], 7)sin Bt - B(n,7)cos ﬂ*r] ,
(31)

where
A(n.7) =T, +ax(40)T, +(a” - B72)(42)'T,
+(a”=3a"B7)(42) T,
+(a™ =627 + ) (47) Ty +---
B(1,7)= B (47)T, +2a" " (47)'T, (32)
+(B7 =377 )(42)'T,
+4a’ B (o - B7)(47) T+,

2
a*=RZ +a, f =P

where « and g are given by (26) with

A an 2m+n ) on 2m+2-p
TZH—Z{I erfc( T j i erfc[—zﬁ ﬂ, (33)

m=0
n=0,1,2,3,-

Equations (30) and (31) show that the Hall effects be-
come important only when terms of order 7 is taken
into account.

3. Results and Discussion

To study the effects of suction/blowing, Hall parameter,
ion-slip parameter and time on the velocity distributions
we have presented the non-dimensional velocity compo-
nents U, and W, against 7 in Figures2-6 for various
values of the squared-Hartmann number M?*, Reynolds
number Re, Hall parameter f,, ion-slip parameter S,
and time 7. It is seen from Figure 2 that both the pri-
mary velocity U, and the magnitude of secondary ve-
locity W, increase with increase in M*. Figure 3 re-
veals that the primary velocity U, increases whereas the
magnitude of secondary velocity W, decreases with
increase in Reynolds number Re. It is observed from
Figure 4 that the primary velocity U, decreases while
the magnitude of secondary velocity W, increases with
increase in Hall parameter f,. Figure 5 displays that
both the primary velocity U, and the magnitude of sec-
ondary velocity W, decrease with increase in ion-slip
parameter /£, . It is also seen from Figure 6 that the pri-

—(%mﬂ*r] . . mary velocity U, increases whereas the magnitude of
u=1-e X[A(n,r)cosﬂ 7+B(n,7)sin TJ’ secondary velocity W, decreases with increase in time
(B0) .
. = , h(e, —if) ) © 2n7t(—1)n
U +iw =1-€ 2 | cosh (e, —i _ A A inh (a — + e’ sinnm(1-7) |, (25)
o (e =1) sinh(a, —153,) (o =14 ) nzﬁ:n27rz+(oz1 -ig) (1=n)

Copyright © 2012 SciRes.
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n

Figure 3. Velocity profilesfor Rewhen M?=5, g, = 0.5, ;= 0.5 and = = 0.02.

For small values of time, we have drawn the velocity
components U, and W, on using the exact solution
given by Equation (25) and the series solution given by
Equations (30) and (31) in Figures 7, 8. It is seen that the
series solution given by (30) and (31) converge more
quickly than the exact solution given by (25) for small
time. Hence we conclude that for small time, the nu-
merical values of the velocities can be calculated from
the Equations (30) and (31) instead of Equation (25).

The non-dimensional shear stresses due to the primary
and the secondary velocities at the stationary plate

Copyright © 2012 SciRes.

n =0 are given by

du 1
T, = [—1} =—Re+
dn =0 2
[2 > Re? ]
—-{n°m +T+a T
& e

S
(n2n2+:+aJ +p

2( e, sinh 2, + Bsin23,)

cosh2q, —cos2p,

(34

n=

2
><|:(n2n2 + R: +a]cosﬂr+ﬂsinﬂ‘r},
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Figure 5. Velocity profiles for8; when M?=5,Re=5, 8, = 0.5and r = 0.02.

2(a, sinh 2, + fsin23,)

. _[dl} _
) df] o

)

2
- n’x? +Ri+a T
4
e

cosh2a, —cos2p,

n=

x[ﬁcosﬂr—{nznz + R

Copyright © 2012 SciRes.

2 2
(nzn2 +—RZ +aj + 5

2

(35)

° . aJsinﬂr},

where a, [, o and f, are given by (20).
Numerical results of the non-dimensional shear
stresses 7, and 7, due to the primary and secondary
flows at the plate 7 =0 are shown graphically in Fig-
ures 9-12 against M? for different values of B., S,
Re and 7. Figure 9 shows that the shear stresses Ty
and 7, due to the primary and the secondary flows at
the stationary plate 7 =0 increase with increase in Hall
parameter f, for fixed value of M?, B, ¢ and Re.
It is seen from Figure 10 that for fixed value of M?,
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—0.2 L L | L | | L | 1
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n

Figure 7. Velocity profiles for general solution and small time solution when M? =5, Re=5, 8, = 0.5and g; = 0.5.

Pe, v and Re. 7, increases while 7, decrease that for fixed value of M?, 7,, increases while 7,
with increase in ion-slip parameter /. Figure 11 shows decreases with increase in Reynolds number Re. Fur-

Copyright © 2012 SciRes. OJFD
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-0.005 J-

7=0.02, 0.04, 0.06, 0.08

-0.01

< 0015} -
—0.02- s General solution N
/’/ — — — —  Sol. for small times
////
~0.0251 “ / -
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t=0.02, 0.04, 0.06, 0.08

-0.03 1 1 1 1 1 1 ! 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n

Figure 8. Velocity profiles for general solution and small time solution when M? =5, Re=5, §, = 0.5and ;= 0.5.
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Figure9. Shear stresses 7, and T, for g, when Re=5, ;=0.5and = = 0.02.
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Figure11. Shear stresses 7, and z, for Rewhen g, =0.5, ;= 0.5and = = 0.02.
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4 T T T T T T T
2.5+ —
5 2p .
= : T“
1.5F - T 51,“ =
'r r=0.04
7=0.06
0.5 - - ————
== 7=0.08
ole==" - FIF—. 1 1 1 1 I | | 1
0 1 2 3 4 5 6 7 8 9 10
M
Figure 12. Shear stresses 7. and 7, for timezwhen g, =05, ;=05and Re=5.
ther, it is also found from Figure 12 that both 7, and . Y,
7, decrease with increase in time 7 for fixed value of D (77’ T) =p (47) ReT, +T
) T
M*, B, B. and Re.
For small times, the shear stress at the plate 7=0 +2a*ﬁ*(4r)2 (Reﬂ +LJ (39)
due to the primary and the secondary flows can be ob- Jr

tained as

o _u(or)
sl (36)
= [C(0,7)cos 'r-D(0,7)sin Bz |,
. W)
- leU“*’ [C(0,2)sin 5z +D(0,7)cos 5z ], o
2
where
C(n7)= (ReTO +%J+ o (41)(ReT2 +%}
+(a? = 7)(42) (ReT4 +%) (38)

+((l*3 —3a'p? )(41)3 [ReT6 +%)+ .,

Copyright © 2012 SciRes.

+(3a*2ﬂ* —ﬂ*3)(4r)3 (ReT6 +%j+~--,

with
dTZn — _Y2n—1 (40)
dn 2\/;
and

B . 2m+2-1) .o 2m+n
Y, = j2n 1erfc[—j—lzn lerfc( ] ,
- mz;){ N N

n=0,1,2,3,
(41)

For small time, the numerical values of the shear stress
components calculated from Equations (34)-(37) are
given in Tables 1 and 2 for different values of S, and
7. It is observed that for small times the shear stresses
calculated from the Equations (36) and (37) give better
result than that calculated from Equations (34) and (35).

OJFD
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Table 1. Shear stresses due to primary flow for M> =5, § =
1

-7, (For General solution)
B/t 0.005 0.010 0.015 0.005 0.010 0.015
0.0 5.896093 3.644242 2.673381 5.896093 3.644238 2.673358
0.5 6.032860 3.765285 2.782767 6.032872 3.765358 2.782959
1.0 6.290388 3.998794 2.998242 6.290404 3.998886 2.998493
1.5 6.515985 4.208713 3.196242 6.515995 4.208762 3.196378

-7, (Solution for small times)

Table 2. Shear stresses due to secondary flow for M?>=5,§
=1.

7, (For General Solution)
B/t 0.005 0.010 0.015 0.005 0.010 0.015
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 0.393570 0.361540 0.337486 0.393615 0.361790 0.338174
1.0 0.595888 0.555407 0.524776 0.595908 0.555517 0.525087
1.5 0.660252 0.622620 0.594005 0.660258 0.622650 0.594089

7, (Solution for small times)

4. Steady state solution

The steady state velocity components are obtained from
(25) by letting 7 — oo as (see Equation (42))

Now, we shall discuss the following cases:

Case1): When M?>1 and Re<1.

In this case, Equation (42) gives

u=1- e{fﬂ”j” cos A, (43)
w=-tt "V sin g, (44)
where
" { L+ } |
1 , 2
(1+8.8) +5: s)
M S,

b= 1
[0+ p8) + )0+ p8)

It is seen from Equations (43) and (44) that there exists
a single-deck boundary layer of thickness of the order

-1
R . .
0[76+alj where ¢, is given by (45). It is seen

that the thickness of this boundary layer increases with

increase in either Hall parameter S, or ion-slip pa-

rameter S but it decreases with increase in either

Hartmann number M or Reynolds number Re.
Case2): When Re>1, M’ «1.

ET AL 11

In this case, the velocity distributions given by (42)
become

u=1-e“"cosfn, (46)
w, =€ “"sin f7, 47

where

a, =Re 1+M22—(1+'Bezﬂi) 5
Re™ (1+B.8) + 52
_ A
R ((1+4.5) + 42

Equations (46) and (47) show the existence of single-
deck boundary layer of thickness of order O(al' 1)
where ¢, is given by (48). The thickness of this layer
increases with increase in either Hall parameter S, or
ion-slip parameter S as «; decreases with increase in
either B, or S, .

(4%)

5. Single Plate M otion

As h— oo, the velocity distribution given by (42) be-
comes

—(§+a1jq
u=1l-e'? cos B, (49)
{5,
w=e'? Vsingy, (50)
where
_ L
1 2
2 2
1 s ) S
alzT (——i—a] +p +(—+a ,
2 4 4
I 1 Tz
2 2
1 s ) s
=—|{ —+a| + —|—+a 51
iz > [4 ] B £4 (5D
BZ
77:%) S:V_O’ Mzzo- 0;/
1% U pU

and a, [ are given by (26). It is clear from above
Equations (49) and (50) that the flow exhibits a boundary
layer behavior with boundary layer thickness of order of

-1
O(E+ alj . Since ¢, increases with increase in either

S or M? it means that increase in either suction pa-

(g —i
U +iwg =1—| AT (o Iﬂ)
sinh (e, —if3,)

Copyright © 2012 SciRes.

Lsinh (&,

Re

i) —cosh (e, —if, )n}e’f’ (42)
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rameter S or magnetic parameter M* causes thinning
of the boundary layer. Further, for fixed S and M?,
o, decreases with increase in either Hall parameter S,
or ion-slip parameter £, . Hence, we conclude that the
boundary layer thickness near the plate 7 =0 increases
with increase in either B, or S . The solutions given
by (49) and (50) are also valid for the blowing (S<0) at
the plate.

In the absence of ion-slip (4 =0), the above Equa-
tions (49) and (50) become

S
u=1- ei(zqu cos fn, (52)

w = e{%a}’ sin 17, (53)
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Equations (52) and (53) coincide with Equations (36)

and (37) of Gupta [16] when S =0 (absence of ion-
slip).

where

(54)

6. Conclusion

Combined effects of Hall current and ion-slip on the un-
steady MHD Couette flow between two infinite horizon-
tal parallel porous plates under the boundary layer ap-
proximations have been studied. It is found that the pri-
mary velocity U, decreases while the magnitude of
secondary velocity W, increases with increase in Hall
parameter S, . It is also found that both the primary ve-
locity and the magnitude of secondary velocity decrease
with increase in ion-slip parameter /. It is observed
that a thin boundary layer is formed near the stationary
plate for large values of magnetic parameter M?* and
Reynolds number Re. The thickness of these boundary
layers increases with increases in either Hall parameter
or ion-slip parameter. Further, it is seen that the shear
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stresses 7, and 7, due to the primary and secondary

flows at the stationary plate 7 =0 increase with in-
crease in Hall parameter f, for fixed value of M?. It
is also seen that for fixed value of M?, Ty increases
while 7, decrease with increase in ion-slip parameter
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