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ABSTRACT 

The unsteady MHD Couette flow of an incompressible viscous electrically conducting fluid between two infinite non- 
conducting horizontal porous plates under the boundary layer approximations has been studied with the consideration of 
both Hall currents and ion-slip. An analytical solution of the governing equations describing the flow is obtained by the 
Laplace transform method. It is seen that the primary velocity decreases while the magnitude of secondary velocity in-
creases with increase in Hall parameter. It is also seen that both the primary velocity and the magnitude of secondary 
velocity decrease with increase in ion-slip parameter. It is observed that a thin boundary layer is formed near the sta-
tionary plate for large values of squared Hartmann number and Reynolds number. The thickness of this boundary layer 
increases with increase in either Hall parameter or ion-slip parameter. 
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1. Introduction 

The magnetohydrodynamic (MHD) flow between two 
parallel plates, one in uniform motion and the other held 
at rest known as MHD Couette flow, is a classical prob-
lem that has many applications in MHD power genera-
tors and pumps, accelerators, aerodynamic heating, elec-
trostatic precipitation, polymer technology, petroleum 
industry, purification of crude oil and fluid droplets and 
sprays. A lot of research work concerning the MHD 
Couette flow has been obtained under different physical 
effects. In most cases, the Hall and ion slip terms were 
ignored in applying Ohm's law as they have no marked 
effect for small and moderate values of the magnetic 
field. However, the current trend for the application of 
magnetohydrodynamics is towards a strong magnetic 
field, so that the influence of electromagnetic force is 
noticeable [1]. Under these conditions, the Hall currents 
and ion slip are important and they have a marked effect 
on the magnitude and direction of the current density and 
consequently on the magnetic force term. Soundalgekar 
[2] has studied the Hall and ion-slip effects in MHD 
Coutte flow with heat transfer. Attia [3] has studied the 
unsteady Couette flow with heat transfer considering ion- 
slip. The transient Hartmann flow with heat transfer con-
sidering the ion slip has been investigated by Attia [4-6]. 
Attia [7] has obtained the analytical solution for flow of a 
dusty fluid in a circular pipe with Hall and ion slip effect.  

Seddeek [8] has studied the effects of Hall and ion-slip 
currents on magneto-micropolar fluid and heat transfer 
over a non-isothermal stretching sheet with suction and 
blowing. The effects of Hall and ion-slip currents on free 
convective heat generating flow in a rotating fluid have 
studied by Ram [9]. Mittal and Bhat [10] has discussed 
the forced convective heat transfer in a MHD channel 
with Hall and ion slip currents. Jana and Datta [11] has 
described the Couette flow and heat transfer in a rotating 
system. The Hall effect on unsteady Couette flow under 
boundary layer approximations has been analysed by 
Kanch and Jana [12]. Attia [13] has studied the ion slip 
effect on unsteady Couette flow with heat transfer under 
exponential decaying pressure gradient. The combined 
effect of Hall and ion-slip currents on unsteady MHD 
Couette flows in a rotating system have been investigated 
by Jha and Apere [14]. 

The present paper is devoted to study the combined 
effects of Hall current and ion-slip on the unsteady MHD 
Couette flow between two infinite horizontal parallel 
porous plates under the boundary layer approximations. 
The upper plate is moving with a uniform velocity U  
while the lower plate is held at rest. The fluid is acted 
upon by a constant pressure gradient and a uniform suc-
tion/injection at the plates. A uniform magnetic field 0  
is applied perpendicular to the plates. It is found that the 
primary velocity decreases while the magnitude of the 
secondary velocity increases with increase in Hall pa-
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rameter. It also is found that both the primary velocity 
and the magnitude of secondary velocity decrease with 
increase in ion-slip parameter. Asymptotic behavior of 
the solution has been analyzed for large values of squared 
Hartmann number and Reynolds number. It is observed 
that a thin boundary layer is formed near the stationary 
plate for large values of the magnetic parameter and 
Reynolds number. The thickness of this boundary layer 
increases with increases in either Hall parameter or 
ion-slip parameter. Further, it is seen that the shear stress 
components 

0x  and 
0z  due to the primary and sec-

ondary flows at the stationary plate 0   increase with 
increase in Hall parameter for fixed value of squared 
Hartmann number and ion slip parameter. It is also seen 
that for fixed value of both squared Hartmann number 
and Hall parameter, 

0x  increases while 
0z  decreases 

with increase in ion-slip parameter. 

2. Mathematical Formulation and Its  
Solution 

Consider the viscous incompressible electrically con-
ducting fluid bounded by two infinite horizontal parallel 
porous plates separated by a distance . Choose a Car-
tesian co-ordinate system with x-axis along the lower 
stationary plate in the direction of the flow, the y-axis is 
normal to the plates and the z-axis perpendicular to xy- 
plane (see Figure 1). Initially, at time , both the 
plates are at rest. At time , the upper plate suddenly 
starts to move with uniform velocity  along x-axis. A 
uniform magnetic field 0  is applied perpendicular to 
the plates. The velocity components are   rela-
tive to a frame of reference. Since the plates are infinitely 
long, all physical variables, except pressure, depend on 

 and  only. The equation of continuity then gives  

h

t

U

0

u v

0t 

B
, , w

y t

 

Figure 1. Geometry of the problem. 

0v v   everywhere in the flow where  is the suction 
velocity at the plates. 

0v

Taking the effects of ion-slip, the generalised Ohm’s 
law is  

     2
0 0

e e e e i

B B

    
         j E q B j B j B B , 

(1) 

where , B E , , , q j  , e , e  and i  are re-
spectively, the magnetic field vector, the electric field 
vector, the fluid velocity vector, the current density vec-
tor, the conductivity of the fluid, the cyclotron frequency, 
the electron collision time and i  the ion-slip parame-
ter. 

We shall assume that the magnetic Reynolds number 
for the flow is small so that the induced magnetic field 
can be neglected. This assumption is justified since the 
magnetic Reynolds number is generally very small for 
partially ionized gases. The solenoidal relation 0 B  
for the magnetic field gives  constant every-
where in the flow where 

0yB B
 , ,


x yB B B

  j
zB

0
. The equation 

of the conservation of the charge  gives yj   
constant. This constant is zero since y  at each 
plate which is electrically non-conducting. Thus 

0
0yj

j 
  

everywhere in the flow. Since the induced magnetic 
fields are neglected, the Maxwel’s equation  

t


  


BE  becomes 0 E  which gives  

0xE

z





 and 0zE

z





. This implies that xE   con-  

stant and zE   constant everywhere in the flow. 
In view of the above assumption, Equation (1) gives  

  01 e i x e z xj j E B       w ,        (2) 

  01 e i z e x zj j E B       u

e

,        (3) 

where e e    is the Hall parameter. Solving for xj  
and zj , we get  

 
   

2 2

0 0

1

       1 ,

x

e i e

e i x e z

j

E B w E B u


  

  


 

      

 (4) 

 
   

2 2

0 0

1

      1 .

z

e i e

e i z e x

j

E B u E B w


  

  


 

      

 (5) 

On the use of Equations (4) and (5), the equations of 
motion along x- and y-directions are  

 

   

2
0

0 2 2 2

0 0

1

1

                     1

e i e

e i z e x

Bu u p u
v

t y x y

E B u E B w




    

  

   
    

         (6) 

     
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1
0

p

y


 


,              (7) 

 

    E B u 

2
0

0 2 2 2

0 0

1

1

                  1

e i e

e i x e z

Bw w p w
v

t y z y

E B w




    

 

   
    

       
    

 (8) 

where 

 

  

2 2
1 1 1

2 2 2

1 1

Re
1

                       1 1 ,

e i e

e i e

u u u M

u w

     

  

  
  

      
     

   (15) 

 

   

2 2
1 1 1

2 2 2

1 1

Re
1

                        1 1 ,

e i e

e i e

w w w M

w u

     

  

  
  

      
     

  (16) 
 ,   and are respectively the fluid density, 

the kinematic coefficient of viscosity and the fluid pres
sure. 

The boundary conditions are  

cy of pressure along 
y-axis. Also, the fluid flow within the channel is induced 
due to uniform motion of the upper plate 
fore, using boundary condition at 
and (8) we get  

p  
-

where 

1

2

0M B h



 
        

 is the Hartmann number and 

0Re
v U


  the Reynolds number. 

0 for 0 for all 

, 0 at for 0.

u w t y

u U w y h t

  

   

,

0 at 0 for 0,u w y t         (9) 

Equation (7) shows the constan Equations (15) and (16) can be combined into the fol-
lowing equation  

=y h
in Equat

. There-
ions (6) =y h  

 

 

0

2 2

1
0

1

     1 ,

e i e

Bp

x

E B U E


    

  


  

    
    

   (10) 

  
 

22

2 2 2

1
Re

1

e i e

e i e

M iF F F
F

  

     

    
   

      
, (17) 

where  

0e i z e x

  
1 1 1F u iw   , 1i   .       (18) 

The initial and boundary conditions for  ,F    are  

 

  

0

2 2

0

1
0

1

     1 .

e i e

e i x e z

Bp

z

E E B U


    

  


  

   
    






On the use of (10) and (11), Equations (6) and (8), 
under the usual boundary layer approximations become  

 
   

,0 0 for all ,

0, 1 and 0, 0 for 0

F

F F

 
 


     (11)    

   (19) 

Taking Laplace transform, Equation (17) becomes  

 
2

2

d d
Re 0

dd

F F
a s F


    ,        (20) 

 

  

22
0

0 2 2 21 e i e

Bu u u
v

t y y




                   1 ,e i eu U w

   

  

  
  

      
     

where  

    (12)    
0

, sF s e F , d   
           (21) 

and  

  
 

2

2 2

1

1

e i e

e i e

M i
a

  

  

 


 
.        (22)  

   

22
0

0 2 2 21

                    1 ,

e i e

e i e

Bw w w
v

t y y

w u U




   

  

  
  

          (13) 

     

Introducing the non-dimensional variables  

The boundary conditions (19) become  

  1
0,F s

s
   and  1, 0F s  .     (23) 

y

h
  , 1

u
u

U
 , 1

w
w

U
 , 

2

t

h

  ,  

Equations (12) and (13) become  

   (14) 
The solution of the Equation (20) subject to the bound-

ary condition (23) is  

 

1
2 2

1

2
co

R


1Re
2 2 22

1
2 2

Re
sh

4e Re
, cosh sinh

4 4
Re

sinh
4

a s
e

F s a s a s

a s
s

 



                                              

.        (24) 



 


    
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Taking inverse transform of (24) and on using (18), we 

get (see Equation (25)) 
where  

 
   

 

1
1 2

2 22 2
2

1

1
1 2

2 22 21 Re
 
      

2

2 2

2 22 2

22 2
1 1

1 Re Re

4 42

Re

4 42

1
,    

1 1

π .

e i e

e i e e i e

M M

s n

   

  

  
 

     

 

 
               
      

 

     
      

 


 
   

   

 (26) 

On separating into real and imaginary parts one can 
easily obtain the velocity components  and 
Equation (25). The solution given by (25) exists both 

 (corresponding to 

1 


1u 1w
for 

 from 

Re 0 0 0v  , 
spond

fo e blowing at the 
nd  (corre ing r the 

Solution at Small Times 

In
or

r th
to vplates) a

suction at the
Re 0
 plates). 

0 0 , fo

 this case, method used by Carslaw and Jaegar [15] is 
used since it converges rapidly for small times. F  small 
time   which correspond to large s , Equation (24) 

s  become

     Re 2 22
1

, m r rF s e
  


     

1
2

0

m

m

e e
s

  


    (27) 

7) is  The inverse transform of (2

   
2Re Re 2

22 4
2

0
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4

n
a n n

n
m

F e a i T
  

  
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

 
    

 
 ,  

(28) 

where ni x erfc  
lementary err

denotes the repeated integrals of the 
comp or function given by  

   
   

 

1

0

erfc erfc d
x
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n
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
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  (29) 

e use of On th (18), we have  

 
*Re

*21 , cosu e A B
  

  *
1 , sin   

   
          , 

(30) 


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(31) 

where  
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where 

 (32) 

  and   are given by (26) with  
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Equations (30) and (31) show that the Hall effects be-
come important only when terms of order

) 

   is taken 
into account. 

3. Results and Discussion 

To study the effects of suction/blowing, Hall para
ion-slip parameter and time on the velocity distrib
we have presented the non-dimensional velocity compo-
nents  and  against
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num eber Re , Hall param ter e , ion-slip eter param i  
and time  . It is

1u  
se

 seen fr Figure 2 both the 
and the m de ndary

om  that 
of seco

pri-
 ve-mary velocity 

1w
agnitu

locity  increa  with increase in 2M . Figure 3
veals t ary velocity  inc whereas
ma f ndary ases 
increase e s num ed
Figure 4 ary ases 
th

 re-
 the 

while 

h
gnitude

 in
 

at the 
 o
 R

th

prim
 seco
ynold

at the prim

1u
locity

Re
velocity 

r

1w
t 

1u

eases 
 decre

is observ
 decre

 ve
ber 

 
 I

with 
 from .

e magnitude of secondary velocity 1w  increases with 
increase in Hall parameter e . Figure 5 displays that 
both the primary velocity u  and the magnitude of sec-
ondary veloci

1

ty w1  decrease with increase in ion-slip 
parameter i . It is also seen from
mary velocity u  increases whe

 
e
Figure 6

s the
 that the pri-

gnitude1

secondary velocity 1w  decreases with increase in time 
r a  ma  of 

 .      

   
     

 
 1

Re
1 12

1 1 1 1 1 1 22 2
11 1 1 1

cosh 2 π 1
1 cosh sinh sin π 1

sinh π

n

s

n

i n
u iw e i i e n

i n i

  
      

   





  
        

    
 , (25)
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Figure 2. Velocity profiles for M2 when Re = 5, βe = 0.5, βi = 0.5 and τ = 0.02. 

 

Figure 3. Velocity profiles for Re when M2 = 5, βe = 0.5, βi = 0.5 and τ = 0.02. 

For small values of time, we have drawn the velocity 
components  and  on using the exact solution 
given by Equation (25) and the series solution given by 
Equations (30) and (31) in Figures 7, 8. It is seen that the 
series solution given by (30) and (31) converge more 
quickly than the exact solution given by (25) for small 
time. Hence we conclude that for small time, the nu-
merical values of the velocities can be calculated from 
the Equations (30) and (

an

1u 1w

31) instead of Equation (25). 
The non-dimensional shear stresses due to the primary 
d the secondary velocities at the stationary plate  

0   are given by  

 
0

2
2 2

1 1 11

1 10

Re
π

4

221
2 2 2

2
2 2

2 sinh 2 sin 2d 1
Re

d 2 cosh 2 cos 2

                
Re

π

1

Re

4

x

n

n

u

e

n



 



4

                 π cos sin ,n

  


  

 

   



 
    
 



 
     


 

   
 

  
    
  

  (34) 
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Figure 4. Velocity profiles for βe when M2 = 5, Re = 5, βi = 0.5 and τ = 0.02. 

 

Figure 5. Velocity profiles forβi when M2 = 5, Re = 5, βe = 0.5 and τ = 0.02.  

 
0

2
2 2

1 1 1 11

1 10

Re
π

4

221
2 2 2

2
2 2π sin ,

4
n

2 sinh 2 sin 2d

d cosh 2 cos 2

                
Re

π
4

Re
                 cos

z

n

n

w

e

n



 

   


  

 

 



 
    
 



 
    


 

   
 

  
 
  

  (35) 

where 

    
 

 ,  , 1  and 1  are given by (26). 
Num sults he non-dimensional shear 

stresses 
erical re of t

 and 
0z0x  due to the primary and secondary 

flows at  plate  the 0   
2

are shown graphically in Fig-
ures 9- ains12 ag t M  for different values of e , i , 
Re  and  . Figure ows that the shear st 9 sh resses 

0x  
and 

0z  due to th ary and the secondary f
 plate 

e prim
0

lows at 
the stationary    increase with crease in  in Hall 
parameter e  for fixed value of 2M ,   an

 of 
, i d . Re

2It is seen from Figure 10 that for fixed value M ,    
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Figure 6. Velocity profiles for time τ when M2 = 5, Re = 5, βi = 0.5 and βe = 0.5.  

 

Figure 7. Velocity profiles for general solution and small time solution when M2 = 5, Re = 5, βe = 0.5 and βi = 0.5. 

e ,   and . Re
0x  increases while 

0z  decrease 
 parameter with increase in ion-slip i .  shows 

that for fixed value of
Figure 11

 2M , 
0x  increases while 

0z  
. Fur- decreases with increase ds number     in Reynol  Re
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Figure 8. Velocity profiles for general solution and small time solution when M2 = 5, Re = 5, βe = 0.5 and βi = 0.5. 

 

 for βe when Re = 5, βi = 0.5 and τ = 0.02. Figure 9. Shear stresses  and z
0

x
0


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 for βi when Re = 5, βe = 0.5 and τ = 0.02. Figure 10. Shear stresses  and zx 
0 0

 

 for Re when βe = 0.5, βi = 0.5 and τ = 0.02. Figure 11. Shear stresses  and z
0

x
0


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Figure 12. Shear stresses x  and z
0


0

 . 

ther, it is also found from Figure 12 that both

for time τ when βe = 0.5, βi = 0.5 and Re = 5

 
0x  and 

0z  decrease with increase in time   for fixe  of d value
2M , i , e  and 

time hear plate 
Re . 

s, the sFor small stress at the 0   
due to the primary and the secondary flows can be ob-
tained as  

 

   

0

* * *

0,

1
     0, cos 0, sin ,

2

x

u

U

e C D 




     




   

   

 

  

* 1
2

2* * 3
4

3*2 * *3 5
6

, 4 Re

               2 4 Re

              3 4 Re ,

Y
D T

Y
T

Y
T

   


  


   


 
  

 
 

  
 

 
    

 


 (39) 

with   (36) 

2 2d

d 2
n nT Y


1


 

 

   

0

* * *

0,

1
     0, sin 0, cos ,

2

z

w

U

e C D 




     




   

            (40) 

and  
, (37) 

where  

   

  

   

*1 1
0 2

2*2 *2 3
4

3*3 * *2 5
6

, Re 4 Re

               4 Re

               3 4 Re ,

Y Y
C T T

Y
T

Y
T

   
 

  


   


   
      
   

 
   

 
 

    
 



2 1 2 1
2 1

0

2 2 2
erfc erfc ,

2 2

0,1,2,3,

n n
n

m

m m
Y i i

n

 
 


 




     
 


   

  

 







 

(41) 

For small time, the numerical values of the shear stress 
components calculated from Equations (34)-(37) are 
given in Tables 1 and 2 for different values of (38)  e  and 
 . It is observed that for small times the shear stresses 
calculated from the Equations (36) and (37) give better 
result than that calculated from Equations (34) an (35). d 
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Table 1. Shear stresse  M  = 
1. 

 

s due to primary flow for 2 = 5, S

x  (For General solution) x  (Solution for small times)

e   0.005 0.010 0.015 0.005 0.010 0.015 

0.0 5.896093 3.644242 2.673381 5.896093 3.644238 2.673358

0.5 6.032860 3.765285 2.782767 6.032872 3.765358 2.782959

1.0 6.290388 3.998794 2.998242 6.290404 3.998886 2.998493

1.5 6.515985 4.208713 3.196242 6.515995 4.208762 3.196378

Table 2. Shear stresses due to secondary flow for M2 = 5, S 
= 1.  

 y  (For General Solution) y  (Solution for small times)

e   0.005 0.010 0.015 0.005 0.010 0.015 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.5 0.393570 0.361540 0.337486 0.393615 0.361790 0.338174

1.0 0.595888 0.555407 0.524776 0.595908 0.555517 0.525087

1.5 0.660252 0.622620 0.594005 0.660258 0.622650 0.594089

4. Steady state solution 

The steady state velocity components are obtained from 
(25) by letting     as (see Equation (42)) 

Now, we shall discuss the following cases: 
Case 1): When 2 1M   and . 
In this case, Equation (42) gives  

Re 1

1
Re

21 cose
 

1 1u  
   
   ,         (4 ) 3

1
Re

2
1 1sinw e

 
 

   
   ,          (44) 

re whe  

 

   

1

2

1

1
,e iM

 


    2 2

1 1
2 22

1

.

1 1

e i e

e

e i e e i

M
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

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   


     

    (45) 

It is seen from Equations (43) and (44) that there exists 
a single-deck boundary layer of thickness of the order  

1

1

Re
O

2



  
 

 where 1  is given by (45). It i

that the thickness of this boundary layer increases with 
in either Hall parameter 

s seen  

increase e  or ion-slip pa-
rameter i  but it decreases with crease in either 
Hartma ber 

 in
nn num M  or Reynolds ber . 

Case 2): When 
 num  Re
. 

ions given by (42) 
become  

Re 1 , 2 1M 

In this case, the velocity distribut

1
1 11 cosu e      ,         (46) 

1
1 1sinw e     ,           (47) 

where  

 
 

  

2

1 2 2 2

2

1 22 2

1
Re 1 ,

Re 1

.
Re 1

e i

e i e

e

e i e

M

M

 

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


  

    
   


 

     (48) 

Equations (46) and (47) show the existence of single- 
deck boundary layer of thickness of order  1

1O   
where 1  

creases with in
is given by (48). The thickness of

in crease in either Hall parameter 
 this layer 

e  or 
ion-slip rameter  pa i  as 1  decreases with in
either 

crease in 

e  or i . 

5. Single Plate Motion 

As , the velocity distribution given by (42) be-
comes  

 

h 

12
1 11 co

S

u e
 

s 
   
   ,         9) (4

12

S  

1 1sinw e   ,           (50) 

where  

   
 

1
1 2

2 22 2
2

1

1
1 2

2 22 2
2

1

2
20 0

2

1
,

4 42

1

4 42

,    ,    

S S

S S

v BUz
S M

U U

  

  

 


 





 
               
      

 

 
               
      

 

  

  (51) 

and ,    are given by (26). It is clear from above 
Equations (49) and (50) that the flow exhibits a boundary 
layer behavior with boundary layer thickness of order of  

1

1O
2

S 


  
 
 

. Since 1  increases with increase in either  

 or S 2M  it means that increase in either suction pa-

 
     

Re
1 1 2

1 1 1 1 1 1
1 1

cosh
1 sinh cosh

sinh

i
u iw i i e

i

 
     

 
 

      
  

                  (42)
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rameter or magnetic parameter S  2M  causes thinning 
of the ary layer. Further, fo d  and bound r fixe S 2M

 and 
0z

, 

1  decr with increase in eith rameter eases er Hall pa e  
or ion- parameter slip i . Hence, nclude that t
boundary layer thickness near the 

we co
plate 

he 
0   increases 

with increase in either e  or i . The solutions given 
by (49) and (50) are also valid for the blowing ( < 0S ) at 
the plate. 

In th sence of ion  e ab -slip ( 0i  ), the above Equa-
tions (49) d (50) be an come  

2
1 1 cosu e
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  ,           (53) 
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
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 (54) 

Equations (52) and (53) coincide with Equat ons (36) 
and (37) of Gupta [16] when 0i   (abse ce of

on th
tte flow n two i ite ho

boun  layer
ima s have been studied. It is foun at th

mary v city  decreases while th
nda  velo  increases with increase in

e

n

 

dary
d th

 ion-

e un-
rizon-

 ap-
e pri-

 Hall 

 
slip). 

6. Conclusion 

Co
ste
tal
prox

seco
param

mbined effects of Hall current and ion-slip
ady MHD Coue betwee nfin
 parallel porous plates under the 

tion
elo
ry

ter 

1u
city

e magnitude of 

1w  

e . It is
magni
in

 also
tude

 ion-slip

 found that bot
 of secondary vel city decrease
 parameter 

h the primary ve-
locity and
with incr

 t
ea

he 
se 

o  

i .  obse
at a th  form

e fo u of magnetic r 

It is
ed near the stationa

ete

rved
ry 

 
th
plat

in 
r la

boun
rge

da
 val

ry layer is
es param 2M  and 

Reynolds . The thickne  these bo ary 
layers increases with increases in either Hall parameter 
or ion-slip parameter. Further, it is seen that the shear 

stresses 

 number Re ss of und

0x  due to the primary and secondary 
flows at  plate  the stationary 0   increase with in-
crease in Hall param ter e e  for fixed value of 2M . It 
is also seen th fixeat for d value of 2M , 

0x  
while 

increases 

0z  decrease with increase in ion-slip pa ter rame

i . 
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