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Abstract

This research presents one possible way for imminent prediction of earthquakes’ magnitude,
depth and epicenter coordinates by solving the inverse problem using a data acquisition network
system for monitoring, archiving and complex analysis of geophysical variables-precursors.
Among many possible precursors the most reliable are the geoelectromagnetic field, the bore-
holes water level, radon earth-surface concentration, the local heat flow, ionosphere variables,
low frequency atmosphere and Earth core waves. The title demonstrates that only geomagnetic
data are used in this study. Within the framework of geomagnetic quake approach it is possible to
perform an imminent regional seismic activity forecasting on the basis of simple analysis of geo-
magnetic data which use a new variable S¢y:v with dimension surface density of energy. Such anal-
ysis of Japan Memambetsu, Kakioka, Kanoya INTERMAGNET stations and NEIC earthquakes data,
the hypothesis that the “predicted” earthquake is this with biggest value of the variable Scu:m per-
mits to formulate an inverse problem (overdetermined algebraic system) for precursor’s signals
like a function of earthquake’s magnitude, depth and distance from a monitoring point. Thus, in
the case of data acquisition network system existence, which includes monitoring of more than
one reliable precursor variables in at least four points distributed within the area with a radius of
up to 700 km, there will be enough algebraic equations for calculation of impending earthquake’s
magnitude, depth and distance, solving the overdetermined algebraic system.
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1. Introduction
It is well known now that the “when, where and how” earthquake’s prediction problem cannot be solved by a
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only analyzing the earthquakes data base [1]-[5].

The role of the Sun-Moon Earth tides as possible earthquake’s trigger has been analyzed in [6]-[13]. However
the conclusion that the earthquake’s time is correlated with the time of tidal extremes is not exact, because in
some cases the beginning and the extremes of earthquakes do not coincide. There is an extreme but not an
earthquake.

The role of the atmospheric and ionosphere electromagnetic phenomena which can serve as earthquake’s
precursors in the last time has been researched in many studies. Physical models of the observed phenomena
were proposed in [ 14] and reliability of predictions was analyzed in [15] [16].

The heat released as earthquake’s precursor was researched in [17].

The variations of regional water-level reflect fast deformational cycles in lithosphere and may also serve as an
earthquake’s precursor as one was demonstrated by G.S. Vartanyan [18]. The comparison of the daily geomag-
netic fluctuations (geomagnetic quakes) and underground water level demonstrates that borehole water level data
may serve as an imminent regional earthquake’s precursor in the Caucasus region [19].

The analysis of data for radon concentrations and its fluctuations in the atmosphere and ground-water has been
demonstrated in many studies (see [19] [21]). The most accepted result is that anomalous (increased regional
concentration) of the radon emission can serve as a precursor of an earthquake.

The research of the correlation between variations of geo-electromagnetic field and impending earthquakes has
a long-time history [22]-[36].

A comparative analysis of the two measured values in time of geomagnetic field with the calculation of the
standard deviation (dispersion) in the same subintervals-periods of time allowed offering geomagnetic quake as an
earthquake precursor [36].

The calculation of the differences (DayDiff) between the times of the earthquakes occurred in the region around
the monitoring point and the nearest time of tide extremes permit to build the distribution of DayDiff. It was es-
tablished that this distribution is described well by Gauss curve with a certain width Wy,.

Introducing a new variable S_,,, with dimension surface energy density, which is a function of earthquake’s

magnitude, depth and distance to the monitoring point

Scpas (Mag, Depth, Distance)

and the calculation of its value in the monitoring point permits to classify the earthquakes occurred in the moni-
toring region and in the time period around tide extremes time.
The distribution of DayDiff for earthquakes with the biggest value of S,,,, is also described with Gauss

curve, but with less width 7,,.

In the paper [37] the DayDiff for all world’s 62,8873 earthquakes, occurred in the period 1981-2013, with
Mag >= 3 (International Seismological Centre, http:/www.isc.ac.uk/) was calculated and the distribution, de-
scribed by Gauss curve with width W, = 4.46 +/— 0.22.

The distributions of DayDiff for earthquakes with the biggest S, calculation from the data of
INTERMAGNET stations PAG (Panagurichte, BAS, Bulgaria, 1 January 2008 to 19 January 2013), SUA (SUA,
Romania, 1 January 2008 to 17 January 2013) and AQU (L’Aquila, Italy, 1 January 2008 to 30 May 2013) were
described by Gauss curves with widths 4.22 +/— 0.62,4.11 +/— 0.51 and 4.28 +/— 0.67. So, one can say that the
appearance of geomagnetic quake forecasts that in the next period around time of tide extreme and monitoring
point region means an increase in the seismic activity.

There is a simple intuitive physical explanation [36] [38] of the fact that a geomagnetic quake is an earthquake’s
precursor:
¢ The increase of the strain before an earthquake is accompanied by electrochemical and electrokinetic effects

which generate electrical currents in the epifocal volume;
* These currents, which can be identified using the geomagnetic quake approach.
The earthquake’s preparing continues as follow:
¢ The preliminary stage of an earthquake is accompanied by negative divergence of the energy due to increased
dissipation of tidal waves;
¢ The maximum of two time daily tides’ acceleration leads to the transformation of this non-equilibrium state to
a new balance that is closer to bifurcation, which explains the role of tides as an earthquake’s trigger.
There is the hope that including the above described research of regional precursors in the common approach
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for solving the earthquake prediction problem (see the paper [39] and references there) will lead us to a solution.

In Section 2 is describing the approach for forecasting of imminent regional seismic activity on the basis of
Japan geomagnetic data and Sun-Moon Earth tide to de data. In Section 3 is demonstrated the reliability of geo-
magnetic quake approach for the regions (700 km) of Memambetsu, Kakioka, Kanoya stations. In Section 4 is
presented the description of precursor signal as a function of earthquake’s magnitude, depth and distance. In
Section 5 is presented the formulation of inverse problem for forecasting the magnitude, depth and epicenter
coordinates of regional imminent earthquake

In Application 1, Table 2 is present data for the stations, earthquake’s date, latidude, longitude, depth,
magnitude, the value of Scuay [J/km?], the distance from station [km], the difference between the predicted time
and the time of occurred earthquake [day], the values of experimetal and model precursor signal and its
difference (Expt—Th). Aplication 2 is presented the FORTRAN version of precursor signal function PrecSigTh
(Mag, Depth, Distance).

2. Forecasting of Imminent Japan Regional Seismic Activity on the Basis of
Geomagnetic and Sun-Moon Earth Tide Code Data

In this paragraph the data acquisition system for archiving, visualization and analysis is presented [36]-[38].

2.1. Description of the Approach—Figure 1

The data used:

* The Japan INTERMAGNET geomagnetic stations MMB (Memambetsu, Lat 43.907°N, Lon 144.193°E, Al-
titude = 42 m), KAK (Kakioka, Lat 36.232°N, Lon 140.186°E, Altitude = 36 m) KNY (Kanoya, Lat 31.42°N,
Lon 130.88°E, Altitude = 107 m) minute data (http://www.intermagnet.org/);

Kakioka, Japan diurnal geomagnetic and earthquake monitoring (700 km)

INTERMAGNET KAK Observatory, Kakioka, Japan

Lat 36.232° N, Lon 140.186° E, Altitude = 36 m _—_r Aindices ftp:/ftp.swpc.noaa.gov/pub/indices/DGD.txt
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Figure 1. Kakioka diurnal geomagnetic and earthquakes monitoring in the time period around the Fukushima earthquake

with geomagnetic field on 11 March 2011.
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* The software for calculation of the daily and minute Earth tide behaviour [40] (Dennis Milbert, NASA);

* The Earth tide extremes (daily average maximum, minimum and inflexed point) as a trigger of earthquakes;

» The data for World A-indices, www.swpc.noaa.gov.

The geomagnetic signal is calculated as a simple function of relative standard deviations of the components of
the geomagnetic vector. The precursor signal is the difference between today and yesterday’s geomagnetic sig-
nal corrected by the A- indices values. As the increase of precursor signal means increase of geomagnetic field
variability, we call such positive leap a geomagnetic quake in analogy with an earthquake. The analysis of the
correlation between the earthquakes occurred and the time of Sun- Moon Earth tide extremes on the basis of the
variable earthquake’s surface energy density Scuns permits to forecast the imminent regional seismic activity.
The calculation of the day differences (DayDiff) between the time of the earthquakes occurred and the time of
the nearest Tide extreme permits to build the curve of DayDiff and its Gauss fit. The comparison of Gauss
widths for all the earthquakes occurred and those with the biggest Scuqy is basis for formulation the hypothesis
for “predictable” earthquakes.

2.2. The Simple Mathematics and Description of Variables

The simple mathematics for the calculation of the precursor signal, the software for illustrating the reliability of
forecasting and its statistic estimation and the variables in Figure 1 are described as follows.
The Geomagnetic field components North ,East, ,Down, , m = 1440, are the minute averaged values of the

geomagnetic vector F, and the variables SdNorth,, SdEast,, SdDown, are their standard deviation, calcu-
lated for 1 hour, h=1,---,24):

60 (T 2
North, — North
SdNorth, =\/Zm-1< h ”’)

%0 Q)
where
M - M Q)
60

The geomagnetic signal GeomHourSig, is the geometrical sum of hour standard deviation normed by the
module of hour geomagnetic vector:

SdNorth; + SdEast; + SdDown; 3)
2

GeomHourSig, = > >
North, +East, +Down,

The A indices are the Low, Medium and High indices, calculated by the NOAA, Space weather prediction
center: www.swpc.noaa.gov. In this paper we use 4joy;
The variable GmsSig,,, is the diurnal mean value of GmHourSig), :

ZilGeomHourSigh
GeomSig dy = = 7 @
and PrecursorSig,,,
GeomSig,, , —GeomsSi
PrecursorSig y = Eaay 8 yesterday )

Alowday + Alowyesterday

The indices of earthquake’s magnitude value are the distance in hundred km between the epicenter and the
monitoring point.
The variable S,,, is the modified earthquake’s surface energy flow density in the monitoring point:

10(1 AMag+4.8)

[3/km? | (©6)

S, =
e (40+ Depth + Distance)2
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The variable PeriodicS,,,,Sum [J/km’] is the sum of the variable S,,,, for all earthquakes occurred in the
time period +/— 2.7 days before and after the tide extreme in the 700 km region around the monitoring point.
Obviously, its value can serve as estimation of the regional seismic activities for the time period around the
tide’s extreme.

The variable DiurnalS,,,, Sum [J/km® per day] is the sum of the variable S,,,, , calculated for all earth-
quakes occurred during the day in the 700 km region around the monitoring point. This variable can serve as a
quantitative measure of diurnal regional seismicity.

One has to note that the explicit form of the variable S_,,, was established in the framework of inverse
problem [41] [42] with the condition to have a clearer correlation between the variable PrecursorSig,,, and
PeriodicS,,,,,Sum .

The variable Tide Minute [cm] is the module of tide vector calculated every 15 minutes;

The variable Tide Day [cm)] is the diurnal mean value in time calculated in the analogy of mass center formu-
lae in many bodies’ classical mechanics:

- Z:’imTideDaym o
ime deDay = m= 0 O
Tidepay ZifflTideDaym

Note: For seconds and more samples per second, the generalization has to calculate geomagnetic field char-
acteristics for every minute and correspondingly the values of GmSig,,, have to be the average for 1440 min-
utes.

The positive value of the variable PrecursorSig,,, means that the geomagnetic field variability, which is

calculated via standard deviations of geomagnetic fileld components, is increasing. In analogy with earthquake
we call such increase a geomagnetic quake.

As one can see from Figure 1, after the appearance of a geomagnetic quake, in nine of twelve cases (75%),
the regional seismic activity is increasing (the bigger value of the PeriodicS,,,,Sum variable) in the time
period aroundthe followingtide extreme. So, the geomagneticquake approach described can serve as a forecast
of imminent regional seismic activity.

In Figure 1 the values of the variable PeriodicS,,,,,Sum are calculated not only in the time periods around
the extremes, but also in the time period between them. We can see that its values in almost every extreme pe-
riod are higher.

The use of the above described analysis for a longer time period with calculation of distribution of day dif-
ference between the “predicted” earthquakes (earthquakes with the highest value S,,, ) can demonstrate the
reliability of the approach for forecasting imminent regional seismic activity for regions with seismic risk.

3. Reliability of Geomagnetic Quake Approach Based on the Analyses of
INTERMAGNET Data from MMB (Memambetsu), KAK (Kakioka) and KNY
(Kanoya) Stations Located in Japan (Figures 2-12)

In the following Table 1 we present the sum of the variable S, for all earthquakes occurred in the station’s
region (700 km) and the sum of S, for predicted one, their division in persent and the widths of DayDiff
distribution Gauss fitfor all earhquakes, including the ones predicted.

The values of divisions near to 100% for all the three stations confirm the reliability of the imminent regional
seismic activity forecasting. The values of Gauss fit widths can be interpreted as a confirmation of our hypotesis
about “predicted” earthquakes: the stronger the earthquake is, the higher is the probability that after the
precursor signal it will occur in the region in the time period (+/— 1.97 days) around the time of the following
Tide’s extreme.

Table 1. Illustration of reliability.

Station  PrEqs Scyy Sum [J/km?]  AllEqs Sciv Sum [J/km?] Pr/All %  Gauss fit width all [day]  Gauss fit width PrEqs [day]

MMB 4.01E+12 4.11E+12 97.6 5.14+/-0.56 4.32+/-0.72
KAK 1.48E+13 1.68E+13 88.1 4.89+/-0.60 3.75+/-0.37
KNY 1.96E+10 1.98E+10 99.0 5.44+/-0.0 3.74+/-0.51
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Memambetsu, Japan diurnal geomagnetic and earthquake monitoring (700 km)

INTERMAGNET KMB Observatory, Kemambetsu, Japan
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Figure 2. The Memambetsu diurnal geomagnetic and earthquakes monitoringin the period around the time of the Fukushima
earthquake with geomagnetic field on 11 March 2011.

Memambetsu, Japan diurnal geomagnetic and earthquake monitoring (700 km)
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Figure 3. Memambetsu diurnal geomagnetic and earthquakes monitoring for the period 1 July 2014-1 January 2015.
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Kakioka, Japan diurnal geomagnetic and earthquake monitoring (700 km)
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Figure 6. Kakioka diurnal geomagnetic and earthquakes monitoring for the period 1 July 2014-1 January 2015.
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Figure 9. Kanoya diurnal geomagnetic and earthquakes monitoring with geomagnetic field on 30 June 2010.
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Figure 12. The distribution and its Gauss fit of DayDiff for the earthquakes predicted in Kanoya (700 km) region.

4. Description of Precursor Signal as a Function of Earthquake’s Magnitude,
Depth and Distance

Upon analysing the data for predicted earthquakes presented in Figure 5, Figure 8 and Figure 12, it was
established that there are sixteen earthquakes which are predicted from the signal in two stations simulta-
neously (see Table 2 in Application 1). So, we have 32 equations for precursor signals, earthquake’s magnitude
and depth as well as for the distances between the epicenters of the earthquakes occurred and the monitoring
points, in which 16 magnitudes and depths have equal values. In this way we have enough data to formulate the
inverse problem—solving the overdetemined system:

PrecursorSig™"" = Th(Mag,,Depth,, R , 4) ®)

where i=1,---,32, the distance between the epicenter x,,y, and the corresponding monitoring point x,,y, is
R =R(x,y,,%,,¥,) and A(a;, i=1,---,n)is a set of unknown digital parameters which define the behaviour of
the explicit form of function Th(Mag,,Depth,,R;, A). The discovery of its explicit form and the values of

parameter was performed with program code REGN [41]-[45] and its Fortran version is presented in Applica-
tion 2. One has to note that to facilitate the solution of the system we normed the values of PrecursorSig/™” by 10°.
The accuracy of description of the experimet is presented in the following Figure 13 by variable Res;:

1

Res, = (PrecursorSigiE"p ' —~Th(Mag,,Depth,,R,, A)) / PrecursorSig/ ™"

where i=1,---,32, (Figure 14 is the map illustration of Figure 13).

O,
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5. Formulation of Inverse Problem for Regional Imminent Forecasting
the Magnitude, Depth and Epicenter Coordinates of Earthquake

In this section we will present apossibility for solving the inverse problem for the parameters established for an
incoming earthquake—the time period, magnitude, depth and epicenter coordinate.

If our hypotesis for predicted earthquake is true, itmeans that after a geomagnetic quake in the following tide
extreme with anaccuracy equal to +/— 2 days al leas one earthquake in the region will occur.

From the previous section we know the explicit form of precursor signal depending on the magnitude, depth
and coordinates of the epicenter—4 variables. It means that the number of unkonwn parameters N is

N=2+2-G

where G is the number of geomagnetic monitoring points.

But the number of equations is G, which means that with a Network for only one precursor it is not possible
to solve the problem for calculation of Mag, Depth and Coordinates of an incoming earthquake.

The condition to have sufficient data for defining the overdetemined system of equations is:

242-G<P-G ©)

where P is the number of precursors (Earth Geomagnetic field, Earth currents field, Borehole water level, Radon
concentration, Soil temperature, Atmosphere and Earth core low frequency waves, lonosphere variability).
which has a solution if P > 3 at G > 2.

In case this condition is respected, the first stage of research allows to estimate the epicenter coordinates using
simple triangulation, the condition (9) is

24G<P-G (10)

with solution P> 2 and G >=2.

Of course, one has to note that the proposed scheme will take place after the reliability test of earthquake’s
precursors (mentioned in many papers) as Earth electric current, borehole water level, radon concentration, soil
temperature, ionosphere behaviour, low frequences wave in the atmosphere and the Earth core will be
performed.

6. Conclusions

The approach proposed for solving the problem of regional imminent “how, where and when” earthquake’s
prediction does not except the commonly accepted investigations based on seismology, geology, geoelectroma-
gnetism and JPS data.

The reliability test of the Earth currents, Borehole water level, Radon concentration, Atmosphere and the
terrestrial low frequency waves as demonstrated in this paper geomagnetic quake reliability for forerecasting the
regional seismic activity, after including them in a regional network, will give data for discovering the explicit
forms of different precursor signal functions. After collecting enough statistics for a suffucient number of
earhquakes occurred in the network region and solving the overdetermined systems defined from conditions (9)
or (10), we will have data for estimating the prediction accuracy for earthquake’s time period, magnitude, depth
and epifocal coordinates prediction accuracy.
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Application 1
Table 2. Fit data.

No StISt2 Date Lat Long Depth Mag SChtM Distance R TimeDiff PrecSignal ~ Th Res Def
MM.DD.YYYY km J/km? 100 km Day (Expt-Th)/Expt Expt-Th
1 KNYKAK  7.20.2010  34.28 135.533 34.28 4.902.70E+06  6.13 2.25  8.81E+00 8.37E+00 0.05 0.44
2 KAKKNY  7.20.2010  34.28 135.533 34.28 4.904.20E+06  4.75 227  476E+00 5.24E+00 —-0.10 —-0.48
3 KNYKAK 1.1.2012  31.456 138.072 31.46 6.80 8.20E+08  6.96 0.18  8.00E+00 7.67E+00 0.04 0.33
4 KAKKNY 1.1.2012  31.456 138.072 31.46 6.80 1.10E+09  5.66 0.80  4.54E+00 5.03E+00 —-0.11 -0.49
5 KNYKAK  4.12.2013  34.369 134.828 34.37 5.80 8.00E+07  5.75 242 226E+00 4.06E+00 —-0.80 —-1.80
6 KAKKNY  4.12.2013  34.369 134.828 34.37 5.809.30E+07  5.29 242  2.77E+00 3.34E+00 —-0.20 —-0.57
7 MMBKAK  6.27.2010  41.662 141.657 41.66 5.303.00E+07  3.25 2.44  422E+00 3.54E+00 0.16 0.68
8 MMBKAK  6.27.2010  41.662 141.657 41.66 5.303.00E+07  3.25 2.44  2.62E+00 3.54E+00 —-0.35 —0.92
9 MMBKAK 742010  39.697 142.369 39.70 6.305.70E+08  4.93 1.41  5.50E+00 4.84E+00 0.12 0.66
I0KAKMMB  7.4.2010  39.697 142.369 39.70 6.30 7.20E+08  4.31 030  2.73E+00 5.30E+00 —-0.94 -2.60
IIMMBKAK  8.10.2010  39.406 143.148 39.41 590 1.40E+08  5.09 0.79  4.45E+00 4.53E+00 —-0.02 —-0.08
12KAKMMB  8.10.2010  39.406 143.148 39.41 590 1.80E+08  4.39 0.19  5.83E+00 4.68E+00 0.20 1.20
I3MMBKAK  9.1.2010  37.925 141.788 37.93 5.20 6.50E+06  6.96 1.81  1.45E+00 2.55E+00 -0.76 -1.10
14KAKMMB  9.1.2010  37.925 141.788 37.93 5.203.90E+07  2.36 1.78  4.37E+00 4.11E+00 0.06 0.26
ISMMBKAK  12.6.2010  40.904 142.967 40.90 5.70 1.30E+08  3.49 0.79  5.67E+00 5.91E+00 —-0.04 —-0.24
I6KAKMMB  12.6.2010  40.904 142.967 40.90 5.70 5.50E+07  5.73 0.77  5.52E+00 4.36E+00 0.21 1.20
17MMBKAK  6.8.2014  39.164 141.709 39.16 5.208.10E+06  5.67 2.70  4.34E+00 4.05E+00 0.07 0.29
ISKAKMMB  6.8.2014  39.164 141.709 39.16 5.20 1.70E+07  3.53 1.62  4.70E+00 5.53E+00 —-0.18 —-0.83
I9MMBKAK  3.11.2011  38.297 142.373 38.30 9.003.90E+12  6.43 029  5.94E+00 7.23E+00 -0.22 -1.30
20KAKMMB  3.11.2011  38.297 142.373 38.30 9.00 1.50E+13  3.01 0.23  9.20E+00 8.05E+00 0.13 1.20
21MMBKAK  5.5.2011 38.17 144.032 38.17 6.00 1.30E+08  6.39 0.18  4.20E+00 3.74E+00 0.11 0.46
22KAKMMB  5.5.2011 38.17 144.032 38.17 6.003.10E+08  4.03 1.21  2.60E+00 2.69E+00 —-0.03 -0.09
23MMBKAK  6.22.2011  39.955 142.205 39.96 6.70 2.40E+09  4.70 0.65 4.55E+00 3.52E+00 0.23 1.00
24KAKMMB  6.22.2011  39.955 142.205 39.96 6.70 2.60E+09  4.50 0.69  3.49E+00 3.64E+00 —-0.04 —-0.14
25MMBKAK  10.1.2012  39.808 143.099 39.81 6.103.30E+08  4.65 1.39  2.65E+00 4.54E+00 -0.71 -1.90
26KAKMMB  10.1.2012  39.808 143.099 39.81 6.103.20E+08  4.73 2.43  7.87E+00 4.51E+00 0.43 3.40
27MMBKAK 10.25.2012  38.306 141.699 38.31 5.602.80E+07  6.58 1.98  5.73E+00 4.30E+00 0.25 1.40
28 KAKMMB  10.25.2012  38.306 141.699 38.31 5.60 1.20E+08  2.67 1.93  2.94E+00 4.23E+00 —-0.44 -1.30
29MMBKAK  12.7.2012  37.89 143.949 37.89 7.30 1.00E+10  6.70 0.94  5.38E+00 5.41E+00 —-0.01 —-0.03
30KAKMMB  12.7.2012  37.89 143.949 37.89 7.302.70E+10  3.82 091  4.09E+00 4.10E+00 0.00 —-0.01
31IMMBKAK  7.10.2013  39.638 141.705 39.64 5.30 1.40E+07  5.18 1.78  2.01E+00 2.55E+00 -0.27 —-0.54

32KAKMMB  7.10.2013  39.638 141.705 39.64 5.302.00E+07  4.02 1.80  4.83E+00 3.08E+00 0.36 1.80
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Application 2: The FORTRAN Version of Precursor Signal Function

Function PrecSigTh (aMag, Depth, Distance)

IMPLICIT DOUBLE PRECISION (A-H, O-7)

DIMENSION A (16)

DATA A/0.653118375493643180E+04, 0.239327649144353849E+02, —0.441055930229294688E+03,
—0.190062527379474363E+04, &

—0.195894833103010524E+04, —0.514929656067517226E+04, —0.745560820661331309E+04,
0.421788002467532533E+04, &

0.420599862430744270E+04, 0.319880390225624069E+04, —0.583971362592100718E+01,
0.536940127973910677E+02, &

0.510487668346017074E+03, 0.287881656908347106E+00, —0.264988287827522662E+01,
—0.614005144491253532E+02/

DepL = dlog(Depth); DisL = dlog(Distance)

Strl = a(2)*aMag + a(3)*DepL + a(4)*DisL

Str2 = a(5)/aMag + a(6)/(DepL+1.d0) + a(7)/(DisL+1.d0)

Str3 = a(8)/aMag**2 + a(9)/(DepL+1.d0)**2 + a(10)/(DisL+1.d0)**2

Str4 = a(11)*aMag**2 + a(12)*DepL**2 + a(13)*DisL**2

Str5 = a(14)*aMag**3 + a(15)*DepL**3 + a(16)*DisL**3

PrecSigTh = (eexp(a(l) + Strl + Str2 + Str3 + Str4 +Str5))

RETURN

END
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