
Open Journal of Earthquake Research, 2013, 2, 1-20 
http://dx.doi.org/10.4236/ojer.2013.21001 Published Online February 2013 (http://www.scirp.org/journal/ojer) 

A Wavelet Transform Method to Detect P and S-Phases 
in Three Component Seismic Data 

Salam Al-Hashmi1*, Adrian Rawlins2, Frank Vernon3 
1Earthquake Monitoring Center, Sultan Qaboos University, Muscat, Oman 

2University of Newcastle upon Tyne, Newcastle upon Tyne, UK 
3Institute of Geophysics and Planetary Physics, University of California, San Diego, USA 

Email: *salam95@squ.edu.om 
 

Received December 6, 2012; revised January 14, 2013; accepted 5 February 2013 

ABSTRACT 

The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detec-
tion algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform co-
efficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event 
direction from three component seismic data that represents the ground displacement in three orthogonal directions. The 
essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales 
of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is 
detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be 
very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. 
Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm 
from local and regional earthquakes and found to be consistent. 
 
Keywords: Discrete Time Wavelet Transform; P and S-phases; Automatic Detection; Rectilinearity Function 

1. Introduction 

Seismic events such as earthquakes cause a release of 
energy represented by seismic waves that can be re-
corded by seismic monitoring stations. Detection of seis- 
mic waves and estimation of their arrival times provides 
information about earthquake location and magnitude. 
Analysis and detection of seismic waves may be done by 
visual inspection by a trained analyst or automatic analy-
sis software. 

Rapid and accurate detection of seismic waves is of 
great importance in locating earthquakes [1-10]. Auto-
matic detection techniques are of interest because they 
can be processed in near real-time; they apply a consis-
tent set of metrics and are repeatable. However, it is of-
ten very difficult to determine consistent estimates of P 
and S waves if they have low signal-to-noise characteris-
tics, particularly if arriving at seismic stations at regional 
distances. 

The objectives of this research are: 
1) To design an algorithm for the detection and analy-

sis of the two main types of seismic body waves (P and 
S-phases). 

2) To test the algorithm using seismic events recorded 

by various stations at local and regional distances, and 
then compares the results with the results obtained by 
other methods. 

Several methods have been tried recently these that 
have involved digital signal processing in both time and 
frequency domains [11-13]. The method adopted here is 
wavelet transform using an approach initially developed 
by K. Anant and F. Dowla [11]. 

The algorithms have been developed in Matlab 6.5TM 
(http://www.mathworks.com) including signal processing 
and WaveLabTM (http://www-stat.stanford.edu/~wavelab) 
toolboxes. WaveLab is a library of Matlab routines for 
wavelet analysis, wavelet-packet analysis, cosine-packet 
analysis and matching practice. The algorithms can be 
run on a laptop with 256 MB RAM or on a mainframe 
computer. 

Seismic Data Used in Testing 

Seismic data from Earthquake Monitoring Center in 
Oman has been used for testing the algorithms. The ANZA 
Broadband Seismic Network (http://eqinfo.ucsd.edu) also 
provided analyst reviewed data and STA/LTA automatic 
detected data used for comparison with the wavelet de-
tector. *Corresponding author. 
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The paper structured as follows: An introduction about 
wavelet transform is given in Section 2. Section 2 also 
includes description of the discrete time wavelet trans-
forms, its application on seismic signals to match specific 
features and how the selection of wavelet type has been 
done in this study. The multiresolution analysis techni- 
que and the perfect reconstruction filter banks are ex-
plained too. The developed software and methodology 
are explained in Section 3. The flow charts of the algo-
rithms are illustrated in Appendix B and a detailed anno-
tation is given in Section 3 too. The results are discussed 
in Section 4. Comments about the testing results and the 
comparison results with other methods are presented in 
Section 5. 

2. Wavelet Transform Analysis 

2.1. Introduction 

The wavelet transform is a very useful tool for analysing 
noisy and transient signals and has the ability to represent 
the signal in both its time and frequency domains. It is a 
very useful tool in the analysis of non-stationary signals 
such as seismic signals due to its ability to resolve fea-
tures at various scales [14]. 

The wavelet theory arises in 1909 when Haar con-
structs the first orthonormal system of compactly sup-
ported functions called the Haar basis [15]. 

The term wavelet has been coined in the field of seis-
mology in 1940 by Ricker, N. [15]. The wavelet theory 
has been applied on seismic signals by Grossmann and 
Morlet in 1984 [11]. In 1988, Daubechies developed an 
orthonormal, compactly supported wavelet basis that is 
smoother than Haar basis [14-16]. Application of wavelet 
transform on seismic signals has been done by Anant and 
Dowla [11], Oonincx, P. J. [12] as well as by Zhang et al. 
2003 [13]. 

The wavelets form a family. The basic form is called 
the mother wavelet. All the daughter wavelets are de-
rived from this wavelet according the following equation: 

 ,

1
s

t
t

ss


  
 


             (2.1) 

where, s and   are the scale and translation of the 
daughter wavelet. The term s−1/2 normalizes the energy 
for different scales, whereas the other terms define the 
width and translation of the wavelet. 

Digital signal analysis using wavelet transforms begins 
with the construction of a single parent wavelet. The 
signal is then decomposed into a series of basis functions 
of finite length consisting of dilated (stretched) and 
translated (shifted) versions of this parent wavelet func-
tion, i.e., wavelets of different scales and positions in 
time or space. This process is similar to Fourier analysis, 
where the parent wavelet is analogous to the sine wave, 

and the basis functions in Fourier decomposition are sine 
waves of various amplitude, phase, and frequency varia-
tions of the parent sine wave [14,17]. 

Scaling a wavelet simply means stretching (or com-
pressing) it. The smaller the scale factor, the more “com-
pressed” the wavelet. The more stretched the wavelet, the 
longer the portion of the signal with which it is being 
compared, and thus the coarser the signal features being 
measured by the wavelet coefficients. Thus, there is a 
correspondence between wavelet scales and frequency as 
revealed by wavelet analysis: 
 Low scale s   compressed wavelet   rapidly 

changing details   High frequency ω. 
 High scale s   Stretched wavelet   Slowly 

changing, coarse features   Low frequency ω. 
The decomposition advantage is very useful in dealing 

with signals contain features with various frequency 
characteristics. Another advantage of the wavelet trans-
form is that its analysis can be chosen based on the ap-
plication [11]. 

Figure 1 shows seismic signal at top and wavelet co-
efficients of six scales where “Daubechies 8” wavelet has 
been used. The smallest scale is the one that contains the 
highest frequency while the largest scale is the one that 
contain the lowest frequency. 

2.2. The Discrete Time Wavelet Transform 

A discrete type of wavelet transform exists, termed the 
discrete time wavelet transform (DTWT), where scales 
and shifts take on discrete values. It allows fast computa-
tion of the transform for the digitized signals and gives 
perfect signal reconstruction. It is a form of multiresolu-
tion analysis and is related to perfect reconstruction filter 
banks [14,18,19]. 

The wavelet transform can be applied to seismic sig-
nals in terms of the type of decomposition as well as in 
terms of pattern matching [11,12]. 

In wavelet analysis, we often speak of approximations 
and details. The approximations are the high-scale, low- 
frequency components of the signal while the details are 
the low-scale, high-frequency components. Figure 2 
shows that the input signal is filtered by a low-pass and 
high-pass filters in one stage wavelet transform. Then, 
the signal is down-sampled by a factor of 2 to produce 
DWT coefficients. 

2.2.1. Subband Coding 
The DTWT is implemented using the sub-band coding 
scheme represented in Figure 3. The signal is decom-
posed into 2 frequency bands: low (approximations) and 
high (details). For the approximation and detail coeffi-
cients to represent a discrete-time wavelet decomposition 
H and G filters must belong to a perfect reconstruction 
filter bank and required to be regular [14,18,20,21]. 
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Figure 1. Seismic signal decomposed into several scales. 
 

LP
 

Figure 2. One stage wavelet transforms. 
 

The wavelet analysis involves filtering and down- 
sampling while the wavelet reconstruction process con-
sists of up-sampling and filtering. Up-sampling is in-
creasing the number of samples by inserting zeros be-
tween samples. 

The following filters then perform an interpolation by 
filling in the zero points with the appropriate signal in-
formation. 

The filtering part of the reconstruction process bears 
some discussion, because it is the choice of filters that is 
crucial in achieving perfect reconstruction of the original 
signal. 

Figure 4 is a typical example of such filters magnitude 

responses. 
The down-sampling of the signal components per-

formed during the decomposition phase introduces a dis-
tortion called aliasing. It turns out that by carefully 
choosing filters for the decomposition and reconstruction 
phases that are closely related, we can “cancel out” the 
effects of aliasing. 

In order for the low- and high-pass decomposition fil-
ters (H and G), together with their associated reconstruc-
tion filters (L* and G*) shown in Figure 3 to perform 
such decomposition and reconstruction a system of what 
is called Quadrature Mirror Filters is used [14,17,19]. 

2.2.2. Quadrature Mirror Filters 
QMF banks are a set of finite impulse response (FIR) 
filters that enable a signal to be decomposed into sub- 
bands and allow reconstruction of the signal from the 
sub-bands without distortion. It is an example of decima-
tion and interpolation and allows designing two-channel 
perfect reconstruction filter banks and therefore to gener-
ate wavelet bases. 

The analysis filters have typically low pass and high 
pass frequency responses with a cutoff at π 2  (the 
“quadrature frequency”) as illustrated in Figure 4. The 
philosophy of QMFs is to allow aliasing to be introduced 
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by using overlapping filters for the analysis bank and 
design the synthesis filters in such a way that any alias-
ing is exactly cancelled out in the reconstruction process. 
Filters are also designed so that overall amplitude and 
phase distortion are minimized or eliminated. 

2.3. Wavelet Type Selection 

The selection of wavelet type is crucial in the processing. 
It can depend on seismic arrival shapes. Therefore, the 
wavelets used in the processing are chosen based on 
matching the seismic phase’s arrival shapes. Thus, the 
selection will rely on the event as well as on the station 
that recorded this event. This is because the arrival 
shapes will vary from event to event and between the 
different stations as the seismic waves travel through 
different media and distances for each event and for each 
monitoring station. 

Figure 5 shows some of the wavelets used in the 
wavelet transform decomposition. 

In some cases where P-arrival shape clearly identified, 
it can be noticed that the wavelet that produce a compos-
ite function CT (the function that is used to locate S-ar- 
rival time) with the highest magnitude is closest in shape 
to P-arrival. 

Figures 6 and 7 illustrate examples of P-arrival shapes 
of two different events. In the first example the P-arrival  

shape seems similar to Daubechies 8 while in the second 
example the P-arrival shape seems similar to Daubechies 
6. 

In our analysis the wavelet type selection was verified 
to be more important with respect to S-phase arrival, 
while the P-arrival is not affected significantly by the 
wavelet that is applied. This was also proved by Anant 
and Dowla [11]. 

3. Software Development 

3.1. Introduction 

The software is developed in Matlab 6.5TM including 
signal processing and WavelabTM toolboxes. It consists 
of two algorithms: the P-phase detection algorithm and 
S-phase detection algorithm described in the sections 
below. The P-phase detection algorithm can be catego-
rized into three main modules: 

1) DTWT Processing that includes the following: 
 Multiresolution Analysis 

 Signal Decomposition (For east, north and ver-
tical components). 

 Coefficients Reconstruction (For east, north and 
vertical components). 

2) The Composite Rectilinearity Function Construc-
tion 
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Figure 3. Sub-band coding scheme. 
 

 

Figure 4. Magnitude responses of analysis filters. 
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Figure 5. Some of the wavelets used in the research. 
 

3) Backazimuth calculation 
The S-phase detection algorithm can also be catego-

rized into three main modules: 
1) Components Rotation 
2) DTWT Processing that includes the following: 
 Multiresolution Analysis 

 Signal Decomposition (For radial and transverse 
components). 

 Coefficients Reconstruction (For radial and 
transverse components). 

3) Constructing the Composite Function of Transverse 
over Radial Amplitude Ratio. 

3.2. P-Phase Detection Algorithm 

It is known that the P-phase is linearly polarized with 
respect to the direction of propagation. Therefore, a met-
ric that measures the degree of linear polarization is 
helpful to detect the P-phase arrival. Such a metric 
known as the rectilinearity function is defined by Kana- 
sewich [22].  

Its equation is: 

 2 1  F 1                (3.1) 

where 1  and 2  are the largest and the second largest 
eigenvalues of the covariance matrix respectively. 

If the covariance matrix (Equation 3.2) is diagonalized, 
an estimate of the rectilinearity of particle motion trajec-
tory over the specified time window can be obtained 
from the ratio of the principal axis of this matrix [22] i.e. 
the rectilinearity estimation can be obtained from the 
ratio of the largest and the second largest eigenvalues of 
the covariance matrix. The covariance matrix [23] is de-
fined as: 

    
     
     

, ,

, ,

, ,

Cov X X Cov X Y Cov X Z

Cov Y X Cov Y Y Cov Y Z

Cov Z X Cov Z Y Cov Z Z

,

,

,

 
   
  

M   (3.2) 

where, 
X: east component wavelet coefficients at scale j; 
Y: north component wavelet coefficients at scale j; 
Z: vertical component wavelet coefficients at scale j. 
While the covariance of X and Y is defined as:  
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Figure 6. P-phase arrival of an earthquake record and the lower plot is a zoomed view of the arrival. 
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where X  and Y  are the mean values of X and Y 
respectively. 

The direction of polarization may be measured by 
considering the eigenvector of the largest principal axis 
[22]. If 1  is the largest eigenvalue and 2  is the next 
largest eigenvalue of the covariance matrix, then a func-
tion of the form as in (Equat on 3.1) would be close to  i  
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Figure 7. P-phase arrival of an earthquake record and a zoomed view of the arrival. 
 
unity when rectilinearity is high ( 1 2  ) and close to 
zero when two principal axes approach one another in 
magnitude (low rectilinearity). 

The direction of polarization can be determined by 
considering the components of the eigenvector associated 

with the largest eigenvalue with respect to the coordinate 
directions X, Y and Z. 

The P-phase algorithm is developed as can be de-
scribed in the following steps: 

1) Processing the three component seismic signals 
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using Discrete Time Wavelet Transform (DTWT) 
A three component seismic signals represented by east 

(X), north (Y) and vertical (Z) are processed by the dis-
crete time wavelet transform (DTWT) to calculate the 
wavelet coefficients wc1, wc2 and wc3 respectively. 

“Daubechies” wavelets are used in this process be-
cause of their compact support basis functions and their 
shape that coincide with seismic wave arrivals shapes. 

Multiresolution Analysis 
Each component is decomposed into several scales. So, 

the results are the wavelet coefficients x1
j, x2

j and x3
j for 

east, north and vertical components respectively (j is the 
number of scales). 

2) Constructing the rectilinearity function 
At each scale, a pointwise moving window is con-

structed over the three components as shown in Figure 8. 
The window length is determined using a measure 

called the varimax norm that is described in Appendix A. 
At each window, a 3-by-3 covariance matrix is con-
structed by using Equation (3.2) with x1

j substituted for X, 
x2

j substituted for Y and x3
j substituted for Z. Then, ei-

genvalues and their corresponding eigenvectors are cal-
culated. 

At each window the rectilinearity function is con-
structed so that the result is a rectilinearity function (Fj) 
for each scale. Then, a composite rectilinearity function 
(Cf) is constructed so that the rectilinearity function of 
each scale contributes in this function. This composite 
function is constructed by (Equation 3.4). 

j

Cf Fj                (3.4) 

where j is the scale number.  
The location where this function gets its maximum 

value is taken as the P-arrival time. 
3) Calculating the back azimuth angle 
Back-azimuth is the angle measured from north to the 

direction from which the energy arrives at a given station 
[24,25]. It is used to determine the longitudinal and 
transverse directions for an incoming ray at a prescribed 
station. For an incident P wave the backazimuth is calcu-
lated by constructing the rectilinearity function and find-
ing the eigenvector associated with the maximum eigen-
value for the detected P-wave. This eigenvector repre- 
 

 
Nwin 

Figure 8. Illustration of windowing used to calculate co-
variance matrices. 

sents the direction of linear polarization that specifies the 
back azimuth angle. This calculation can be conducted at 
each wavelet scale as well as on the original signals. But, 
since the original three component signals generally 
contain noise, the calculation is carried out at the third 
and higher scales while the first two scales that contain 
high frequency noise are excluded. It is found that the 
polarization is conserved along different scales i.e. the 
same backazimuth angle is obtained in the different 
scales. So, one value is considered in the processing. 

3.3. S-Phase Detection Algorithm 

The S-phase is a shear wave with particle motion in the 
transverse direction [22]. Accordingly, it has higher am-
plitude in the transverse component relative to its ampli-
tude in the radial or vertical component. So, in order to 
locate the S-phase arrival, the amplitude ratio of the 
transverse to radial components of the earthquake record 
is analyzed. 

The S-phase algorithm is developed and can be de-
scribed as follows: 

1) Rotating the east and north components 
The backazimuth angle    calculated in the previ-

ous part is used to rotate the east and north components 
to radial and transverse components respectively using 
the following equation: 

sin cos

cos sin

dr X

dt Y

 
 

     
          

           (3.5) 

where dr and dt are the radial and transverse component 
respectively. 

2) Processing the radial and transverse components 
by the discrete time wavelet transform (DTWT) 

The radial and transverse components processed by the 
DTWT. So, the result is several scales for each compo-
nent. Referring to the algorithm the result is xj and yj that 
represents the different scales for radial and transverse 
components respectively (j is the number of scales). 

3) Constructing the amplitude ratio 
At each scale, a transverse over radial amplitude ratio 

is calculated as follows: 

 
j

j

j j

envt

envt envr



Atr             (3.6) 

where envtj and envrj are the envelope functions of trans-
verse and radial components respectively. 

The envelope function is used to avoid divide-by-zero 
problems. It is defined as 

2 2( )env x x h                (3.7) 

where h is the Hilbert transform of x. 
All scales are combined to construct a second compos-

ite function (CT) to be used to locate the S-arrival. 
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j

j

AtrCT               (3.8) 

The point after the P arrival time that has a value that 
is at least one half the maximum of CT is chosen for the 
S arrival time. The peak of CT itself is not used because 
it represents the time when S-wave attains its highest 
amplitude which is few seconds after its arrival time [11]. 

Several wavelets are used in the wavelet transform 
decomposition because the choice of wavelet that used in 
the processing is very important in how well CT locates 
the S arrival time. 

4. Results 

4.1. Introduction 

The algorithm has been tested by a real seismic data rep-
resented by several events recorded on various three 
components stations. The tested events apart from event 
17 are distributed as shown in Figure 9. The Figure il-
lustrates the tested events in orange circles as they lo-
cated according to the stations in dark blue and black 
triangles for short period and broadband stations respec-
tively. The purpose of this testing is to investigate if the 
project objectives listed in section 1 are achieved. To 
measure the performance of the algorithm, the algorithm 
results are compared with manual inspection results as 
well as with another automatic algorithm results (STA/ 
LTA method). 

The performance of the system is measured by two 
ways: the first way is testing the ability of the software to 

detect P and S waves. However, the second way is com-
paring the results with another system results to see how 
accurate the system is. 

4.2. P-Phase Detection Algorithm Results 

The rectilinearity function proved to be an effective met-
ric in locating the P-arrival time. Figure 10 shows the 
rectilinearity functions of six different scales obtained by 
testing the algorithm with event 21. It can be observed 
that the rectilinearity function is approximately equal to 1 
when the waveform is linearly polarized and equal to 
zero when there is no linear polarization. This can be 
seen clearly in the first four scales. 

Figure 11 shows the testing result of an earthquake 
(event 24). It illustrates the composite rectilinearity func-
tion Cf and how it is used to locate the P-arrival time. 

Figure 12 shows the tested result of another earth-
quake (event 1) and the composite rectilinearity function 
Cf. It shows that the peak of this function is used to de-
termine the P-arrival time. It can be observed from the 
figure that the position at this function is a maximum is 
where P-phase arrives. 

Figure 13 illustrates the direction of Arabian Sea 
earthquake (event 4) as the result of testing the algorithm 
by three component data recorded by ABT station (one 
of the southern stations). Referring to Figure 9 it can be 
observed that ABT station is located in Southern Oman, 
which means that the algorithm indicates the event direc-
tion accurately as the event occurred in Arabian Sea. 

In order to test the performance of the algorithm, it is 
 

 

Figure 9. Distribution of tested events according to seismic stations. 
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Figure 10. Three component waveforms of event 21 and its related rectilinearity functions of six different scales. 
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Figure 11. Three component data (east, north and vertical) of event 24 recorded by WBK station (one of the northern stations) 
with epicentral distance of 386.4 km and backazimuth of 106.9 degrees and the composite rectilinearity function Cf. 

 

 

Figure 12. Three component data (east, north and vertical components) of event 1 recorded by JMD station with epicentral 
distance of 545.898 km and back azimuth of 96.03 degrees and the composite function Cf. 
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Figure 13. The direction of event 4 from ABT station. 
 
tested by an event of magnitude 1.35 that occurs in Cali-
fornia-Mexico border region (event 17). The purpose of 
this testing is to compare the algorithm results with the 
results obtained by another automatic detector and man-
ual inspection that has been done by an analyst from the 
Broadband Array data collection center at the University 
of California, San Diego. The comparison between the 
analyst result and the algorithm result is illustrated in 
Figure 14. It can be noticed that the results are consistent 
with each other. 

The three components signals illustrated in Figure 14 
are recorded by a station with noisy local conditions 
(BVDA2 of ANZA network). That’s why; the STA/LTA 
(short term average/long term average) method couldn’t 
give a result for P-arrival time for the data recorded by 
this station. However, the P-phase detection algorithm 
gives a good result though of this noise condition. 

The algorithm result is compared with the analyst re-
sult as well as with STA/LTA results. The comparison 
shows that the three results are consistent with each other 
as illustrated in Figure 15. 

To enhance the algorithm results, they compared with 
the results of STA/LTA and analyst results of all the 
events listed in Table 1. The time difference in the arri-
val pick of the algorithm and that of the analyst is shown 
in Figure 16. It can be observed that the mean magnitude 
of algorithm error is low (0.1952 seconds) as compared 
with STA/LTA mean magnitude error (0.3982 seconds). 

This proves that the performance of the algorithm is effi-
cient. 

4.3. S-Phase Detection Algorithm Results 

As stated earlier in Section 3, various wavelets are used 
in the wavelet transform decomposition. The wavelet is 
chosen to match the pattern of S-phase to provide the 
best match in the wavelet scales and thus give the com-
posite function CT with the greatest dynamic range. 
Therefore, the composite function with the highest am-
plitude peak is used to locate the S-arrival. 

The S-phase detection algorithm is tested by the same 
events used to test the P-phase detection algorithm.  Its 
testing results of event 17 are compared with the analyst 
results as shown in Figure 17 while STA/LTA method 
failed to give any result for S-arrival. 

Figures 18 and 19 show the results of testing the algo-
rithm by two different events (event 4 and event 18 re-
spectively). They illustrate the radial and transverse com- 
ponents and the composite function that constructed to 
be used to detect the S-arrival time. They show that the 
composite function of transverse to radial amplitude ratio 
accurately succeeded to determine the S-phase arrival as 
can be noticed from the figures that the peak of this func-
tion indicates the position where S-phase attains its 
highest magnitude while the onset time of S-phase is few 
seconds before this peak. 
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Figure 14. The three component signals of event 17 zoomed around P-arrival time to compare the analyst result with the al-
gorithm result. 

 

 

Figure 15. The result of comparing the algorithm with the analyst result and STA/LTA result when testing it by event 17 re-
corded by MONP station(Anza network) with epicentral distance of 10.656 km and backazimuth of 255.49 degrees. 
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Table 4. List of tested events. 

Event No. Date of occurrence Origin time Latitude Longitude Depth Location 

1 01/12/2002 03:43:37 22.11 63.41 30 Arabian Sea 

2 02/12/2002 05:00:28 33.8 32.22 60 Eastern Mediterranean 

3 03/12/2002 21:42:48 28.26 52.77 50 Southern Iran 

4 03/12/2002 23:08:47 17.21 59.56 50 Arabian Sea 

5 09/05/2003 00:03:38 26.7817 54.047 50 Southern Iran 

6 09/05/2003 00:47:03 27.2357 54.1686 20 Southern Iran 

7 09/05/2003 05:54:43 27.4024 55.9109 20 Southern Iran 

8 09/05/2003 10:34:07 27.2866 54.2007 35.4 Southern Iran 

9 09/05/2003 12:01:30 27.0192 54.0923 30 Southern Iran 

10 09/05/2003 16:42:17 28.0641 58.1985 50 Southern Iran 

11 09/05/2003 19:17:03 28.6498 52.124 20 Southern Iran 

12 10/05/2003 06:39:31 27.6593 60.5815 20 Southern Iran 

13 10/05/2003 15:47:46 27.7768 50.1192 30 Persian Gulf 

14 11/05/2003 10:17:28 28.9479 51.5855 20 Southern Iran 

15 11/05/2003 10:56:14 24.1477 58.8162 36.7 Gulf of Oman 

16 11/05/2003 18:01:53 19.1998 59.1707 20 Arabian Sea 

17 26/07/2003 05:56:37 15.4463 116.3117 32.92 California-Mexico Border Region 

18 24/06/2004 21:56:05 28.0082 58.2898 50 Southern Iran 

19 24/07/2004 00:00:01 23.1694 58.662 30 Eastern Arabian Peninsula 

20 27/07/2004 05:10:44 23.3008 63.3888 30 Near Coast of Pakistan 

21 05/08/2004 08:38:24 14.3831 51.4685 20 Eastern Gulf of Aden 

22 29/08/2004 00:43:18 22.1723 61.7808 30 Arabian Sea 

23 30/08/2004 08:19:58 26.0658 56.5246 31.8 Southern Iran 

24 13/12/2004 01:36:04 21.6386 62.568 35 Arabian Sea 

25 13/03/2005 03:31:27 26.6853 61.7142 30 Southern Iran 

26 23/03/2005 19:49:33 22.3243 59.4517 13.95 Eastern Arabian Peninsula 

27 24/03/2005 00:37:12 22.0547 61.5609 38.6 Arabian Sea 

28 03/05/2005 07:20:43 35.8229 47.9509 30 Western Iran 

 

 

Figure 16. Residual plot of P-Phase arrival. 
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Figure 17. The three component signals of event 17 recorded by BVDA2 station with epicentral distance of 45.732 km and 
backazimuth of 353.73 degrees, zoomed around S-arrival time to compare the analyst result with the algorithm result. 

 

 

Figure 18. The radial and transverse components of event 4 recorded by ABT station with epicentral distance of 664.224 km 
and backazimuth of 43.9 degrees, and the composite function of the transverse to radial amplitude ratio. 
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Figure 19. The radial and transverse components of event 18 recorded by BAN station (one of the broadband stations in 
northern Oman) with epicentral distance of 274.5 and backazimuth of 40.8 degrees and the composite function of transverse 
to radial amplitude ratio. 
 

Figure 20 shows the residual plot of S-Phase arrival 
that illustrates the error between the algorithm and the 
analyst results (in circles) and the error between STA/ 
LTA results and the analyst results (in asterisks). It can 
be noticed that the mean magnitude error of the algo-
rithm error is low (0.8197 seconds). In addition, it can be 
observed that there is no S-pick from STA/LTA for event 
17 while the algorithm has good results and consistent 
with the analyst results. 

As mentioned earlier in Section 4.3, several wavelets 
are independently used in the wavelet decomposition and 
the resulting CT of the highest dynamic range has been 
chosen to determine the S-arrival time. The results show 
that “Daubechies 8” wavelet is a good choice for most of 
the tested events. While the other wavelets such as 
“Daubechies 12” and “Daubechies 20” give good results 
for some events. This wavelet selection has been done 
according to the expected arrival shapes as described in 
details in Section 2. 

5. Conclusions 

Since the main objective of the project is to develop an 
algorithm that automatically detects particular classes of 
seismic wave, the software has been developed to detect 

P and S-phases in three component seismic data. 
The algorithm has been tested by a real seismic data 

represented by multiple local and regional events re-
corded on various three components stations where it 
successfully detected P and S-phases. 

Two important concepts have been presented in this 
research. The first concept is decomposing the signal into 
several resolutions or scales; important features in the 
seismic signals can be identified. Strong features in a 
signal can be maintained in several scales while weaker 
features will present in fewer scales or just one scale. The 
second concept is the wavelet type selection that depends  
on matching the wavelet to the arrival shapes. 

The results of the software have been compared with a 
human analyst results as well as with the results obtained 
by software that uses STA/LTA (short term average/long 
term average) method. From the comparison results it 
can be concluded that the composite rectilinearity func-
tion and the composite function of transverse to radial 
amplitude ratio accurately determined P and S arrivals 
respectively. The results are consistent with the manual 
inspection results that done by an analyst as well as with 
other software based method in current professional use. 
The results showed that the STA/LTA failed to give any 
detection for S-phase of the tested events recorded by      
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Figure 20. Residual plot of S-phase arrival. 
 
stations with low signal to noise ratio conditions. In addi-
tion, the STA/LTA will fail to give a result for P-phase in 
low signal-to-noise conditions. However, the P and 
S-phase wavelet detection algorithms provided good re-
sults for P and S-arrivals and the results are consistent 
with the human analyst results.  

To sum up, the developed wavelet algorithm can ac-
curately determine the P and S arrivals in spite of the low 
signal-to-noise ratio. Furthermore, the software succeed- 
ed in determining back azimuths towards the earthquake 
sources. 

The developed software can be used for a daily routine 
analysis in the seismological laboratories. In order to 
achieve this it should be tested by a huge amount of data 
set so that the parameters such as wavelet type that used 
in the DTWT analysis and the window size that used to 
construct the covariance matrices can be fixed.  
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Appendix A 

As mentioned in Section 3, a covariance matrix Mj[i] is 
calculated at each point I of x1

j, x2
j and x3

j over a T point 
window. The size of window affects the eventual output, 
Cf. The aim is to obtain a function Cf that has a one main 
spike with a minimum of secondary spikes. There is a 
measure called the varimax norm [26] can be used for 
this purpose. The higher the varimax norm of a signal, 
the fewer spikes the signal has. 

The varimax norm of the composite function Cf is 
calculated as: 

   
2

4 2
c

i i

V Cf i Cf i
              

   

Thus, before selecting the size of the window (Nwin), 
several size windows are tested in order to maximize Vc. 
So, the window that gives a Cf with the highest varimax 
norm is selected as the window for a particular event. 

Figure A1 and A2 show three component data of one 
of the tested events and a plot of the varimax norm ver-
sus the window size used to construct the covariance 
matrix. For this particular event, 6 seconds is chosen as 
the window length. 

 

 

Figure A1. Three component data of an event. 
 

 

Figure A2. Demonstrating the effect of window size used to construct covariance matrices on the varimax norm of the com-
posite rectilinearity function Cf.     
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Appendix B 

Three Components data 
 

(X, Y and Z) 
 

Processing Using 
Discrete Time 

Wavelet Transform 
(DTWT) 

 

Wavelet Coefficients 
(WC) 

(x1
j, x2

j and x3
j) 

where, 
j: scaling number 

 

At each scale j, a 3*3 
Covariance Matrix 

Mj[i] is calculated over 
a T point window 
centred at point i 

 

At each scale j, a rectilinearity 
function is calculated: 

 
Fj=1-( 12 / ) 

Where,  
:1  The largest eigenvalue 

:2  The second largest    

       eigenvalue 

A Composite rectilinearity 
function is constructed: 

 

CF = 
j

jF  

P-arrival time is the position at 
which this function is a 

maximum 
 

 

Figure B1. Flow Chart of P-wave detection algorithm. 

The largest eigenvector calculated at 

the position where P-arrival has been 

estimated is used to calculate the 

backazimuth angle. 

Rotating X and Y into radial 

and transverse directions using 

the backazimuth angle( )  

 

Process the radial and 

transverse components by the 

DTWT to get the wavelet 

coefficients xj and yj. 

At each scale, the transverse 

over radial amplitude ratio is 

calculated. 

A composite function CT is 

constructed from the 

transverse over radial 

amplitude ratio of all scales. 

The maximum of this 

function represents the 

location where S-phase 

attains its highest 

amplitude. 

 

Figure B2. Flow Chart of S-wave detection algorithm. 
 

 


