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Abstract
A total coloring of a graph Gis a function «:E (G) uv (G) — N such that no

adjacent vertices, edges, and no incident vertices and edges obtain the same col-
or. A K -interval is a set of Kk consecutive integers. A cyclically interval total
t -coloring of a graph Gis a total coloring « of Gwith colors 1,2,---,t such
that at least one vertex or edge of G is colored by i,i=12,---,t, and for any

xeV (G) ,theset S [a,v] = {a(v)} U {a(e)|e is incident to V} isa

(dG (X)+l) -interval, or {1,2,--,t}\$ [Ot, X] is a (t —dg (X)—l) -interval,
where dg (X) is the degree of the vertex X in G. In this paper, we study the
cyclically interval total colorings of cycles and middle graphs of cycles.

Keywords

Total Coloring, Interval Total Coloring, Cyclically Interval Total Coloring,
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1. Introduction

All graphs considered in this paper are finite undirected simple graphs. For a
graph G, let V (G) and E (G) denote the set of vertices and edges of G,
respectively. For a vertex XeV (G) ,let dg (X) denote the degree of X in G
We denote A(G) the maximum degree of vertices of G.

For an arbitrary finite set 4, we denote by |A| the number of elements of A.
The set of positive integers is denoted by N. An arbitrary nonempty subset of
consecutive integers is called an interval. An interval with the minimum element
p and the maximum element g is denoted by [p,q]. We denote O[a,b] and
o[a, b] the sets of even and odd integers in [a,b] , respectively. An interval D1is
called a h -interval if |D| =h.
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A total coloring of a graph Gis a function @:E(G)UV(G)—>N such that no
adjacent vertices, edges, and no incident vertices and edges obtain the same color.
The concept of total coloring was introduced by Vizing [1] and independently by
Behzad [2]. The total chromatic number ;("(G) is the smallest number of
colors needed for total coloring of G. For a total coloring ¢ of a graph G and
forany VeV (G),let S[a,v]={a(v)}U{x(e)e isincident to v}.

An interval total t -coloring of a graph G is a total coloring of G with colors
1,2,---,t such that at least one vertex or edge of Gis colored by i,i=12,---t,
and for any X€V(G), theset S[a,X] isa (dG (X)+l) -interval. A graph Gis
interval total colorable if it has an interval total t -coloring for some positive
integer .

Forany teN,let ¥ denote the set of graphs which have an interval total t
-coloring, and let ‘IZUM‘I;. For a graph G €T, the least and the greatest
values of t for which Ge%, aredenotedby W, (G) and W, (G), respectively.
Clearly,

2'(G)<w,(G)<W, (G) <[V (G) +|E(G)

for every graph G €T . Foragraph Ge ¥, let g(G):{t|G GZ}

The concept of interval total coloring was first introduced by Petrosyan [3].
Now we generalize the concept interval total coloring to the cyclically interval
total coloring. A total t -coloring o of a graph G'is called a cyclically interval
total t -coloring of G, if for any Xe€V(G), S[a,X] isa (de (X)+l) -interval,
or [1,'[]\3 [a, X] is a (t —dg (X)—l) -interval. A graph G is cyclically interval
total colorable if it has a cyclically interval total t -coloring for some positive
integer £

For any teN, we denote by J, the set of graphs for which there exists a

cyclically interval total t -coloring. Let § = U For any graph G € g, the

>Vt
minimum and the maximum values of t for \t/vhich G has a cyclically interval
total t -coloring are denoted by W (G) and WS (G), respectively. For a
graph GeF, let @(G):{t|G ef&t}

It is clear that for any teN, T 3§ and T < F . Note that for an arbitrary
graph G, 7 (G)Q@(G). It is also clear that for any G €%, the following

inequality is true
7"(G)<w;(G)<w, (G)<W,(G)<WS(G)<|V(G)+|E(G)|.

A middle graph M (G) of a graph G is the graph whose vertex set is
Vv (G) UE (G) and in which two vertices are adjacent whenever either they are
adjacent edges of G or one is a vertex of G and other is an edge incident with it.

In this paper, we study the cyclically interval total colorings of cycles and
middle graphs of cycles. For a cycle C, , let V (Cn) = {V1!Vza“"Vn} and
E(Cn)z{el,ez,---,en} , where e =vv, and € =v_ v, for i=23-,n. For
example, the graphs in Figure 1 are C, and M (C4), respectively. Note that in
Section 3 we always use the kind of diagram like (c) in Figure 1 to denote

M(C,).
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Figure 1. C, and M(C,).(a) C,;(b) M(C,); (c) Another diagram of M (C,).

2. Cn

In this section we study the cyclically interval total colorings of C, (n>3), show
that C, € § , get the exact values of We (Cn) and W' (Cn), and determine the
set (:)(G) . In [4] it was proved the following result.

Theorem 1. (H. P. Yap [4]) For any integer N3,

z”(Cn)={3’ if n=0(mod3);

4, otherwise.
In [5] Petrosyan et al studied the interval total colorings of cycles and
provided the following result.
Theorem 2. (P. A. Petrosyan et al. [5]) For any integer N> 3, we have
1) C,e%,

2 w(C,) {3, if n=0(mod3);

4, otherwise,

3) W, (C,)=n+2.

Now we consider the cyclically interval total colorings of C, (N>3). In order
to define the total coloring of the graph C, easily, we denote V (C,)UE(C,)
by {88, 8, },where a,,=V, and a, =g forany ie[l,n].

Theorem 3. For any integer N3, we have

1) C, €3,

2 W(C,)= {3, if n= q(modB);

4, otherwise,

3) W(C,)=2n.

Proof Since ¥ < §, then for any GeT we have )("(G) <WE (G) <w (G) )
So by Theorems 1 and 2, (1) and (2) hold.

Let us prove (3). Now we show that W’ (Cn)Z 2n for any n>3. Define a
total coloring « of the graph C, as follows: Let

a(ai)z i, i e[l,Zn].

It is easy to check that « is a cyclically interval total 2n-coloring of C, . Thus,
W* (Cn) >2Nn for any integer n>3. On the other hand, it is easy to see that
Wf(Cn)S|V (C,) +|E(Cn) =2n. S0 we have W'(C,)=2n.

Lemma 4. For any integer N>3 and te [4, 2n— 2] , C, €3,

Proof. For any te [4,n—2], we define a total t-coloring « of the graph

C, as follows:
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Casel. Nn=3k,keN.

Subcase 1.1. t=3s,5€ [2, 2k —l] .

Let

if i e [Lt]];

ifie[t+12n], i=1(mod3);
if ie[t+12n], i=2(mod3);
ifie[t+12n], i=0(mod3).

Subcase 1.2. t=3s+1s¢ [1, 2k —1].

Let
4, ifi=1
3, ifi=2
2, ifi=3;
ala)=1i, ifie[4t];
1, ifieft+1,2n], i=2(mod3);
2, ifie[t+1,2n], i=0(mod3);
3, ifie[t+12n], i=1(mod3).
Subcase 1.3. t=3S+2,S€[1,2k—2].
Let
t, ifi=1
i, ifie[2t];
a(a)=41 ifie[t+1,2n], i=0(mod3);
2, ifie[t+12n], i=1(mod3);
3, ifie[t+12n], i=2(mod3).

Case2. N=3k+1keN.

Subcase 2.1. t=3s,5¢ [2, Zk] .

Let
47
3

1

2
a(a)=1i
2

31

ifi=1;
if i=2;
ifi=3;
if i e[4,1];

ifie[t+12n], i=1(mod3);
ifie[t+1,2n], i=2(mod3);
ifie[t+1,2n], i=3(mod3).

Subcase 2.2. t=3s+1,s5¢ [1, 2k —1].

Let

ifi=1

ifie[2t];

ifie[t+1,2n], i=2(mod3);
if ie[t+1,2n], i=0(mod3);
ifie[t+1,2n], i=1(mod3).
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Subcase 2.3. t=35+2,5¢ [1, 2k —1] )

Let
i, ifie[Lt];
a(a)- 1, ?f?e[t+1,2n], ?zo(mods);
2, ifie[t+12n], i=1(mod3);
3, ifieft+L2n], i=2(mod3).
Case3. n=3k+2,keN.
Subcase 3.1. t=3S,Se[2,2k].
Let
t, ifi=L
i, ifie[21];
a(a)=41 ifie[t+12n], i=1(mod3);
2, ifie[t+12n], i=2(mod3);
3, ifie[t+12n], i=3(mod3).

Subcase 3.2. t=3s+1s¢ [l, 2k] .

Let
i, ifiefLt];
1 ifie[t+1,2n], i=2(mod3);
a(a)= . .
2, ifie[t+12n], i=0(mod3);
3, ifieft+L2n], i=1(mod3).

Subcase 3.3. t=35+2,5¢ [1, 2k] )

Let

ifi=1

ifi=2;

ifi=3;

if i [4,t];

if i e[t+12n], i=0(mod3);
. ifie[t+1,2n], i=1(mod3);
. ifie[t+1,2n], i=2(mod3).

EEEEES

a(a)=

-

w N

It is not difficult to check that, in each case, « is always a cyclically interval
total t -coloring of C, . The proofis complete.

Lemma 5. C,e5;.

Proof. We define a total 5-coloring « of the graph C, as follows: Let

i, ifie[L5);

a(ai)Z{g, if i =6.

It is easy to see that « is a cyclically interval total coloring of C,.

Lemma 6. For any integer N>4, C &3, -

Proof. By contradiction. Suppose that, for any integers N>4, « isa cyclically
interval total (2n-1)-coloring of C,. Then there exist different i, je[1,2n]

such that a(ai):a(aj) and for different S,te[l,2n]\{i,j}, a(ai);ta(aj).
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Without loss of generality, we may assume that «(a;)= a(a i ) =1. Then for each
k €[2,2n-1], there is only one vertex or one edge of C, is colored by k.

Case 1. Atleastoneof i and | iseven.

Say that i is even. Without loss of generality, suppose that i=2n, ie,
a(a2n)=1. Then we have 3< j<2n-3. Note that a,, =V,v,. Since o isa
cyclically interval total (2n-1)-coloring of C,, then we have

{a(v,).a(vy,)}={2.3},{2,2n-1} or {2n-2,2n-1}
and
{a(v,),a(v, v, )} ={2.3}.{2.2n-1} or {2n—2,2n-1}.
Because
{a(v).a(vy,) N{a (v, ),a (v, v, )} =2,
without loss of generality, we may assume that
fal). (i)} =23

and
{a(v,) @ (v, ) ={2n-2,2n-1}.

Since that for each ke[2,2n-1] there is only one vertex or one edge of C, is
colored by k. Then a(aj_l)e[4,2n—3] or a(aj+1)e[4,2n—3]. On the other
hand, since o is a cyclically interval total (2n-1)-coloring of C,, then
a(aj_l),a(aj+l) €{2,32n-2,2n-1} weather | isodd oreven. A contradiction.

Case2. i and | areall odd.

Without loss of generality, suppose that i=1.Then we have 3< j<n-1.
Note that @, and a; are all vertices of C,. Since « is a cyclically interval
total (2n—1)-coloring of C,, then we have

(a(a,) (8, )} = 23}, {2.20-1) or {202,201
and
{a(a,.).a(a.)}={2,3},{2,2n-1} or {2n-2,2n-1}.
Because
{a(a).a(an)iNfe(a.)a(a.)} =2,
without loss of generality, we may assume that
(a(a).a(a,)} = (23
and
{a(a,.).a(a)}={2n-2,2n-1},

say «(a,)=2. Then a(a, )=3. Now we consider the color of a,. By the
definition of «, a(a;)e{1,3,4,2n-1}. But Ot(ag) can not be 1, 3 or 2n-1
obviously. So we have «(a;)=4, and then «(a,)=3. This is a contradiction to

DOI: 10.4236/0jdm.2017.74018

205 Open Journal of Discrete Mathematics


https://doi.org/10.4236/ojdm.2017.74018

Y. Q. Zhao, S.J. Su

that just one vertex or one edge of C, is colored by i, where ie[2,2n-1].
Since we already have «(a,,)=3 before.
Combining Theorem 3, Corollaries 4 - 6, the following result holds.
Theorem 7. For any integer N>3,
[3.2n], if n=3;
0(C,)=1[3.2n]\{2n-1}, if n>4and n=0(mod3);
[4,2n]\{2n-1}, otherwise.

3. M(C,)

In this section we study the cyclically interval total colorings of M (C,)(n>3),
prove M(C,)eg, get the exact values of W’ (M (Cn)), provide a lower bound
of WS (M (Cn)), and show that for any k between WS (M (Cn)) and the lower
bound of WS (M (C,)), M(C,)e8,.

Theorem 8. For any integer N>3, W' (M (Cn)) =5,

Proof. Suppose that integer N>3. Now we define a total 5-coloring « of
the graph M (C,) as follows:

Case 1. N iseven.

Let
a(v;)=3ie[Ln],
1, ieo[ln];
a(ei):{4, i < 0[L,n],
a(eivi)=2,ie[1,n],
1, iec[l,n];
a(vie‘*l):{4, icofLn],
and
3, ieo[l,n];
“(eie”l):{a i< 0[Ln],
where e, =e¢, . See Figure 2.

By the definition of o we have
S[ev]=[1,3], i eo[Ln],
S[a,vi]:[2,4],ie<>[1,n],

4
Figure 2. A total 5-coloring of M (C4) .
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and
S[a.e]=[1.5],i€[Ln].

Case 2. N isodd.

Let
a(Vi):{j’ :i[nl,ln_l];
1, ieo[l,n-1];
a(g)=14, i<O[Ln-1]
2, i=n,
a(eiVi):{:: :ili'n_l];
1, ieo[l,n-2]U{n-1};
Ol(viei+l):{4’ ieO[lxn_z]’
a(Vnel)zs’
3, ieo[l,n—l];
a(eiei+1):{5, ieO[lnn_l]’
and

a(ee,)=4.

See Figure 3.

By the definition of o we have
S[aw]=[1,3],i co[L.n-2]Ufn-1},
S[av]=[2.4],i0Ln-2],
S[av,]=[3.5],
and
S[ae]=[L5],i <[L.n].

Combining Cases 1 and 2, we know that, for any integer N>3, « is a

cyclically interval total 5-coloring of M (C,). Therefore
w; (M(C,))<5.

T

Figure 3. A total 5-coloring of M (C;).
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On the other hand,
we (M (C,))zA(M(C,))+1=5.
So we have
W: (M (Cn)) =5.

Theorem 9. For any integer N>3, W’ (M (C,))z4n.
Proof. Now we define a total 4n-coloring « of the graph M (C,) as follows:
Let

a(V- ) =4ji-1,

a(e-)=4i—3,

a(ei\lli):4i -2,
a(V-e ):4i,

i+l

and

aleeg,)=4-1

where i€ [1, n] and e, =e, . See Figure 4.
By the definition of o we have

S[a.v]=[4i-2,4i],ie[L,n],
S[a.e]=[4i-54i-1],i[2,n],
and
S[a.e]=[1,3]U[4n-1,4n].

This shows that « is a cyclically interval total 42-coloring of M (C,). So we

have

T

WS (M (C,))=4n.

Theorem 10. For any integer N>3 andany ke€[5,4n], M(C,)eg,.

Proof. Suppose N>3 and for any ke [5,4n] . We define a total k -coloring
a of M(C,) as follows. First we use the colors 1,2,---,k to color the
vertices and edges of M (C,) beginning from e, by the way used in the proof
of Theorem 9. Now we color the other vertices and edges of M (C,) with the
colors 1,2,---,k .

3 7 11 15

Figure 4. A total 16-coloring of M (C,).
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Case 1. k=0(mod4).
k
Let t:Z.Then we have a(Ve,, )=k, where 1<t<n.

Subcase 1.1. N—t iseven.

Let
a(vm):S, i e[l,n—t],
1, iGO[l,n—t];
a(e‘*‘)_{4, i 0[1,n—t],
a(eiVii)=2i€[l,n-t],
1, iGO[l,n—t];
a(v‘”e‘*‘”)_{4, i o[Ln-t],
and
3, ieo[l,n-t];
a(e”‘e””l)_{s, ico[Ln-t],
where e, =e¢, . See Figure 5.

By the definition of o we have
S[av, | =[4i-2,4i],ie[Lt],
S[avs]=[L3] i eo[tn—t],
S[av]=[2.4].i0[Ln-t],
S[ae]=[L5],
S[a.6]=[4i-5.4i-1] i c[2.1],
S[a )= [1,8JU[K-1.],

and

S[a.e,,]=[15].i<[2.n-t].

Subcase 1.2. N—t isodd.
Let

a(v,;)=3ie[ln-t-1],
a(vn)=2,

1, iEO[l,n—t];

a(em):{4, ieo[Ln-t],

3 7 3 ;5 3 5
4 1 4 1

e
Figure 5. A total 8-coloring of M (C;)
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a(e Vi) =2 ie[ln-t-1],
a(eV,)=3,

1, ieo[l,n—t];
a(vt+iet+i+1) - {4' | (S <>[1! n _t]’

3, ieo[l,n-t-1];
a(et+iet+i+l) - {5, ie 0[1, n—t _1],

a(ee)=2

and recolor ¢ and eV, as a(e)=4 and a(ev,)=5, where e, =€ . See
Figure 6.
By the definition of o we have

S[av,]=[35],
S[av, | =[4i-2,4i],ie[2t],
S[a,v,,;]=[1.3] iee[l,n-t],
S[av,]=[2.4],i € 0tn—1],
S[ae]=[15],
S[a6]=[4i-5,4i-1],ie[2.1],
S[ae,.] = [L3U[k-1K],
and
S[a.e,]=[L5].i<[2n-1].
Case 2. k zl(mod 4).

k+3
Let t:%.Thenwehave Ol(et)=k,where 2<t<n.

Subcase 2.1. N—t iseven.
Let

a(v) =k,

a(v;)=3ic[Ln-1]

t+i

1, ieo[l,n—t];

o fy 1

Figure 6. A total 8-coloring of M (C;).
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a(eyv,)=1,
a(e, Vi) =2ie[lLn-t],
a(ve,,)=k-1,

1, ieo[l,n_t];
a(vt+iet+i+1) - {4’ | (S <>[1! n _t]’
a(etewl) = k'

3, ieo[l,n—t];
a(et+iet+i+l) - {5’ | S 0[11 n_t]’

and recolor €, as (e )=2,where e =¢ . SeeFigure7.

By the definition of o we have
S[arv ] =[4i-2,4i] i [1.t-1],
S[a,v,]={Lk-1,k},
S[a ] =[1,3] i co[Ln—t],
S[av]=[2.4] i € OLn-t],
S[ae]-[15].
S[a,ei]=[4i—5,4i—1],i6[2,'[—1],
S[ae]=[1,2]U[k-2.k],
S[t6.0]-[L3JUK-LK].
and

S[ae.]=[15].ie[2.n-t].

Subcase 2.2. N—t isodd.
Let

a(v)=1,

a(Vm):& i e[l,n—t],

4, ieo[l,n—t];

o fh 1

ale

t+i

vi)=2.ieo,n-t],

Figure 7. A total 9-coloring of M (C;).
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a(Ve,) =3

4’ ieo[l,n_t];
a(vt+iet+i+1) - {1, | (S <>[1! n _t]’

a(ee,) =1

5, i Eo[l,n—t];
a(et+iet+i+1) - {3, | S 0[1! n_t]’

where ¢, =¢€ . See Figure 8.

By the definition of & we have
S[a,vi]=[4i-24i],ie[L,t-1],
S[a.v.i]=[2.4].ieo[0,n-1],
S[a.v,]=[13].ie0[0,n-t],

S[ave]=[15],
S[a.g]=[4i-54i-1],ie[2,t-1],
S[a.&]=[1.2]U[k-2k],

and

S[a,et+i]:[1,5],ie[l,n—t].
Case 3. k=2(mod4).
Let t:%Z.Thenwehave a(eV,)=k,where 2<t<n.

Subcase 3.1. N—t iseven.
Let

a(v,) =k,
)=3ie[Ln-t],
1, iGO[l,n—t];

a(e‘*‘):{4, ieot,n-t],
a(eiV,i)=2i€[ln-t],

a(ve,)=k-1,

{1, ieo[1,n-t];

a(v

t+i

a(vt+iet+i+1): 4’ | Go[lan_t]’

e e
3 7 1 5 3
1 5 9 4 1 4

Figure 8. A total 9-coloring of M (C;).
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alee,)=k,

3, ieo[l,n—t];
a(et+iet+i+l) - {5’ | S 0[11 n_t]’

and recolor eV, as a(eV,)=1, where e, =e . See Figure 9.

By the definition of & we have
S[a.v,]=[4i-24i],ie[Lt-1],
S[a,v,]={Lk-1k},
S[a v, ]=[1,3] iee[l,n-t],
S[a v ] =[2.4],i€0[L,n-t],
S[a.e]=[15],
S[a.e]=[4i-54i-1],ie[2,t-1],
S[a,e]={1}U[k-3.k],
S[a,e,,]=[1.3]U[k-1,K],
and
S[a,e.]=[15],ie[2,n-t].

Subcase 3.2. N—t isodd.
Let

Q
—_
=<
+
~—
1
w
m
—
N
>
|
—
—_

B 4, iEO[l,n—t];
“(e‘”)‘{l, i 0[1,n—t],
a (et+1vt+1) =3,

a(e, V) =2 ie[2,n-t]
a(Vig,,)=2,

4’ ieo[l,n_t];
a(vt+iet+i+1) - {1, | S <>[1! n _t]’

Figure 9. A total 10-coloring of M (C,).
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a(etet+1) = 1’
5, ieoLn-t];
a(et+iet+i+l)_{3’ ie0[ln-t],

where e, =e¢, . See Figure 10.

n+l

By the definition of o we have
S[a,vi]=[4i-24i],ie[L,t-1],
S[av]= {12k},
S[av]=[2.4], i eo[Ln-t],
S[a v, |=[1.3].ie0[1,n-t],
S[a.e]=[15],
S[a,e|=[4i-5,4i-1],ie[2,t-1],
S[ae]= 1 U[k-3],
and
S[a.e,]=[L5].ie[L.n—1]
Case 4. k=3(mod4).

k+1
Let t=T+.Thenwehave a(v,)=k, where 2<t<n.

Subcase 4.1. N—t iseven.

Let
a(Vm):S: ie [1,n—t],
4, i 60[1,n—t];
“(e‘”):{l, i o[1,n—t],
a(eV,i)=2i€[ln-t],

4, ieo[0,n—t];
a(vt+iet+i+1) - {1, | (S 0[0! n _t]’

3, i Eo[l,n—t];
o (€i€ui1) = {5, ie0[ln-t],

and recolor e as «@ (el) =4, where e, =€ . SeeFigure 11.

Figure 10. A total 10-coloring of M (C;).

DOI: 10.4236/0jdm.2017.74018 214 Open Journal of Discrete Mathematics


https://doi.org/10.4236/ojdm.2017.74018

Y. Q. Zhao, S. J. Su

Figure 11. A total 7-coloring of M (Cy).

By the definition of o we have

S[a,vi]=[4i—2,4i],ie[l,t—l],

S[a,v,]={Lk-1k},
S[ay,.]=[2.4] i eo[Ln—1]
S[a v, |=[1.3].ie0[1,n-t],

Sla.e]=[L5],

S[a.e]=[4i-5.4i-1], i [2.]

S[ove,.]=[L4JUIK)
S[ae.]=[15].ie[2.n-t].

Subcase 4.2. N—t isodd.
Let

a(Vt+1) =4,
J=3.ic[2n-t]
a(em) =2,

{4, ieo[2,n—t];

1, ieo[2,n-t],

a(V

t+i

a(em ) =

a (et+lvt+l) = 3’

a(e Vi) =2 ie[2,n-t],

T+t
a (Vtet+l) =1,

a (Vt+1et+2 ) = 5’

emﬂ):{a i eo[2,nt];

(v 1, ico[2n-t],

t+

a (et+let+2 ) = 4’

5, ieo[2,nt];
a(eHieerl) = {3' ie 0[2, n —t],

where e, =e¢, . See Figure 12.
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Figure 12. A total 7-coloring of M (C;).

By the definition of o« we have
S[a,vi]=[4i-24i],ie[L,t-1],
S[avv]= {1k -1k},
S[av,.,]=[3.5],
S[av,]=[2.4]. i ec[2.n-1],
S[a,v.]=[13].i€0[2,n-t],
S[ae]=[L5],
S[a,ei]=[4i -5,4i-1],ie[2],
S[a.0]=[L4)UfK}
and
S[a6,]=[1.5].ic[2.n-t].

Combining Cases 1 - 4, the result follows.

4. Concluding Remarks

In this paper, we study the cyclically interval total colorings of cycles and middle
graphs of cycles.
For any integer N >3, weshow C, €§, prove that W (Cn ) =3 (if
n= O(mod 3)) or 4 (otherwise) and W* (Cn) =2n, and determine the set (:)(G)
as
[3,2n], if n=3;
0(C,)=1[3.2n]\{2n-1}, if n>4andn=0(mod3);
[4,2n]\{2n-1}, otherwise.

For any integer N>3, we have M (Cn) €y, prove that W; (I\/I (C, )) =5
and WTC(M (Cn ))24n and, for any k between 5 and 4n, M (Cn)egk. We
conjecture that W (M (C, )) =4n.

It would be interesting in future to study the cyclically interval total colorings

of graphs related to cycles.
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