On the 2-Domination Number of Complete Grid Graphs

Ramy Shaheen, Suhail Mahfud, Khames Almanea
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria
Email: shaheenramy2010@hotmail.com, suhailmahfud@yahoo.com, khamesalmanaa@gmail.com

How to cite this paper: Shaheen, R., Mahfud, S. and Almanea, K. (2017) On the 2-Domination Number of Complete Grid Graphs. Open Journal of Discrete Mathematics, 7, 32-50.
http://dx.doi.org/10.4236/ojdm.2017.71004

Received: November 22, 2016
Accepted: January 20, 2017
Published: January 23, 2017

Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A set D of vertices of a graph $G=(V, E)$ is called k-dominating if every vertex $v \in V-D$ is adjacent to some k vertices of D. The k-domination number of a graph $G, \gamma_{k}(G)$, is the order of a smallest k-dominating set of G. In this paper we calculate the k-domination number (for $k=2$) of the product of two paths $P_{m} \times P_{n}$ for $m=1,2,3,4,5$ and arbitrary n. These results were shown an error in the paper [1].

Keywords

k-Dominating Set, k-Domination Number, 2-Dominating Set, 2-Domination Number, Cartesian Product Graphs, Paths

1. Introduction

Let $G=(V, E)$ be a graph. A subset of vertices $D \subseteq V$ is called a 2-dominating set of G if for every $v \in V$, either $v \in D$ or v is adjacent to at least two vertices of D. The 2-domination number $\gamma_{2}(G)$ is equal to $\min \{|D|: D$ is a 2 -dominating set of $G\}$.

The Cartesian product $G \times H$ of two graphs G and H is the graph with vertex set $V(G \times H)=V(G) \times V(H)$, where two vertices $\left(v_{1}, v_{2}\right),\left(u_{1}, u_{2}\right) \in G \times H$ are adjacent if and only if either $v_{1} u_{1} \in E(G)$ and $v_{2}=u_{2}$ or $v_{2} u_{2} \in E(H)$ and $v_{1}=u_{1}$.

Let G be a path of order n with vertex set $V(G)=\{1,2, \cdots, n\}$. Then for two paths of order m and n respectively, we have $P_{m} \times P_{n}=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\}$. The j th column of $P_{m} \times P_{n}$ is $K_{j}=\{(i, j): i=1, \cdots, m\}$. If D is a 2 -dominating set for $P_{m} \times P_{n}$, then we put $W_{j}=D \cap K_{j}$. Let $s_{j}=\left|W_{j}\right|$. The sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ is called a 2-dominating sequence corresponding to D. For a graph G, we refer to minimum and maximum degrees by $\delta(G)$ and $\Delta(G)$, and for simplicity denoted those by δ and Δ, respectively. Also, we denote by $|V|$ and $|E|$ to order and size of graph G, respectively.

2. Notation and Terminology

Fink and Jacobson [2] [3] in 1985 to introduced the concept of multiple domination. A subset $D \subseteq V$ is k-dominating in G if every vertex of $V-D$ has at least k neighbors in D. The cardinality of a minimum k-dominating set is called the k-domination number $\gamma_{k}(G)$ of G. Clearly, $g_{1}(G)=g(G)$. Naturally, every k-dominating set of a graph G contains all vertices of degree less than k. Of course, every $(k+1)$-dominating set is also a k-dominating set and so $\gamma_{k}(G) \leq \gamma_{k+1}(G)$. Moreover, the vertex set V is the only $(\Delta+1)$-dominating set but evidently it is not a minimum Δ-dominating set. Thus every graph G satisfies

$$
\gamma_{k}(G) \leq \gamma_{k+1}(G) \leq \cdots \leq \gamma_{\Delta}(G)<\gamma_{\Delta+1}(G)=|V| .
$$

For a comprehensive treatment of domination in graphs, see the monographs by Haynes et al. [4]. Also, for more information see [5] [6]. Fink and Jacobson [2], introduced the following theorems:

Theorem 2.1 [2]. If $k \geq 2$, is an integer and G is a graph with $k \leq \Delta(G)$, then $\gamma_{k}(G) \geq \gamma(G)+k-2$.

Theorem 2.2 [2]. If T is a tree, then $\gamma_{2}(T) \geq \frac{|T|+1}{2}$.
In [6], Hansberg and Volkmann, proved the following theorem.
Theorem 2.4 [6]. Let $G=(V, E)$ be a graph of order n and minimum degree δ and let $k \in N$. If $\frac{\delta+1}{\ln (\delta+1)} \geq 2 k$, then $\gamma_{k}(G) \leq \frac{|V|}{\delta+1}\left(k \ln (\delta+1)+\sum_{i=0}^{k-1} \frac{\delta^{i}}{i!(\delta+1)^{k-1}}\right)$.

Cockayne, et al. [7], established an upper bound for the k-domination number of a graph G has minimum degree k, they gave the following result.

Theorem 2.3 [7]. Let G be a graph with minimum degree at least k, then $\gamma_{k}(G) \leq \frac{k|V|}{(k+1)}$.

Blidia, et al. [8], studied the k-domination number. They introduced the following results.

Theorem 2.5 [8]. Let G be a bipartite graph and S is the set of all vertices of degree at most $k-1$, then $\gamma_{k}(G) \leq \frac{|V|+|S|}{2}$.

Favaron, et al. [9], gave new upper bounds of $\gamma_{k}(G)$.
Corollary 2.6 [9]. Let G be a graph of order n and minimum degree δ. If $k \leq \delta$ is an integer, then $\gamma_{k}(G) \leq \frac{\delta}{2 \delta+1-k}|V|$.

In [4], Haynes et al. showed that the 2-domination number is bounded from below by the total domination number for every nontrivial tree.

Theorem 2.7 [4]. For every nontrivial tree, $\gamma_{2}(T) \geq \gamma_{t}(T)$.
Also, Volkmann [10] gave the important following result.
Theorem 2.8 [10]. Let G be a graph with minimum degree $\delta \geq k+1$, then $\gamma_{k+1}(G) \leq \frac{|V|+\gamma_{k}(G)}{2}$.

Shaheen [11] considered the 2-domination number of Toroidal grid graphs and gave
an upper and lower bounds. Also, in [12], he introduced the following results.
Theorem 2.9 [12].

1) $\gamma_{2}\left(C_{n}\right)=\lceil n / 2\rceil$.
2) $\gamma_{2}\left(C_{3} \times C_{n}\right)=n: n \equiv 0(\bmod 3)$,
$\gamma_{2}\left(C_{3} \times C_{n}\right)=n+1: n \equiv 1,2(\bmod 3)$.
3) $\gamma_{2}\left(C_{4} \times C_{n}\right)=n+\lceil n / 2\rceil: n \equiv 0,3,5(\bmod 8)$,
$\gamma_{2}\left(C_{4} \times C_{n}\right)=n+\lceil n / 2\rceil+1: n \equiv 1,2,4,6,7(\bmod 14)$.
4) $\gamma_{2}\left(C_{5} \times C_{n}\right)=2 n$.
5) $\gamma_{2}\left(C_{6} \times C_{n}\right)=2 n: n \equiv 0(\bmod 3)$,
$\gamma_{2}\left(C_{6} \times C_{n}\right)=2 n+2: n \equiv 1,2(\bmod 3)$.
6) $\gamma_{2}\left(C_{7} \times C_{n}\right)=\lceil 5 n / 2\rceil: n \equiv 0,3,11(\bmod 14)$,
$\gamma_{2}\left(C_{7} \times C_{n}\right)=\lceil 5 n / 2\rceil+1: n \equiv 5,6,7,8,9,10(\bmod 14)$,
$\gamma_{2}\left(C_{7} \times C_{n}\right)=\lceil 5 n / 2\rceil+2: n \equiv 1,2,4,12,13(\bmod 14)$.
In this paper we calculate the k-domination number (for $k=2$) of the product of two paths $P_{m} \times P_{n}$ for $m=1,2,3,4,5$ and arbitrary n. These results were shown an error in the paper [1]. We believe that these results were wrong. In our paper we will provide improved and corrected her, especially for $m=3,4,5$.

The following formulas appeared in [1],

$$
\begin{gathered}
\gamma_{2}\left(P_{n}\right)=\lceil(n+1) / 2\rceil \cdot \gamma_{2}\left(P_{2} \times P_{n}\right)=n \cdot \gamma_{2}\left(P_{3} \times P_{n}\right)=2 n-\lceil n / 2\rceil \cdot \gamma_{2}\left(P_{4} \times P_{n}\right)=2 n . \\
\gamma_{2}\left(P_{5} \times P_{n}\right)=3 n-\lceil n / 2\rceil \cdot \gamma_{2}\left(P_{2 k+1} \times P_{n}\right)=(k+1) n-\lceil n / 2\rceil . \\
\gamma_{2}\left(P_{m} \times P_{n}\right)=\lceil m / 2\rceil n-\lceil n / 2\rceil: m \equiv 1(\bmod 2), \\
\gamma_{2}\left(P_{m} \times P_{n}\right)=\lceil m / 2\rceil n: m \equiv 0(\bmod 2) .
\end{gathered}
$$

In this paper, we correct the results in [1] and proves the following:

$$
\begin{gathered}
\gamma_{2}\left(P_{n}\right)=\lceil(n+1) / 2\rceil \cdot \gamma_{2}\left(P_{2} \times P_{n}\right)=n \cdot \gamma_{2}\left(P_{3} \times P_{n}\right)=n+\lceil n / 3\rceil . \\
\quad \gamma_{2}\left(P_{4} \times P_{n}\right)=2 n-\lfloor n / 4\rfloor: n \equiv 3,7(\bmod 8), \\
\gamma_{2}\left(P_{4} \times P_{n}\right)=2 n-\lfloor n / 4\rfloor+1: n \equiv 0,1,2,4,5,6(\bmod 8) . \\
\quad \gamma_{2}\left(P_{5} \times P_{n}\right)=2 n+\lceil n / 7\rceil: n \equiv 1,2,3,5(\bmod 7), \\
\\
\quad \gamma_{2}\left(P_{5} \times P_{n}\right)=2 n+\lceil n / 7\rceil+1: n \equiv 0,4,6(\bmod 7) .
\end{gathered}
$$

3. Main Results

Our main results here are to establish the domination number of Cartesian product of two paths P_{m} and P_{n} for $m=1,2,3,4,5$ and arbitrary n. We study 2-dominating sets in complete grid graphs using one technique: by given a minimum of upper 2-dominating set D of $P_{m} \times P_{n}$ and then we establish that D is a minimum 2-dominating set of $P_{m} \times P_{n}$ for several values of m and arbitrary n. Definitely we have $\gamma_{2}\left(P_{m} \times P_{n}\right)=|D|$.

Let G be a path of order n with vertex set $V(G)=\{1,2, \cdots, n\}$. For two paths of order m and n respectively is:
$P_{m} \times P_{n}=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\}$. The th column $P_{m} \times P_{n}$ is
$K_{j}=\{(i, j): i=1, \cdots, m\}$.
If D is a 2-dominating set for $P_{m} \times P_{n}$ then we put $W_{j}=D \cap K_{j}$. Let $s_{j}=\left|W_{j}\right|$. The
sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ is called a 2 -dominating sequence corresponding to D. Always we have $s_{1}, s_{n} \geq\lceil m / 3\rceil$. Suppose that $s_{j}=0$ for some j (where $j \neq 1$ or n). The vertices of the j th column can only be 2 -dominated by vertices of the $(j-1)$ st columns and $(j$ $+1)$ st columns. Thus we have $s_{j-1}+s_{j+1}=2 m$, then $s_{j-1}=s_{j+1}=m$. In general $s_{j-1}+4 s_{j}+s_{j+1} \geq 2 m$.

Notice 3.1.

1) The study of 2-dominating sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ is the same as the study of the 2-dominating sequence $\left(s_{n}, s_{n-1}, \cdots, s_{1}\right)$.
2) If subsequence $\left(s_{j}, s_{j+1}, \cdots, s_{j+k}\right)$ is not possible, then its reverse $\left(s_{j+k}, \cdots, s_{j+1}, s_{j}\right)$ is not possible.
3) We say that two subsequences $\left(s_{j}, \cdots, s_{j+q}\right),\left(s_{j+q+1}, \cdots, s_{j+r}\right)$ are equivalent, if the sequence $\left(s_{j}, \cdots, s_{j+q}, s_{j+q+1}, \cdots, s_{j+r}\right)$ is possible.

We need the useful following lemma.
Lemma 3.1. There is a minimum 2-dominating set for $P_{m} \times P_{n}$ with 2-dominating sequence $\left(s_{1}, s_{2}-, \cdots, s_{n}\right)$ such that, for all $j=1,2, \cdots, n$, is $\lfloor m / 4\rfloor \leq s_{j} \leq\lceil 3 m / 4\rceil$.

Proof. Let D be a minimum 2-dominating set for $P_{m} \times P_{n}$ with 2-dominating sequence $\left(s_{1}, s_{2}-, \cdots, s_{n}\right)$. Assume that for some j, s_{j} is large. Then we modify D by moving two vertices from column j, one to column $j-1$ and another one to column $j+1$, such that the resulting set is still 2-dominating set for $P_{m} \times P_{n}$. For $1 \leq i \leq m$ and $1 \leq j \leq n$, let $W=D \cap\{(i, j),(i+1, j),(i+2, j),(i+3, j)\}$. If $|W|=4$, then we define $D_{1}=(D-W) \cup\{(i, j),(i+1, j-1),(i+2, j+1),(i+3, j)\}$, see Figure 1. We repeat this process if necessary eventually leads to a 2 -dominating set with required properties. Also, we get D_{1} is a 2-dominating set for $P_{m} \times P_{n}$ with $|D|=\left|D_{1}\right|$. Thus, we can assume that every four consecutive vertices of the j th column include at most three vertices of D. This implies that $s_{j} \leq\lceil 3 m / 4\rceil$, for all $1 \leq j \leq n$.

To prove the lower bound, we suppose that $\left|K_{j} \cap D\right|$ is be a maximum, i.e., $s_{j}=\lceil 3 m / 4\rceil$. Then for each $(i, j) \notin D$, we have
$|\{(i-1, j+1),(i, j+1),(i+1, j+1)\} \cap D| \geq 1$. When $s_{j}=\lceil 3 m / 4\rceil$, there at must $m-\lceil 3 m / 4\rceil=\lfloor m / 4\rfloor$ vertices does not in $K_{j} \cap D$. This implies that $s_{j+1} \geq\lfloor m / 4\rfloor$. So, the same as for $s_{j-1} \geq\lfloor m / 4\rfloor$.

By Lemma 3.1, always we have a minimum 2-dominating set D with 2-dominating sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$, such that $\lfloor m / 4\rfloor \leq s_{j} \leq\lceil 3 m / 4\rceil$, for all $j=1,2, \cdots, n$.

Lemma 3.2. $\gamma_{2}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.

Figure 1. Modify D.

Proof. Let $D=\left\{(2 k-1) ; 1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil\right\}$.
We have D is a 2-dominating set of P_{n} for $n \equiv 1(\bmod 2)$ with $|D|=\left\lceil\frac{n+1}{2}\right\rceil$, also $D \cup\{(n)\}$ is a 2-dominating set of P_{n} for $n \equiv 0(\bmod 2)$ with $|D \cup\{(n)\}|=\left\lceil\frac{n+1}{2}\right\rceil$.

Let D_{1} be a minimum 2-dominating set for P_{n} with $V\left(P_{n}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Since $x_{1} x_{n} \notin E\left(P_{n}\right)$, we need to $x_{1}, x_{n} \in D_{1}$, also if $x_{j} \notin D_{1}$ then x_{j-1}, x_{j+1} are belong to D_{1}, this implies that $x_{2 j-1} \in D_{1}$ for $2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$. Thus implies that $\left|D_{1}\right| \geq 2+\left\lfloor\frac{n}{2}\right\rfloor-1=\left\lceil\frac{n+1}{2}\right\rceil$. We result that $\gamma_{2}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.

Theorem 3.1. $\quad \gamma_{2}\left(P_{2} \times P_{n}\right)=n$.
Proof. Let a set $D=\left\{(1,2 k-1): 1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil\right\} \cup\left\{(2,2 k): 1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
It is clear that $|D|=n$.
We can check that D is 2-dominating set for $P_{2} \times P_{n}$, see Figure 2. Let D_{1} be a minimum 2-dominating set for $P_{2} \times P_{n}$ with dominating sequence $\left(s_{1}, \cdots, s_{n}\right)$. If $s_{i} \geq 1$ for all

$$
\begin{equation*}
j=1, \cdots, n, \text { then }\left|D_{1}\right|=\sum_{j=1}^{n} s_{j} \geq n . \tag{2}
\end{equation*}
$$

Let $s_{j}=0$ for some j, then $s_{j-1}=s_{j+1}=2$, also we have $s_{1} \geq 1$ and $s_{n} \geq 1$. Now we define a new sequence $\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)$, (not necessarily a 2 -dominating sequence) as follows:

For $s_{j}=2$, if $j=1$ or n, we put $s_{j}^{\prime}=s_{j}-1, s_{2}^{\prime}=s_{2}+1 / 2$ and $s_{n-1}^{\prime}=s_{n-1}+1 / 2$.
If $j \neq 1$ or n, we put $s_{j}^{\prime}=s_{j}-1, s_{j-1}^{\prime}=s_{j-1}+1 / 2$ and $s_{j+1}^{\prime}=s_{j+1}+1 / 2$.
Otherwise $s_{j}^{\prime}=s_{j}$.
We get a sequence $\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)$ have property that each $s_{j}^{\prime} \geq 1$ with

$$
\begin{equation*}
|D|=\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{n} s_{j}^{\prime} \geq n \tag{3}
\end{equation*}
$$

By (1), (2) and (3) is $\gamma_{2}\left(P_{2} \times P_{n}\right)=n$. This completes the proof of the theorem.
Theorem 3.2. $\quad \gamma_{2}\left(P_{3} \times P_{n}\right)=n+\left\lceil\frac{n}{3}\right\rceil$.

Proof. Let

$$
\begin{aligned}
D=\{ & \left.(2,3 k-2): 1 \leq k \leq\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{(2,3 k): 1 \leq k \leq\left\lfloor\frac{n}{3}\right\rceil\right\} \\
& \cup\left\{(1,3 k-1),(3,3 k-1): 1 \leq k \leq\left\lceil\frac{n-1}{3}\right\rceil\right\}
\end{aligned}
$$

Figure 2. A 2-dominating set for $P_{2} \times P_{10}$.

$$
\begin{align*}
D^{\prime}=\{ & \left.(1,3 k-2),(3,3 k-2): 1 \leq k \leq\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{(2,3 k-1): 1 \leq k \leq\left\lceil\frac{n-1}{3}\right\rceil\right\} \\
& \cup\left\{(2,3 k): 1 \leq k \leq\left\lfloor\frac{n}{3}\right\rceil\right\} \tag{4}
\end{align*}
$$

We have $|D|=n+\left\lceil\frac{n}{3}\right\rceil$ and $\left|D^{\prime}\right|=n+\left\lceil\frac{n}{3}\right\rceil$.
By definition D and D^{\prime} we note that
D is 2-dominating set for $P_{3} \times P_{n}$ when $n=0,2(\bmod 3)$, (see Figure 3, for $P_{3} \times$ P_{14}).
D^{\prime} is 2-dominating set for $P_{3} \times P_{n}$ when $n=1(\bmod 3)$, (see Figure 4 , for $\left.P_{3} \times P_{10}\right)$.
Let D_{1} be a minimum 2-dominating set for $P_{3} \times P_{n}$ with 2-dominating sequence $\left(s_{1}, \cdots, s_{n}\right)$ we have $s_{1}, s_{n} \geq 1$ and
if $s_{1}, s_{n}=1$ then $s_{2}, s_{n-1} \geq 2$,
if $s_{1}, s_{n}=2$ then $s_{2}, s_{n-1} \geq 1$.
Also for $1<j<n$, if $s_{j}=0$ then $s_{j-1}=s_{j+1}=3$,
$s_{j}=1$ then $s_{j-1}+s_{j+1} \geq 3$,
$s_{j}=2$ then $s_{j-1}+s_{j+1} \geq 2$,
If no one of $s_{j}=0$ for all j, then $\left|D_{1}\right|=\sum_{j=1}^{n} s_{j} \geq n+\left\lceil\frac{n}{3}\right\rceil$.
Let $s_{j}=0(j \neq 1$ or $n)$ for some j, we define a sequence $\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)$, (not necessarily a 2 -dominating sequence) as follows:

If $s_{j}=3$, then we put $s_{j}^{\prime}=s_{j}-1, s_{j-1}^{\prime}=s_{j-1}+1 / 2$ and $s_{j+1}^{\prime}=s_{j+1}+1 / 2$, otherwise $s_{j}^{\prime}=s_{j}$. We have $\left|D_{1}\right|=\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{n} s_{j}^{\prime}$. We note that the sequence $\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)$ have the property if $s_{j}^{\prime}=1$ then $s_{j-1}^{\prime}+s_{j+1}^{\prime} \geq 3$. Thus implies that

$$
\begin{equation*}
\left|D_{1}\right|=\sum_{j=1}^{n} s_{j}^{\prime} \geq n+\left\lceil\frac{n}{3}\right\rceil \text {. } \tag{6}
\end{equation*}
$$

From (4), (5) and (6) we get the required result.
Theorem 3.3. $\gamma_{2}\left(P_{4} \times P_{n}\right)=\left\{\begin{array}{l}2 n-\left\lfloor\frac{n}{4}\right\rfloor: n \equiv 3,7(\bmod 8), \\ 2 n-\left\lfloor\frac{n}{4}\right\rfloor+1: n \equiv 0,1,2,4,5,6(\bmod 8) .\end{array}\right.$

Figure 3. A 2-dominating set for $P_{3} \times P_{14}$.

Figure 4. A 2-dominating set for $P_{3} \times P_{10}$.

Proof. Let a set D defined as follows:

$$
\begin{aligned}
D=\{ & \{(2,1),(3,1)\} \cup\left\{(1,4 k-2),(4,4 k-2) ; 1 \leq k \leq\left\lceil\frac{n-1}{4}\right\rceil\right\} \\
& \cup\left\{(2,8 k-5) ; 1 \leq k \leq\left\lceil\frac{n-2}{8}\right\rceil\right\} \\
& \cup\left\{(1,8 k-4),(3,8 k-4),(4,8 k-4) ; 1 \leq k \leq\left\lceil\frac{n-3}{8}\right\rceil\right\} \\
& \cup\left\{(2,8 k-3) ; 1 \leq k \leq\left\lceil\frac{n-4}{8}\right\rceil\right\} \cup\left\{(3,8 k-1) ; 1 \leq k \leq\left\lceil\frac{n-6}{8}\right]\right\} \\
& \left.\cup\left\{(1,8 k),(2,8 k),(4,8 k) ; 1 \leq k \leq\left\lceil\frac{n-7}{8}\right]\right\} \cup\left\{(3,8 k+1) ; 1 \leq k \leq\left[\frac{n-1}{8}\right]\right\}\right\} \\
& D^{\prime}=\{(2, n)\}, \quad D^{\prime \prime}=\{(3, n)\} .
\end{aligned}
$$

We can check that the following sets are 2-dominating set for $P_{4} \times P_{n}$ (see Figure 5, for $P_{4} \times P_{11}$) as indicated:
D is 2-dominating set for $P_{4} \times P_{n}$ when $n \equiv 0,4(\bmod 8)$.
$D \cup D^{\prime}$ is 2-dominating set for $P_{4} \times P_{n}$ when $n \equiv 1,2,7(\bmod 8)$.
$D \cup D^{\prime \prime}$ is 2-dominating set for $P_{4} \times P_{n}$ when $n \equiv 3,5,6(\bmod 8)$.
We have

$$
|D|=\left\{\begin{array}{l}
2 n-\left\lfloor\frac{n}{4}\right\rfloor-1: n \equiv 3,7(\bmod 8), \\
2 n-\left\lfloor\frac{n}{4}\right\rfloor: n \equiv 1,2,5,6(\bmod 8), \\
2 n-\left\lfloor\frac{n}{4}\right\rfloor+1: n \equiv 0,4(\bmod 8)
\end{array}\right\}
$$

Let D_{1} be a minimum 2-dominating set for $P_{4} \times P_{n}$ with 2-dominating sequence $\left(s_{1}, \cdots, s_{n}\right)$ we shall show that

$$
\left|D_{1}\right|=\left\{\begin{array}{l}
2 n-\left\lfloor\frac{n}{4}\right\rfloor: n \equiv 3,7(\bmod 8), \\
2 n-\left\lfloor\frac{n}{4}\right\rfloor+1: n \equiv 0,1,2,4,5,6(\bmod 8)
\end{array}\right\}
$$

By Lemma 3.1, we have $1 \leq s_{j} \leq 3$. Thus
If $s_{j}=1$ then $s_{j-1}+s_{j+1} \geq 5$.
If $s_{j}=2$ then $s_{j-1}+s_{j+1} \geq 2$.
If $s_{j}=3$ then $s_{j-1}+s_{j+1} \geq 2$.
Also, we have $s_{1}, s_{n} \geq 2$. If $s_{1}, s_{n}=2$ then $s_{2}, s_{n-1} \geq 2$, and if $s_{1}, s_{n}=3$ then

Figure 5. A 2-dominating set for $P_{4} \times P_{11}$.
$s_{2}, s_{n-1} \geq 1$.
We define a new set D_{1}^{\prime} with sequence $\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)$, (not necessarily a 2-dominating sequence) as follows: if $s_{j} \geq 2$, let $M_{j}=s_{j}-\frac{7}{4}$. Now, for $j=2$ to $j=n-1$, if $s_{j} \geq 2$, then we put

$$
s_{j}^{\prime}=s_{j}-M_{j}, s_{j-1}^{\prime}=s_{j-1}+\frac{M_{j}}{2} \text { and } s_{j+1}^{\prime}=s_{j+1}+\frac{M_{j}}{2}
$$

Thus, for $3 \leq j \leq n-2$, we have $s_{j} \geq \frac{7}{4}$. Since if $s_{j} \geq 2$ then $s_{j}^{\prime} \geq \frac{7}{4}$ and if $s_{j}=1$, then $s_{j-1}+s_{j+1}=5$ this implies that $M_{j-1}+M_{j+1}=5-\frac{14}{4}=\frac{6}{4}$, which implies that $s_{j}^{\prime}=s_{j}+\frac{M_{j-1}}{2}+\frac{M_{j+1}}{2}=1+\frac{3}{4}=\frac{7}{4}$.

We have three cases:
Case 1: $s_{1}, s_{n} \geq 2$, then $s_{2}, s_{n-1} \geq 2$, these implies that $s_{1}^{\prime} \geq s_{1}+\frac{1}{8}$ and $s_{n}^{\prime} \geq s_{n}+\frac{1}{8}$ also

$$
\left|D_{1}\right|=\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{n} s_{j}^{\prime}=s_{1}^{\prime}+s_{n}^{\prime}+\sum_{j=2}^{n-1} s_{j}^{\prime} \geq 2+\frac{1}{8}+2+\frac{1}{8}+\frac{7(n-2)}{4}=\frac{7 n}{4}+\frac{3}{4} .
$$

Case 2: $s_{1}, s_{n}=3$ then $s_{2}, s_{n-1} \geq 2$. Thus implies that $s_{1}^{\prime}, s_{n}^{\prime}=3$ and $s_{2}^{\prime}, s_{n-1}^{\prime} \geq 1+\frac{1}{8}$. Then

$$
\left|D_{1}\right|=\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{n} s_{j}^{\prime}=s_{1}^{\prime}+s_{2}^{\prime}+s_{n-1}^{\prime}+s_{n}^{\prime}+\sum_{j=2}^{n-2} s_{j}^{\prime} \geq 3+1+\frac{1}{8}+3+1+\frac{1}{8}+\frac{7}{4}=\frac{7 n}{4}+\frac{5}{4}
$$

Case 3: $s_{1}=2, s_{n}=3$ and $s_{2} \geq 2, s_{n-1} \geq 1$ or $s_{1}=3, s_{n}=2$ and $s_{2} \geq 1, s_{n-1} \geq 2$. Two cases are similar by symmetry. We consider the first case:
$s_{1}=2, s_{2} \geq 2$ and $s_{n}=3, s_{n-1} \geq 1$, this implies that
$s_{1}^{\prime}=2+\frac{1}{8}, s_{2}^{\prime}=\frac{7}{4}, s_{n}^{\prime}=3, s_{n-1}^{\prime}=1+\frac{1}{8}$ and
$\left|D_{1}\right|=\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{n} s_{j}^{\prime}=s_{1}^{\prime}+s_{2}^{\prime}+s_{n-1}^{\prime}+s_{n}^{\prime}+\sum_{j=3}^{n-2} s_{j}^{\prime} \geq 2+\frac{1}{8}+\frac{7}{4}+3+1+\frac{1}{8}+\frac{7}{4}(n-4)=\frac{7 n}{4}+1$
But, we have the 2-domination number is positive integer number, also we have

$$
\begin{gathered}
2 n-\left\lfloor\frac{n}{4}\right\rfloor=\frac{7 n}{4}+\frac{3}{4} \text { for } n \equiv 3,7(\bmod 8), \\
2 n-\left\lfloor\frac{n}{4}\right\rfloor+1= \begin{cases}\frac{7 n}{4}+1 & \text { For } n \equiv 0,4(\bmod 8), \\
\frac{7 n}{4}+\frac{5}{4} & \text { For } n \equiv 1,5(\bmod 8), \\
\frac{7 n}{4}+\frac{6}{4} & \text { For } n \equiv 2,6(\bmod 8),\end{cases}
\end{gathered}
$$

Thus implies that

$$
\left|D_{1}\right| \geq\left\{\begin{array}{l}
2 n-\left\lfloor\frac{n}{4}\right\rfloor ; n \equiv 3,7(\bmod 8), \\
2 n-\left\lfloor\frac{n}{4}\right\rfloor+1 ; n \equiv 0,1,2,4,5,6(\bmod 8),
\end{array}\right\}
$$

Finally, we get

$$
\begin{aligned}
& \gamma_{2}\left(P_{4} \times P_{n}\right)=2 n-\left\lfloor\frac{n}{4}\right\rfloor: n \equiv 3,7(\bmod 8) \\
& \gamma_{2}\left(P_{4} \times P_{n}\right)=2 n-\left\lfloor\frac{n}{4}\right\rfloor+1: n \equiv 0,1,2,4,5,6(\bmod 8)
\end{aligned}
$$

This complete the proof of the theorem.
Theorem 3.4.

$$
\gamma_{2}\left(P_{5} \times P_{n}\right)=\left\{\begin{array}{l}
2 n+\left\lceil\frac{n}{7}\right\rceil: n \equiv 1,2,3,5(\bmod 7) \\
2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 0,4,6(\bmod 7)
\end{array}\right.
$$

Proof. Let a set D defined as follows:

$$
\begin{aligned}
D=\{ & \{(2,1),(4,1)\} \cup\{(1, j),(2, j),(5, j): j \equiv 2(\bmod 7)\} \\
& \cup\{(3, j): j \equiv 3(\bmod 7)\} \cup\{(1, j),(4, j),(5, j): j \equiv 4(\bmod 7)\} \\
& \cup\{(2, j),(3, j): j \equiv 5(\bmod 7)\} \cup\{(2, j),(5, j): j \equiv 6(\bmod 7)\} \\
& \cup\{(1, j),(4, j): j \equiv 0(\bmod 7)\} \cup\{(3, j),(4, j): j \equiv 1(\bmod 7)\} \text { and } j \neq 1\}
\end{aligned}
$$

We can check that the following sets are 2-dominating set for $P_{5} \times P_{n}$ (see Figure 6, for $P_{5} \times P_{23}$) as indicated:

$$
\begin{aligned}
& \left\{D-\left\{K_{n} \cap D\right\}\right\} \cup\{(2, n),(3, n),(5, n)\}: n \equiv 1(\bmod 7) . \\
& D \cup\{(2, n)\}: n \equiv 0,4(\bmod 7) . \\
& D: n \equiv 2(\bmod 7) . \\
& \left\{D-\left\{K_{n} \cap D\right\}\right\} \cup\{(2, n),(4, n)\}: n \equiv 3,5(\bmod 7) . \\
& \left\{D-\left\{K_{n} \cap D\right\}\right\} \cup\{(1, n),(3, n),(5, n)\}: n \equiv 6(\bmod 7) .
\end{aligned}
$$

We have $D \leq 2 n+\left\lceil\frac{n}{7}\right\rceil$ and

$$
\gamma_{2}\left(P_{5} \times P_{n}\right) \leq\left\{\begin{array}{l}
2 n+\left\lceil\frac{n}{7}\right\rceil: n \equiv 1,2,3,5(\bmod 7) \\
2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 0,4,6(\bmod 7)
\end{array}\right.
$$

This complete the proof of the theorem.
Lemma 3.3. The following cases are not possible:

1) $(1,2,3,1)$.
2) $(1,2,1)$.
3) $(1,4,1,1)$.

Figure 6. A 2-dominating set for $P_{5} \times P_{23}$.
4) $(1,3,1,3,1,3)$.
5) $(2,1,3)$.
6) $(2,2,2,2,2,2)$.

Proof. It follows directly from the drawing.

Lemma 3.4.

1) There is one case for subsequence $\left(s_{j}, s_{j+1}, s_{j+2}, s_{j+3}, s_{j+4}\right)=(2,2,2,2,2)$.
2) There is one case for subsequence $\left(s_{j}, s_{j+1}, s_{j+2}, s_{j+3}\right)=(1,3,1,3)$.
3) There is one case for subsequence $\left(s_{j}, s_{j+1}, s_{j+2}, s_{j+3}, s_{j+4}\right)=(1,3,1,3,1)$.
4) There is one case for subsequence $\left(s_{j}, s_{j+1}, s_{j+2}, s_{j+3}, s_{j+4}\right)=(1,2,3,2,1)$.

Proof. It follows directly from the drawing (see Figure 7).

Lemma 3.5.

1) $\sum_{j}^{j+3} s_{j} \geq 8$.
2) $\sum_{j}^{j+5} s_{j} \geq 12$.
3) $\sum_{j}^{j+6} s_{j} \geq 14$.
4) If $s_{j}=3$ then $\sum_{j}^{j+6} s_{j} \geq 15$.
5) If $s_{j}=4$ then $\sum_{j}^{j+6} s_{j} \geq 16$.

Proof. 1) By Lemma 3.3, imply that $\sum_{j}^{j+3} s_{j} \geq 8$.
2) By 1 , we have $\sum_{j}^{j+3} s_{j} \geq 8$. If $\sum_{j}^{j+3} s_{j}=8$, then we have the cases

$$
\left(s_{j}, s_{j+1}, s_{j+2}, s_{j+3}\right)=(1,2,3,2),(1,3,1,3),(1,3,2,2),(1,4,1,2),(2,2,2,2) .
$$

From Lemma 3.3, we have $s_{j+4}+s_{j+5} \geq 4$, this implies that $\sum_{j}^{j+5} s_{j} \geq 12$.
If $\sum_{j}^{j+4} s_{j} \geq 9$ then $s_{j+4}+s_{j+5} \geq 3$. This implies that $\sum_{j}^{j+6} s_{j} \geq 12$.
3) We have $\sum_{j}^{j+2} s_{j} \geq 5$ and $\sum_{j+4}^{j+6} s_{j} \geq 5$. If $\sum_{j+4}^{j+6} s_{j}=5$, then there is one case $\left(s_{j+4}, s_{j+5}, s_{j+6}\right)=(1,3,1)$ (where the cases $(1,2,1),(1,2,2)$ are not possible). But the case $(1,3,1)$ is not compatible with any of the cases when $\sum_{j}^{j+3} s_{j}=8$, this implies that

Figure 7. Cases 1, 2, 3 and 4 of Lemma 3.4.
$\sum_{j}^{j+3} s_{j} \geq 9$. Then $\sum_{j}^{j+6} s_{j} \geq 14$ (where the case $(1,3,1,3,1,3)$ is not possible). If $\sum_{j+4}^{j+6} s_{j} \geq 6$ then $\sum_{j}^{j+6} s_{j}=\sum_{j}^{j+3} s_{j}+\sum_{j+4}^{j+6} s_{j} \geq 8+6=14$.
4) We have $s_{j} \geq 3$, then from 2 is $\sum_{j}^{j+6} s_{j} \geq 15$.
5) We have $s_{j} \geq 4$, then from 2 is $\sum_{j}^{j+6} s_{j} \geq 16$. This complete the proof of the Lemma.

Lemma 3.6. If $\sum_{j}^{j+6} s_{j}=14$, then $s_{j}=1$ or $s_{j+6}=1$.
Proof. We suppose the contrary $s_{j}, s_{j+6} \geq 2$. From Lemma $3.5, s_{j}, s_{j+6}<3$, else $\sum_{j}^{j+6} s_{j} \geq 15$. Now, we must study the case $s_{j}=s_{j+6}=2$. We have $\sum_{j+2}^{j+5} s_{j}=10$, by Lemma 3.3, the case $(2,2,2,2,2,2)$ is not possible, this implies that not all elements of the subsequence $\left(s_{j+1}, \cdots, s_{j+5}\right)$ are equal to the value 2. If $s_{j+1}, s_{j+2}, s_{j+3}, s_{j+4}, s_{j+5} \geq 2$ where at least one of them is equal or greater than 3 , then $\sum_{j}^{j+6} s_{j} \geq 15$, this is a contradiction with $\sum_{j}^{j+6} s_{j}=14$. Now, we have $\sum_{j}^{j+5} s_{j}=10$, where one of the subsequence element $\left(s_{j+1}, \cdots, s_{j+5}\right)$ is at most equal the value 1 (where $1 \leq s_{j} \leq 4$). We consider the cases $s_{j}=1$ for $j+1 \leq j \leq j+5$:

1) $s_{j+1}=1$ or $s_{j+5}=1$ (where two cases are similar), we study the case $s_{j+1}=1$ then $s_{j+2}=4$, these implies that $s_{j}+s_{j+1}+s_{j+2}=7$. By Lemma 3.5, we have $\sum_{j+3}^{j+6} s_{j} \geq 8$ then $\sum_{j}^{j+6} s_{j} \geq 15$, this is a contradiction.
2) $s_{j+2}=1$ or $s_{j+4}=1$ (where two cases are similar), we study the case $s_{j+2}=1$ then $s_{j+1} \geq 3$, (because the case $(2,2,1)$ is not possible). If $s_{j+1}=3$ then $s_{j+3} \geq 3$ and we have $s_{j+6}=2$ then $\sum_{j+4}^{j+5} s_{j} \geq 4$ (because two cases $(1,2,2),(2,1,2)$ are not possible). Thus implies that $\sum_{j}^{j+6} s_{j} \geq 2+3+1+3+4+2=15$, this is a contradiction.
3) $s_{j+3}=1$, then we have two subcases results from $s_{j+2}+s_{j+4} \geq 6$:

Subcase 1: $s_{j+2}=s_{j+4}=3$ then $s_{j+1}, s_{j+5} \geq 2$ (because two cases $\left(s_{j}, s_{j+1}, s_{j+2}\right)=(2,1,3)$ and $\left(s_{j+4}, s_{j+5}, s_{j+6}\right)=(3,1,2)$ are not possible). Thus implies that $\sum_{j}^{j+6} s_{j} \geq 15$, this is a contradiction.

Subcase 2: If $s_{j+2}=2, s_{j+4}=4$ or conversely (two cases are similar in studying), so we will study case $s_{j+2}=2, s_{j+4}=4$ then $s_{j+5} \geq 1$, if $s_{j+5} \geq 2$, then $\sum_{j}^{j+6} s_{j} \geq 15$, because $s_{j+4}+s_{j+5}+s_{j+6} \geq 8$, we have $\sum_{j}^{j+3} s_{j} \geq 8$. Then $\sum_{j}^{j+6} s_{j} \geq 15$, this is a contradiction).

If $s_{j+5}=1$, then $s_{j+4}+s_{j+5}+s_{j+6}=7$. We have $\sum_{j}^{j+3} s_{j} \geq 8$. This implies that
$\sum_{j}^{j+6} s_{j} \geq 15$ this is a contradiction.
Finally, we get if $\sum_{j}^{j+6} s_{j}=14$, then $s_{j}=1$ or $s_{j+6}=1$. This completely the proof.
Result 3.1. If $\sum_{j}^{j+6} s_{j}=14$, then from Lemma 3.6, we have the cases for subsequence

$$
\begin{array}{rll}
\left(s_{j}, s_{j+1}, s_{j+2}, s_{j+3}, s_{j+4}, s_{j+5}, s_{j+6}\right): & \\
& a_{1}:(1,2,3,2,1,4,1), & a_{2}:(1,2,3,2,2,2,2), \\
a_{4}:(1,2,3,3,1,3,1), & a_{5}:(1,3,1,3,1,4,1), & a_{6}:(1,3,1,3,2,2,2,2), \\
& a_{7}:(1,3,1,3,2,3,1), & a_{8}:(1,3,1,3,3,2,1), \\
a_{10}:(1,3,2,2,2,2,2), & a_{91}:(1,3,1,4,1,3,1), \\
& a_{13}:(1,3,2,3,1,3,2,2), & a_{14}:(1,4,1,2,3,2,1), \\
a_{12}:(1,3,2,2,3,2,1), & a_{15}:(1,4,1,3,1,3,1)
\end{array}
$$

It is 15 cases (where $s_{j}=1$ with $\sum_{j}^{j+6} s_{j}=14$). We have three cases with $s_{j+1}=2$, $s_{j+1}=3$ and $s_{j+1}=4$.

Case 1: $s_{j+1}=2$ (including the cases $s_{j}=1$ and $s_{j+1}=2$ or $s_{j+6}=1$ and $s_{j+5}=2$). We have these cases are $a_{1}, a_{2}, a_{3}, a_{4}, a_{8}, a_{12}, a_{14}$ and comes before these cases, $s_{j-1}=4$ or comes after these cases $s_{j+7}=4$, i.e., if $s_{j}=1, s_{j+1}=2$ then $s_{j-1}=4$ and if $s_{j+6}=1, s_{j+5}=2$ then $s_{j+7}=4$.

Case 2: $s_{j+1}=3, s_{j+1}=4$ and these are the 8 remaining cases. We will study these cases after rejecting isomorphism cases when there is two cases or more, where $\left(s_{j}, \cdots, s_{j+6}\right)=\left(s_{j+6}, \cdots, s_{j}\right)$, then we will study only one case. We have 8 cases as follows:

$$
\begin{aligned}
& a_{5}:(1,3,1,3,1,4,1), a_{6}:(1,3,1,3,2,2,2), a_{7}:(1,3,1,3,2,3,1), a_{9}:(1,3,1,4,1,3,1) \\
& a_{10}:(1,3,2,2,2,2,2), a_{11}:(1,3,2,2,2,3,1), a_{13}:(1,3,2,3,1,3,1), a_{15}:(1,4,1,3,1,3,1)
\end{aligned}
$$

We note that two cases a_{5}, a_{15} are similar where one of them is contrary to the other one, so we study the case a_{5}. Also, two cases a_{7}, a_{13} are similar, so we study the case a_{7}. Then we study these cases: $a_{5}, a_{6}, a_{7}, a_{9}, a_{10}, a_{11}$.

Notice 3.2. We note that all the possible cases in Result 3.1, do not begin or end with 3 or 4 and it do not begin or end with $s_{j}+s_{j+1} \geq 5$ or $s_{j+5}+s_{j+6} \geq 5$ such that $s_{j}=2$ or $s_{j+6}=2$, and $s_{j+1}=3$ or $s_{j+5}=3$. Thus implies that if $s_{j}=2, s_{j+1}=3$, then $\sum_{j}^{j+6} s_{j} \geq 15$. Also, we note cases a_{5}, a_{6}, a_{7} are beginning with ($1,3,1,3$), but from Lemma 3.4, we get $s_{j-1}=4$. Now, remains our three cases for studying by the following lemma are:

$$
a_{9}:(1,3,1,4,1,3,1), a_{10}:(1,3,2,2,2,2,2), a_{11}:(1,3,2,2,2,3,1)
$$

Result 3.2. If $s_{j+1}=3, s_{j}=1$ where $k_{j} \cap s=\{(1, j)\}$ or $k_{j} \cap s=\{(2, j)\}$ then $s_{j-1}=4$, also for $k_{j} \cap s=\{(4, j)\}$ or $k_{j} \cap s=\{(5, j)\}$ because it are similar to two cases $k_{j} \cap s=\{(2, j)\}$ or $k_{j} \cap s=\{(1, j)\}$, respectively.

Lemma 3.7. If $\sum_{j}^{j+6} s_{j}=14$, such that $s_{j+5}=3, s_{j+6}=1$, then $\sum_{j+7}^{j+13} s_{j} \geq 15$. Furthermore,
if $\sum_{j+7}^{j+13} s_{j}=15$ then $\sum_{j+14}^{j+20} s_{j} \geq 15$.
Proof. By Result 3.2, if $k_{j+6} \cap s=\{(1, j+6)\}, k_{j+6} \cap s=\{(2, j+6)\}$,
$k_{j+6} \cap s=\{(4, j+6)\}$ or $k_{j+6} \cap s=\{(5, j+6)\}$ then $s_{j+7}=4$. From Lemma 3.5, we get $\sum_{j+7}^{j+13} s_{j} \geq 16$. Assume $k_{j+6} \cap s=\{(3, j+6)\}$ then we have two cases for $k_{j+5} \cap s$:

Case 1. $k_{j+5} \cap s=\{(1, j+5),(3, j+5),(5, j+5)\}$. Then $s_{j+7}=4$, by lemma 3.5, $\sum_{j+7}^{j+13} s_{j} \geq 16$.
Case 2. $k_{j+5} \cap s=\{(1, j+5),(2, j+5),(5, j+5)\}$ or $k_{j+5} \cap s=\{(1, j+5),(4, j+5),(5, j+5)\}$ and both cases are similar, so we will consider the first case. We have $3 \leq s_{j+7} \leq 4$ then by Lemma 3.5, $\sum_{j+7}^{j+13} s_{j} \geq 15$. If $s_{j+7}=4$ then $\sum_{j+7}^{j+13} s_{j} \geq 16$. Assume $s_{j+7}=3$, if $\sum_{j+7}^{j+13} s_{j} \geq 16$ the proof is finish. Assume $\sum_{j+7}^{j+13} s_{j}=15$ then we have cases $s_{j+8}=1,2,3$ or 4 .
Subcase 2.1. If $s_{j+8}=4$ then $s_{j+9} \geq 1$. This implies that $\sum_{j+7}^{j+13} s_{j} \geq 3+4+1+\sum_{j+10}^{j+13} s_{j}=8+8=16$
$\left\{\right.$ By Lemma 3.5, $\left.\sum_{j}^{i+3} s_{j} \geq 8\right\}$.
Subcase 2.2. If $s_{j+8}=3$ then $\sum_{j+9}^{j+13} s_{j} \geq 9$. If $\sum_{j+9}^{j+13} s_{j}>9$ then $\sum_{j+7}^{j+13} s_{j} \geq 16$. Assume that $\sum_{j+9}^{j+13} s_{j}=9$ then we have only one case $\left(s_{j+9}, \cdots, s_{j+13}\right)=(1,3,1,3,1)$ or $\left(s_{j+9}, \cdots, s_{j+13}\right)=(1,2,3,2,1)$. For any case we have $s_{j+8}=4$. So, we get $\sum_{j+9}^{j+13} s_{j}>9$. Which implies that $\sum_{j+7}^{j+13} s_{j} \geq 16$.

Subcase 2.3. If $s_{j+8}=1$ then $s_{j+9}=4$ \{because the case $\left(s_{j+5}, s_{j+6}, s_{j+7}, s_{j+8}, s_{j+9}\right)=(3,1,3,1,3)$ is not possible, by Lemma 3.3\}. Then $\sum_{j+7}^{i+13} s_{j} \geq 3+1+4+\sum_{j+10}^{j+13} s_{j} \geq 8+8=16$.
Subcase 2.4. If $s_{j+8}=2$ then $s_{j+7}=3, s_{j+8}=2$, we have the following cases:
2.4.1. $s_{j+9} \geq 3$ then $\sum_{j+7}^{j+13} s_{j} \geq 3+2+3+\sum_{j+10}^{j+13} s_{j} \geq 8+8=16$.
2.4.2. $s_{j+9} \neq 1$ \{because there is only one case for $\left(s_{j+7}, s_{j+8}, s_{j+9}\right)=(3,2,1)$ such that

$$
\left\{K_{j+7} \cup K_{j+8} \cup K_{j+9}\right\} \cap S=\{(2, j+7),(3, j+7),(4, j+7),(1, j+8),(5, j+8),(3, j+9)\}
$$

But according to distribution vertices $k_{j+5} \cap S$ and $k_{j+6} \cap S$ we have

$$
\begin{aligned}
& k_{j+5} \cap 7 \\
& \neq\{(2, j+7),(3, j+7),(4, j+7)\} .
\end{aligned}
$$

2.4.3. $s_{j+9}=2$ then $s_{j+7}+s_{j+8}+s_{j+9}=7$. This implies that
$\left(s_{j+7}, s_{j+8}, s_{j+9}\right)=(3,2,2)$. We will study the cases that leads to $\sum_{j+7}^{j+13} s_{j}=15$, i.e., $\sum_{j+10}^{j+13} s_{j}=8$, \{because the cases which leads to $\sum_{j+7}^{j+13} s_{j} \geq 16$ the proof will be done\}. Now, we have the fixed case $\left(s_{j+7}, s_{j+8}, s_{j+9}\right)=(3,2,2)$ We will consider the vertices $k_{j+10} \cap S$ which imply the following:
2.4.3.1. If $s_{j+10}=4$ then $\left(3,2,2,4, s_{j+11}, s_{j+12}, s_{j+13}\right)$, this implies that $\sum_{j+11}^{j+13} s_{j}=4$ and $\left(s_{j+11}, s_{j+12}, s_{j+13}\right)=(1,2,1)$ is not possible.
2.4.3.2. If $s_{j+10}=3$ then $\left(3,2,2,3, s_{j+11}, s_{j+12}, s_{j+13}\right)$ and $\sum_{j+11}^{j+13} s_{j}=5$ which imply that $\left(s_{j+11}, s_{j+12}, s_{j+13}\right)=(2,1,2),(2,2,1),(1,2,2)$ or $(1,3,1)$, and the only possible case is $(1,3,1)$. Thus implies that $\left(s_{j+7}, \cdots, s_{j+13}\right)=(3,2,2,3,1,3,1)$. By Lemma 3.4 and Lemma 3.5 is $s_{j+14}=4$, these implies that $\sum_{j+14}^{j+20} s_{j} \geq 16$.
2.4.3.3. If $s_{j+10}=2$ then $\left(3,2,2,2, s_{j+11}, s_{j+12}, s_{j+13}\right)$, i.e., $\sum_{j+11}^{j+13} s_{j}=6$. We have $s_{j+11} \neq 1$ \{because the case $(2,2,1)$ is not possible\}. Then we have the following cases for $s_{j+11}, s_{j+12}, s_{j+13}$:
1). If $s_{j+11}=4$ then $s_{j+12}=1$ and $s_{j+13}=1$, but the case $(4,1,1)$ is not possible.
2). If $s_{j+11}=3$ and $s_{j+12}=1$ then $s_{j+13}=2$, also the case $(3,1,2)$ is not possible.
3). If $s_{j+11}=3, s_{j+12}=2$ and $s_{j+13}=1$ then $\left(s_{j}, \cdots, s_{j+6}\right)=(3,2,2,2,3,2,1)$ which gets $s_{j+7}=4$ and $\sum_{j+7}^{j+13} s_{j} \geq 16$.
4). If $s_{j+11}=2$ and $s_{j+12}=2$ then $s_{j+13}=2$, but the case $(3,2,2,2,2,2,2)$ is not possible. If $s_{j+11}=2, s_{j+12}=3$ and $s_{j+13}=1$ then we gets $\left(s_{j}, \cdots, s_{j+6}\right)=(3,2,2,2,2,3,1)$ During the proof of Lemma, we notice that if $s_{j}=3$ and $s_{j+1}=1$, then $\sum_{j+2}^{j+8} s_{j} \geq 15$. This complete the proof.

Result 3.3. Based on the Lemma 3.6, and the other Lemmas and results precede it. We see that when we have case of $\sum_{j}^{j+6} s_{j}=14$, then the only case that comes after it, is $\sum_{j+7}^{j+13} s_{j}=15$ such that $\left(s_{j+7}, \cdots, s_{j+13}\right)=(3,2,2,2,2,3,1)$ which continues in the same way or it is followed by 7 columns contain 16 vertices from S \{by Lemma 3.6, $\sum_{j+14}^{j+20} s_{j} \geq 15$, because $\left.s_{j+12}=3, s_{j+13}=1\right\}$. When this case is repeated then $\sum_{j=n-6}^{n} s_{j} \geq 15$ and then when the case $\sum_{j}^{j+6} s_{j}=14$ it is necessary, the case $\sum_{j+6+q}^{j+6+q-1+7 r} s_{j} \geq 16$ exists as well $\{$ where $j+6+q-1+7 r \leq n\}$ these implies that $\sum_{j=1}^{n} s_{j} \geq\left\lceil\frac{15 n}{7}\right\rceil$ then $\gamma_{2}\left(P_{5} \times P_{n}\right)=\sum_{j=1}^{n} s_{j} \geq 2 n+\left\lceil\frac{n}{7}\right\rceil$.

Lemma 3.8. Let S be 2-dominating set for $P_{5} \times P_{n}$ then:

1) $s_{1} \geq 2$ and $s_{1}+s_{2} \geq 4\left(s_{n-1}+s_{n} \geq 4, s_{n} \geq 2\right)$.
2) If $s_{1}+s_{2}=4$ then $s_{1}+s_{2}+s_{3}=8 \quad\left(s_{n-1}+s_{n}=4\right.$ then $\left.s_{n-2}+s_{n-1}+s_{n}=8\right)$.
3) $s_{1}+s_{2}+s_{3} \geq 6\left(s_{n-2}+s_{n-1}+s_{n} \geq 6\right)$.
4) $\sum_{j=1}^{4} s_{j} \geq 9\left(\sum_{j=n-3}^{n} s_{j} \geq 9\right)$.
5) $\sum_{j=1}^{5} s_{j} \geq 10\left(\sum_{j=n-4}^{n} s_{j} \geq 10\right)$ and if $\sum_{j=1}^{5} s_{j}=10$ then $\sum_{j=1}^{6} s_{j} \geq 14$, also if $\sum_{j=n-4}^{n} s_{j}=10$ then $\sum_{j=n-5}^{n} s_{j} \geq 14$
6) $\sum_{j=1}^{6} s_{j} \geq 13\left(\sum_{j=n-5}^{n} s_{j} \geq 13\right)$.
7) $\sum_{j=1}^{7} s_{j} \geq 15\left(\sum_{j=n-6}^{n} s_{j} \geq 15\right)$.
8) If $s_{1}+s_{2}=5$ then either $\sum_{j=1}^{5} s_{j} \geq 11$ or $\sum_{j=1}^{6} s_{j} \geq 14$, also if $s_{n-1}+s_{n}=5$ then either $\sum_{j=n-4}^{n} s_{j} \geq 11$ or $\sum_{j=n-5}^{n} s_{j} \geq 14$.

Proof. The study of dominating sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ is the same as the study of the dominating sequence $\left(s_{n}, s_{n-1}, \cdots, s_{1}\right)$, so we study one case $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$. Also, the study of $\sum_{j=1}^{r} s_{j}$ is the same as the study of $\sum_{j=n-r+1}^{n} s_{j}$.

1) We have $s_{1} \geq 2$, if $s_{1}=2$ then $s_{2} \geq 3$ thus, $s_{1}+s_{2} \geq 5$ if $s_{1} \geq 3$ then $s_{2} \geq 1\left(1 \leq s_{j} \leq 4\right)$ these implies that $s_{1}+s_{2} \geq 4$.
2) If $s_{1}+s_{2}=4$, then we have only one the case $k_{1} \cap s=\{(1,1),(3,1),(5,1)\}$ these implies that $k_{2} \cap s=\{(3,2)\}$ and $s_{3}=4$ then $s_{1}+s_{2}+s_{3}=8$.
3) If $s_{1}+s_{2} \geq 5$, then $\sum_{j=1}^{3} s_{j} \geq 6$ \{because $\left.1 \leq s_{j} \leq 4\right\}$ and if $s_{1}+s_{2}=4$ then by 2 , is $\sum_{j=1}^{3} s_{j}=8$.
4) If $s_{1}+s_{2}=4$ then $\sum_{j=1}^{4} s_{j}=8$ these implies that $\sum_{j=1}^{4} s_{j} \geq 9$ and if $s_{1}+s_{2} \geq 6$ then $\sum_{j=1}^{4} s_{j} \geq 9$ \{because $\left.s_{3}+s_{4} \geq 3\right\}$. Assume that $s_{1}+s_{2}=5$, then we have three cases:
4.1) $s_{1}=2, s_{2}=3$ then $s_{3}+s_{4} \geq 4$, because the case $\left(s_{2}, s_{3}, s_{4}\right)=(3,1,2)$ is not possible. Also the case $\left(s_{2}, s_{3}, s_{4}\right)=(3,2,1)$ is not possible, else when $k_{2} \cap s=\{(2,2),(3,2),(4,2)\}$ and this is not possible.
4.2) $s_{1}=3, s_{2}=2$ then $s_{3}+s_{4} \geq 4$ because the cases $\left(s_{2}, s_{3}, s_{4}\right)=(2,2,1)$, $\left(s_{2}, s_{3}, s_{4}\right)=(2,1,2)$ are not possible.
4.3) $s_{1}=4, s_{2}=1$ then $s_{3}+s_{4} \geq 4$, because the cases $\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=(4,1,2,1)$, $\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=(4,1,2,2)$ are not possible. Thus implies that we have $\sum_{j=1}^{4} s_{j} \geq 9$.
5) By Lemma 3.4, we have two cases for $\sum_{j=1}^{4} s_{j}=9$ and these two cases are $(1,2,3,2,1),(1,3,1,3,1)$, furthermore these cannot be shown here because $s_{1} \geq 2$. Thus implies that we $\sum_{j=1}^{5} s_{j} \geq 10$.
6). If $s_{1}+s_{2} \geq 5$ then $\sum_{j=1}^{6} s_{j}=s_{1}+s_{2}+\sum_{j=3}^{6} s_{j} \geq 5+8=13$.
(where by Lemma 3.5, we have $\sum_{j}^{j+3} s_{j} \geq 8$). Let $s_{1}+s_{2}=4$ then $\sum_{j=1}^{3} s_{j}=8$ these implies that $\sum_{j=1}^{6} s_{j} \geq 8+\sum_{j=4}^{6} s_{j}$. Thus implies that $\sum_{j=1}^{6} s_{j} \geq 8+5=13 \quad$ \{because $\left.\sum_{j}^{j+2} s_{j} \geq 5\right\}$.
6) If $s_{1} \geq 3$ then from Lemma 3.5, $\sum_{j=1}^{7} s_{j} \geq 15$. Let $s_{1}=2$ \{because $\left.s_{1}>1\right\}$ then $s_{2} \geq 3$. This implies that $\sum_{j=1}^{7} s_{j} \geq 15 \quad$ \{by Notice 3.2\}.
7) If $s_{1}+s_{2}=5$ then either $\sum_{j=1}^{5} s_{j} \geq 11$ or $\sum_{j=1}^{6} s_{j} \geq 14$. We have $s_{1}+s_{2}=5$, then we have three
cases:
8.1) $s_{1}=4, s_{2}=1$, then $s_{3}+s_{4}+s_{5} \geq 7$ because the cases $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)=(4,1,2,2,2),(4,1,3,2,1),(4,1,2,3,1)$ or $(4,1,3,1,2)$ are not possible. Thus implies that $\sum_{j=1}^{5} s_{j} \geq 11$.
8.2) $s_{1}=2, s_{2}=3$, then $\sum_{j=1}^{5} s_{j} \geq 10$ and if $\sum_{j=1}^{5} s_{j}=10$ then $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)=(2,3,1,3,1)$. By Lemma 3.4, $s_{6}=4$. Thus implies that $\sum_{j=1}^{6} s_{j} \geq 14$.
8.3) $s_{1}=3, s_{2}=2$, then $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$ it has minimal numerals in the following cases $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)=(3,2,2,2,2),(3,2,1,4,1)$ or $(3,2,3,1,3)$ and for the case $\left(s_{3}, s_{4}, s_{5}\right)=(1,3,1)$ is not compatible with the case $\left(s_{1}, s_{2}\right)=(3,2)$. Thus implies that $\sum_{j=1}^{5} s_{j} \geq 11$. This completes the proof.

Theorem 3.5.

$$
\gamma_{2}\left(P_{5} \times P_{n}\right)=\left\{\begin{array}{l}
2 n+\left\lceil\frac{n}{7}\right\rceil: n \equiv 1,2,3,5(\bmod 7) \\
2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 0,4,6(\bmod 7)
\end{array}\right.
$$

Proof. By Result 3.3, we have $\gamma_{2}\left(p_{5} \times p_{n}\right)=\sum_{j=1}^{n} s_{j} \geq\left\lceil\frac{15 n}{7}\right\rceil$. By Theorem 3.4, we get $\gamma_{2}\left(p_{5} \times p_{n}\right)=2 n+\left\lceil\frac{n}{7}\right\rceil: n \equiv 1,2,3,5(\bmod 7)$.

Now, for $n \equiv 0,4,6(\bmod 7)$, by Theorem 3.4 , we have $\gamma_{2}\left(p_{5} \times p_{n}\right) \leq 2 n+\left\lceil\frac{n}{7}\right\rceil+1$.

From Result 3.3, we have $\gamma_{2}\left(p_{5} \times p_{n}\right) \geq 2 n+\left\lceil\frac{n}{7}\right\rceil$. We will study the cases:

1) $n \equiv 0(\bmod 7)$. We have $\gamma_{2}\left(p_{5} \times p_{n}\right)=\sum_{j=1}^{n} s_{j}$. So, we consider the following:
a) $s_{1}+s_{2}=4$ then $s_{1}+s_{2}+s_{3}=8$ and by Lemma 3.8,

$$
\begin{aligned}
& \gamma_{2}\left(p_{5} \times p_{n}\right)=\sum_{j=1}^{n} s_{j}=s_{1}+s_{2}+s_{3}+\sum_{j=4}^{n-4} s_{j}+\sum_{j=n-3}^{n} s_{j} \geq 8+2(n-2)+\frac{n-7}{7}+9, \\
& \gamma_{2}\left(p_{5} \times p_{n}\right) \geq 17+2 n-14+\frac{n-7}{7}=2 n+\frac{n+14}{7}=2 n+\left\lceil\frac{n}{7}\right\rceil+2 \geq 2 n+\left\lceil\frac{n}{7}\right\rceil+1 .
\end{aligned}
$$

b) $s_{1}+s_{2} \geq 5$ if $s_{1}+s_{2} \geq 6$ then

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=s_{1}+s_{2}+\sum_{j=3}^{n-5} s_{j}+\sum_{j=n-4}^{n} s_{j} \geq 6+2(n-7)+\frac{n-7}{7}+10 \\
& =2 n+\frac{n-7+14}{7}=2 n+\left\lceil\frac{n}{7}\right\rceil+1
\end{aligned}
$$

Let $s_{1}+s_{2}=5$ then by Lemma 3.8, $\sum_{j=1}^{5} s_{j} \geq 11$ or $\sum_{j=1}^{6} s_{j} \geq 14$. If $\sum_{j=1}^{5} s_{j} \geq 11$ then

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{5} s_{j}+\sum_{j=6}^{n-2} s_{j}+s_{n-1}+s_{n} \geq 11+2(n-7)+\frac{n-7}{7}+5 \\
& =2 n+\frac{n}{7}+1=2 n+\left\lceil\frac{n}{7}\right\rceil+1 .
\end{aligned}
$$

\{where the case $s_{n-1}+s_{n}=4$ is the same as $\left.s_{1}+s_{2}=4\right\}$. If $\sum_{j=1}^{5} s_{j}<11$ then by Lemma 3.8, we have $\sum_{j=1}^{6} s_{j} \geq 14$

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=s_{1}+s_{2}+\sum_{j=3}^{n-5} s_{j}+\sum_{j=n-4}^{n} s_{j} \geq 6+2(n-7)+\frac{n-7}{7}+10 \\
& =2 n+\frac{n-7+14}{7}=2 n+\left\lceil\frac{n}{7}\right\rceil+1
\end{aligned}
$$

And with Theorem 3.4, we get $\gamma_{2}\left(p_{5} \times p_{n}\right)=2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 0(\bmod 7)$.
2) When $n \equiv 4(\bmod 7)$ we have two cases:
a) $s_{1}+s_{2}=4$. Thus implies that $s_{1}+s_{2}+s_{3}=8$ then

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{3} s_{j}+\sum_{j=4}^{n-1} s_{j}+s_{n} \geq 8+\frac{15(n-4)}{7}+2 \\
& =2 n+\frac{n+10}{7}=2 n+\left\lceil\frac{n}{7}\right\rceil+1
\end{aligned}
$$

b) $s_{1}+s_{2} \geq 5$ \{where $\left.s_{n-1}+s_{n} \geq 5\right\}$ then

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=s_{1}+s_{2}+\sum_{j=3}^{n-2} s_{j}+s_{n-1}+s_{n} \geq 5+2(n-4)+\frac{n-4}{7}+5 \\
& =2 n+\frac{n+10}{7}=2 n+\left\lceil\frac{n}{7}\right\rceil+1
\end{aligned}
$$

Then by Theorem 3.4 , we get $\gamma_{2}\left(p_{5} \times p_{n}\right)=2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 4(\bmod 7)$.
3) $n \equiv 6(\bmod 7)$. We have two cases:
a) If $s_{1}+s_{2}=4$ then $s_{1}+s_{2}+s_{3}=8$. Thus implies that

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=s_{1}+s_{2}+s_{3}+\sum_{j=4}^{n-3} s_{j}+s_{n-2}+s_{n-1}+s_{n} \geq 8+2(n-6)+\frac{n-6}{7}+6 \\
& =2 n+\left\lceil\frac{n}{7}\right\rceil+1
\end{aligned}
$$

b) If $s_{1}+s_{2} \geq 5$ then $s_{n-1}+s_{n} \geq 5$. Thus implies that

$$
\begin{aligned}
\gamma_{2}\left(p_{5} \times p_{n}\right) & =\sum_{j=1}^{n} s_{j}=\sum_{j=1}^{4} s_{j}+\sum_{j=5}^{n-2} s_{j}+s_{n-1}+s_{n} \geq 9+2(n-6)+\frac{n-6}{7}+5 \\
& =2 n+\frac{n+8}{7}=2 n+\left\lceil\frac{n}{7}\right\rceil+1 .
\end{aligned}
$$

By Theorem 3.4, we get $\gamma_{2}\left(p_{5} \times p_{n}\right)=2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 6(\bmod 7)$. Finally, we get

$$
\gamma_{2}\left(p_{5} \times p_{n}\right)=\left\{\begin{array}{l}
2 n+\left\lceil\frac{n}{7}\right\rceil: n \equiv 1,2,3,5(\bmod 7) \\
2 n+\left\lceil\frac{n}{7}\right\rceil+1: n \equiv 0,4,6(\bmod 7)
\end{array}\right.
$$

This completes the proof.

References

[1] Mohan, J.J. and Kelkar, I. (2012) Restrained 2-Domination Number of Complete Grid Graphs. International Journal of Applied Mathematics and Computation, 4, 352-358.
[2] Fink, J.F. and Jacobson, M.S. (1985) n-Domination in graphs, in: Graph Theory with Application to Algorithms and Computer Science. John Wiley and Sons, New York, 282-300.
[3] Fink, J.F. and Jacobson, M.S. (1985) On n-Domination, n-Dependence and Forbidden Subgraphs. In: Graph Theory with Application to Algorithms and Computer Science, John Wiley and Sons, New York, 301-311.
[4] Haynes, T.W., Hedetniemi, S.T., Henning, M.A. and Slater, P.J. (2003) H-Forming Sets in Graphs. Discrete Mathematics, 262, 159-169. https://doi.org/10.1016/S0012-365X(02)00496-X
[5] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. (1998) Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York.
[6] Hansberg, A. and Volkmann, L. (2009) Upper Bounds on the k-Domination Number and the k-Roman Domination Number. Discrete Applied Mathematics, 157, 1634-1639. https://doi.org/10.1016/j.dam.2008.10.011
[7] Cockayne, E.J., Gamble, B. and Shepherd, B. (1985) An Upper Bound for the k-Domination Number of a Graph. Journal of Graph Theory, 9, 533-534. https://doi.org/10.1002/jgt. 3190090414
[8] Blidia, M., Chellali, M. and Volkmann, L. (2006) Some Bounds on the p-Domination Number in Trees. Discrete Mathematics, 306, 2031-2037. https://doi.org/10.1016/j.disc.2006.04.010
[9] Favaron, O., Hansberg, A. and Volkmann, L. (2008) On k-Domination and Minimum Degree in Graphs. Journal of Graph Theory, 57, 33-40. https://doi.org/10.1002/jgt.20279
[10] Volkmann, L. (2010) A Bound on the k-Domination Number of a Graph. Czechoslovak Mathematical Journal, 60, 77-83. https://doi.org/10.1007/s10587-010-0019-1
[11] Shaheen, R. (2009) Bounds for the 2-Domination Number of Toroidal Grid Graphs. International Journal of Computer Mathematics, 86, 584-588. https://doi.org/10.1080/00207160701690284
[12] Shaheen, R. (2013) On the 2-Domination Number of Cartesian Product of Two Cycles. Advances and Applications in Discrete Mathematics, 12, 83-108.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work
Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ojdm@scirp.org

