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Abstract 
A set D of vertices of a graph G = (V, E) is called k-dominating if every vertex 
v V D∈ −  is adjacent to some k vertices of D. The k-domination number of a 
graph G, ( )k Gγ , is the order of a smallest k-dominating set of G. In this paper we 

calculate the k-domination number (for k = 2) of the product of two paths Pm × Pn 
for m = 1, 2, 3, 4, 5 and arbitrary n. These results were shown an error in the paper 
[1].  
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1. Introduction 

Let ( ),G V E=  be a graph. A subset of vertices D V⊆  is called a 2-dominating set of 
G if for every v V∈ , either v D∈  or v is adjacent to at least two vertices of D. The 
2-domination number ( )2 Gγ  is equal to { }min :  is a 2 dominating set of D D G− . 

The Cartesian product G × H of two graphs G and H is the graph with vertex set 
( ) ( ) ( )V G H V G V H× = × , where two vertices ( )1 2,v v , ( )1 2,u u G H∈ ×  are adjacent 

if and only if either ( )1 1v u E G∈  and 2 2v u=  or ( )2 2v u E H∈  and 1 1v u= . 
Let G be a path of order n with vertex set ( ) { }1, 2, ,V G n=  . Then for two paths of 

order m and n respectively, we have ( ){ }, :1 ,1m nP P i j i m j n× = ≤ ≤ ≤ ≤ . The jth col-
umn of m nP P×  is ( ){ }, : 1, ,jK i j i m= =  . If D is a 2-dominating set for m nP P× , 
then we put j jW D K= ∩ . Let j js W= . The sequence ( )1 2, , , ns s s  is called a 
2-dominating sequence corresponding to D. For a graph G, we refer to minimum and 
maximum degrees by ( )Gδ  and ( )G∆ , and for simplicity denoted those by δ and Δ, 
respectively. Also, we denote by V  and E  to order and size of graph G, respec-
tively.  
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2. Notation and Terminology 

Fink and Jacobson [2] [3] in 1985 to introduced the concept of multiple domination. A 
subset D V⊆  is k-dominating in G if every vertex of –V D  has at least k neighbors 
in D. The cardinality of a minimum k-dominating set is called the k-domination num-
ber ( )k Gγ  of G. Clearly, ( ) ( )1g G g G= . Naturally, every k-dominating set of a graph 
G contains all vertices of degree less than k. Of course, every ( )1k + -dominating set is 
also a k-dominating set and so ( ) ( )1k kG Gγ γ +≤ . Moreover, the vertex set V is the only 
( )1∆ + -dominating set but evidently it is not a minimum ∆-dominating set. Thus 
every graph G satisfies 

( ) ( ) ( ) ( )1 1k kG G G G Vγ γ γ γ+ ∆ ∆+≤ ≤ ≤ < = . 

For a comprehensive treatment of domination in graphs, see the monographs by 
Haynes et al. [4]. Also, for more information see [5] [6]. Fink and Jacobson [2], intro-
duced the following theorems: 

Theorem 2.1 [2]. If 2k ≥ , is an integer and G is a graph with ( )k G≤ ∆ , then
( ) ( ) 2k G G kγ γ≥ + − . 

Theorem 2.2 [2]. If T is a tree, then ( )2
1

2
T

Tγ
+

≥ . 

In [6], Hansberg and Volkmann, proved the following theorem. 
Theorem 2.4 [6]. Let ( ),G V E=  be a graph of order n and minimum degree δ and  

let k N∈ . If 
( )

1 2
ln 1

kδ
δ
+

≥
+

, then ( ) ( )
( )

1

1
0

ln 1
1 ! 1

ik

k k
i

V
G k

i
δγ δ

δ δ

−

−
=

 
 ≤ + +
 + + 

∑ . 

Cockayne, et al. [7], established an upper bound for the k-domination number of a 
graph G has minimum degree k, they gave the following result. 

Theorem 2.3 [7]. Let G be a graph with minimum degree at least k, then  

( ) ( )1k
k V

G
k

γ ≤
+

. 

Blidia, et al. [8], studied the k-domination number. They introduced the following 
results. 

Theorem 2.5 [8]. Let G be a bipartite graph and S is the set of all vertices of degree at  

most –1k , then ( )
2k

V S
Gγ

+
≤ . 

Favaron, et al. [9], gave new upper bounds of ( )k Gγ . 
Corollary 2.6 [9]. Let G be a graph of order n and minimum degree δ. If k δ≤  is  

an integer, then ( ) .
2 1k G V

k
δγ

δ
≤

+ −
 

In [4], Haynes et al. showed that the 2-domination number is bounded from below 
by the total domination number for every nontrivial tree. 

Theorem 2.7 [4]. For every nontrivial tree, ( ) ( )2 tT Tγ γ≥ . 
Also, Volkmann [10] gave the important following result. 
Theorem 2.8 [10]. Let G be a graph with minimum degree 1kδ ≥ + , then  

( ) ( )
1 .

2
k

k
V G

G
γ

γ +

+
≤  

Shaheen [11] considered the 2-domination number of Toroidal grid graphs and gave 



R. Shaheen et al. 
 

34 

an upper and lower bounds. Also, in [12], he introduced the following results.  
Theorem 2.9 [12]. 
1) ( )2 2nC nγ =    . 
2) ( ) ( )2 3 : 0 mod 3nC C n nγ × = ≡ , 

( ) ( )2 3 1: 1, 2 mod 3nC C n nγ × = + ≡ .  
3) ( ) ( )2 4 2 : 0,3,5 mod8nC C n n nγ × = + ≡   , 

( ) ( )2 4 2 1: 1, 2, 4,6,7 mod14nC C n n nγ × = + + ≡   . 
4) ( )2 5 2nC C nγ × = . 
5) ( ) ( )2 6 2 : 0 mod 3nC C n nγ × = ≡ , 

( ) ( )2 6 2 2 : 1, 2 mod 3nC C n nγ × = + ≡ . 
6) ( ) ( )2 7 5 2 : 0,3,11 mod14nC C n nγ × = ≡   , 

( ) ( )2 7 5 2 1: 5,6,7,8,9,10 mod14nC C n nγ × = + ≡   , 
( ) ( )2 7 5 2 2 : 1, 2, 4,12,13 mod14nC C n nγ × = + ≡   . 

In this paper we calculate the k-domination number (for k = 2) of the product of two 
paths m nP P×  for m = 1, 2, 3, 4, 5 and arbitrary n. These results were shown an error 
in the paper [1]. We believe that these results were wrong. In our paper we will provide 
improved and corrected her, especially for m = 3, 4, 5. 

The following formulas appeared in [1], 

( ) ( ) ( ) ( ) ( )2 2 2 2 3 2 41 2 2 2 2 .n n n nP n P P n P P n n P P nγ γ γ γ= + ⋅ × = ⋅ × = − ⋅ × =       

( ) ( ) ( )2 5 2 2 13 2 1 2 .n k nP P n n P P k n nγ γ +× = − ⋅ × = + −        

( ) ( )
( ) ( )

2

2

2 2 : 1 mod 2 ,

2 : 0 mod 2 .
m n

m n

P P m n n m

P P m n m

γ

γ

× = − ≡      
× = ≡  

 

In this paper, we correct the results in [1] and proves the following: 

( ) ( ) ( ) ( )2 2 2 2 31 2 3 .n n nP n P P n P P n nγ γ γ= + ⋅ × = ⋅ × = +       

( ) ( )
( ) ( )

2 4

2 4

2 4 : 3,7 mod8 ,

2 4 1: 0,1, 2, 4,5,6 mod8 .
n

n

P P n n n

P P n n n

γ

γ

× = − ≡  
× = − + ≡  

 

( ) ( )
( ) ( )

2 5

2 5

2 7 : 1, 2,3,5 mod 7 ,

2 7 1: 0, 4,6 mod 7 .
n

n

P P n n n

P P n n n

γ

γ

× = + ≡  
× = + + ≡  

 

3. Main Results 

Our main results here are to establish the domination number of Cartesian product of 
two paths mP  and nP  for m = 1, 2, 3, 4, 5 and arbitrary n. We study 2-dominating 
sets in complete grid graphs using one technique: by given a minimum of upper 
2-dominating set D of m nP P×  and then we establish that D is a minimum 2-domi- 
nating set of m nP P×  for several values of m and arbitrary n. Definitely we have 

( )2 m nP P Dγ × = . 
Let G be a path of order n with vertex set ( ) { }1, 2, ,V G n=  . For two paths of order 

m and n respectively is: 
( ){ },  :1 ,1m nP P i j i m j n× = ≤ ≤ ≤ ≤ . The jth column m nP P×  is  

( ){ },  : 1, ,jK i j i m= =  . 
If D is a 2-dominating set for m nP P×  then we put j jW D K= ∩ . Let j js W= . The 
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sequence ( )1 2, , , ns s s  is called a 2-dominating sequence corresponding to D. Always 
we have 1, 3ns s m≥    . Suppose that 0js =  for some j (where j ≠ 1 or n). The vertic-
es of the jth column can only be 2-dominated by vertices of the (j − 1)st columns and (j 
+ 1)st columns. Thus we have 1 1 2j js s m− ++ = , then 1 1j js s m− += = . In general 

1 14 2j j js s s m− ++ + ≥ . 
Notice 3.1. 
1) The study of 2-dominating sequence ( )1 2, , , ns s s  is the same as the study of the 

2-dominating sequence ( )1 1, , ,n ns s s−  .  
2) If subsequence ( )1, , ,j j j ks s s+ +  is not possible, then its reverse ( )1, , ,j k j js s s+ +  

is not possible. 
3) We say that two subsequences ( ) ( )1, , , , ,j j q j q j rs s s s+ + + +   are equivalent, if the 

sequence ( )1, , , , ,j j q j q j rs s s s+ + + + 

 
is possible.  

We need the useful following lemma. 
Lemma 3.1. There is a minimum 2-dominating set for m nP P×  with 2-dominating 

sequence ( )1 2, , , ns s s−  such that, for all 1, 2, ,j n= 
, is 4 3 4jm s m≤ ≤       . 

Proof. Let D be a minimum 2-dominating set for m nP P×  with 2-dominating se-
quence ( )1 2, , , ns s s− . Assume that for some j, sj is large. Then we modify D by mov-
ing two vertices from column j, one to column j − 1 and another one to column j + 1, 
such that the resulting set is still 2-dominating set for m nP P× . For 1 i m≤ ≤  and 
1 j n≤ ≤ , let ( ) ( ) ( ) ( ){ }, , 1, , 2, , 3,W D i j i j i j i j= ∩ + + + . If 4W = , then we define 

( ) ( ) ( ) ( ) ( ){ }1 – , , 1, 1 , 2, 1 , 3,D D W i j i j i j i j= ∪ + − + + + , see Figure 1. We repeat this 
process if necessary eventually leads to a 2-dominating set with required properties. 
Also, we get D1 is a 2-dominating set for m nP P×  with 1D D= . Thus, we can assume 
that every four consecutive vertices of the jth column include at most three vertices of 
D. This implies that 3 4js m≤    , for all 1 ≤ j ≤ n. 

To prove the lower bound, we suppose that jK D∩  is be a maximum, i.e., 
3 4js m=    . Then for each ( ),i j D∉ , we have  

( ) ( ) ( ){ }1, 1 , , 1 , 1, 1 1i j i j i j D− + + + + ∩ ≥ . When 3 4js m=    , there at must  
3 4 4m m m− =        vertices does not in jK D∩ . This implies that 1 4js m+ ≥    . So, 

the same as for 1 4js m− ≥    . □ 
By Lemma 3.1, always we have a minimum 2-dominating set D with 2-dominating 

sequence ( )1 2, , , ns s s , such that 4 3 4jm s m≤ ≤       , for all 1, 2, ,j n= 
. 

Lemma 3.2. ( )2
1

2n
nPγ + =   

. 

 

 
Figure 1. Modify D. 
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Proof. Let ( )2 1 ;1
2
nD k k  = − ≤ ≤    

. 

We have D is a 2-dominating set of Pn for ( )1 mod 2n ≡  with 1
2

nD + =   
, also 

( ){ }D n∪  is a 2-dominating set of Pn for ( )0 mod 2n ≡  with ( ){ } 1
2

nD n + ∪ =   
.  

Let D1 be a minimum 2-dominating set for Pn with ( ) { }1 2, , ,n nV P x x x=  . Since 
( )1 n nx x E P∉ , we need to 1 1, nx x D∈ , also if 1jx D∉  then 1 1,j jx x− +  are belong to D1,  

this implies that 2 1 1jx D− ∈  for 2
2
nj  ≤ ≤   

. Thus implies that  

1
12 1

2 2
n nD +   ≥ + − =      

. We result that ( )2
1

2n
nPγ + =   

. □ 

Theorem 3.1. ( )2 2 nP P nγ × = . 

Proof. Let a set ( ) ( )1, 2 1 :1 2, 2 :1
2 2
n nD k k k k      = − ≤ ≤ ∪ ≤ ≤            

. 

It is clear that D n= .                                                (1) 

We can check that D is 2-dominating set for 2 nP P× , see Figure 2. Let D1 be a minimum 
2-dominating set for 2 nP P×  with dominating sequence ( )1, , ns s . If 1is ≥  for all  

1, ,j n= 
, then 1

1

n

j
j

D s n
=

= ≥∑ .                    (2) 

Let 0js =  for some j, then 1 1 2j js s− += = , also we have 1 1s ≥  and 1ns ≥ . Now 
we define a new sequence ( )1, , ns s′ ′

 , (not necessarily a 2-dominating sequence) as 
follows:  

For 2js = , if 1j =  or n, we put – 1j js s′ = , 2 2 1 2s s′ = +  and 1 1 1 2n ns s− −′ = + . 
If 1j ≠  or n, we put – 1j js s′ = , 1 1 1 2j js s− −′ = +  and 1 1 1 2j js s+ +′ = + . 
Otherwise j js s′ = . 
We get a sequence ( )1, , ns s′ ′

  have property that each 1js′ ≥  with  

1 1

n n

j j
j j

D s s n
= =

′= = ≥∑ ∑ .                         (3) 

By (1), (2) and (3) is ( )2 2 nP P nγ × = . This completes the proof of the theorem. □ 

Theorem 3.2. ( )2 3 3n
nP P nγ  × = +   

.  

Proof. Let 
( ) ( )

( ) ( )

2,3 2 :1 2,3 :1
3 3

1       1,3 1 , 3,3 1 :1
3

n nD k k k k

nk k k

      = − ≤ ≤ ∪ ≤ ≤            
 −  ∪ − − ≤ ≤    

. 

 

 

Figure 2. A 2-dominating set for P2 × P10. 
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( ) ( ) ( )

( )

11,3 2 , 3,3 2 :1 2,3 1 :1
3 3

         2,3 :1
3

n nD k k k k k

nk k

   −    ′ = − − ≤ ≤ ∪ − ≤ ≤            
  ∪ ≤ ≤    

. 

We have 
3
nD n  = +     

and 
3
nD n  ′ = +   

.                               (4) 

By definition D and D′  we note that  
D is 2-dominating set for 3 nP P×  when ( )0,2 mod3n = , (see Figure 3, for P3 × 

P14). 
D′  is 2-dominating set for 3 nP P×  when ( )1 mod 3n = , (see Figure 4, for P3 × P10). 
Let D1 be a minimum 2-dominating set for 3 nP P×  with 2-dominating sequence 

( )1, , ns s  we have 1, 1ns s ≥  and  
if 1, 1ns s =  then 2 1, 2ns s − ≥ ,  
if 1, 2ns s =  then 2 1, 1ns s − ≥ . 

Also for 1 j n< < , if 0js =  then 1 1 3,j js s− += =  
1js =  then 1 1 3,j js s− ++ ≥  
2js =  then 1 1 2,j js s− ++ ≥  

If no one of 0js =  for all j, then 1
1 3

n

j
j

nD s n
=

 = ≥ +   
∑ .                    (5) 

Let 0js =  ( 1j ≠  or n) for some j, we define a sequence ( )1, , ns s′ ′
 , (not necessar-

ily a 2-dominating sequence ) as follows: 
If 3js = , then we put –1j js s′ = , 1 1 1 2j js s− −′ = +  and 1 1 1 2j js s+ +′ = + , otherwise  

j js s′ = . We have \
1

1 1

n n

j j
j j

D s s
= =

= =∑ ∑ . We note that the sequence ( )1, , ns s′ ′
  have the  

property if 1js′ =  then 1 1 3j js s− +′ ′+ ≥ . Thus implies that  

1
1 3

n

j
j

nD s n
=

 ′= ≥ +   
∑ .                         (6) 

From (4), (5) and (6) we get the required result. □ 

Theorem 3.3. ( )
( )

( )
2 4

2 : 3,7 mod8 ,
4

2 1: 0,1, 2, 4,5,6 mod8 .
4

n

nn n
P P

nn n
γ

  − ≡    × = 
  − + ≡   

 

 

 
Figure 3. A 2-dominating set for P3 × P14. 

 

 
Figure 4. A 2-dominating set for P3 × P10. 
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Proof. Let a set D defined as follows: 

( ) ( ){ } ( ) ( )

( )

( ) ( ) ( )

( ) ( )

12,1 , 3,1 1,4 2 , 4,4 2 ;1
4

2          2,8 5 ;1
8

3          1,8 4 , 3,8 4 , 4,8 4 ;1
8

4 6          2,8 3 ;1 3,8 1 ;1
8 8

nD k k k

nk k

nk k k k

n nk k k k

  −  = ∪ − − ≤ ≤     
 −  ∪ − ≤ ≤    
 −  ∪ − − − ≤ ≤    
 −   −   ∪ − ≤ ≤ ∪ − ≤ ≤          

( ) ( ) ( ) ( )7 1          1,8 , 2,8 , 4,8 ;1 3,8 1 ;1
8 8

n nk k k k k k





 −   −    ∪ ≤ ≤ ∪ + ≤ ≤            

 

( ){ } ( ){ }2, ,    3,D n D n′ ′′= = .  

We can check that the following sets are 2-dominating set for 4 nP P×  (see Figure 5, 
for 4 11P P× ) as indicated: 

D is 2-dominating set for 4 nP P×  when ( )0, 4 mod8n ≡ . 
D D′∪  is 2-dominating set for 4 nP P×  when ( )1, 2,7 mod8n ≡ .  
D D′′∪  is 2-dominating set for 4 nP P×  when ( )3,5,6 mod8n ≡ .  
We have  

( )

( )

( )

2 1: 3,7 mod8 ,
4

2 : 1, 2,5,6 mod8 ,
4

2 1: 0, 4 mod8 .
4

nn n

nD n n

nn n

  − − ≡    
  = − ≡    
  − + ≡    

 

Let D1 be a minimum 2-dominating set for 4 nP P×  with 2-dominating sequence 
( )1, , ns s  we shall show that 

( )

( )
1

2 : 3,7 mod8 ,
4

2 1: 0,1, 2, 4,5,6 mod8 .
4

nn n
D

nn n

  − ≡     =  
  − + ≡    

 

By Lemma 3.1, we have 1 3js≤ ≤ . Thus 
If 1js =  then 1 1 5j js s− ++ ≥ . 
If 2js =  then 1 1 2j js s− ++ ≥ . 
If 3js =  then 1 1 2j js s− ++ ≥ . 
Also, we have 1, 2ns s ≥ . If 1, 2ns s =  then 2 1, 2ns s − ≥ , and if 1, 3ns s =  then 
 

 
Figure 5. A 2-dominating set for P4 × P11. 
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2 1, 1ns s − ≥ . 
We define a new set 1D′  with sequence ( )1, , ns s′ ′

 , (not necessarily a 2-dominating  

sequence) as follows: if 2js ≥ , let 
7
4j jM s= − . Now, for 2j =  to 1j n= − , if  

2js ≥ , then we put  

j j js s M′ = − , 1 1 2
j

j j

M
s s− −′ = +  and 1 1 2

j
j j

M
s s+ +′ = +  

Thus, for 3 2j n≤ ≤ − , we have 
7
4js ≥ . Since if 2js ≥  then 

7
4js′ ≥  and if 

1js = , then 1 1 5j js s− ++ =  this implies that 1 1
14 65
4 4j jM M− ++ = − = , which implies 

that 1 1 3 71 .
2 2 4 4

j j
j j

M M
s s − +′ = + + = + =  

We have three cases: 

Case 1: 1, 2ns s ≥ , then 2 1, 2ns s − ≥ , these implies that 1 1
1
8

s s′ ≥ +  and 
1
8n ns s′ ≥ +  also  

( )1

1 1
1 1 2

7 21 1 7 32 2
8 8 4 4 4

n n n

j j n j
j j j

n nD s s s s s
−

= = =

−
′ ′ ′ ′= = = + + ≥ + + + + = +∑ ∑ ∑ . 

Case 2: 1, 3ns s =  then 2 1, 2ns s − ≥ . Thus implies that 1, 3ns s′ ′ =  and  

2 1
1, 1 .
8ns s −′ ′ ≥ +  Then  

2

1 1 2 1
1 1 2

1 1 7 7 53 1 3 1
8 8 4 4 4

n n n

j j n n j
j j j

nD s s s s s s s
−

−
= = =

′ ′ ′ ′ ′ ′= = = + + + + ≥ + + + + + + = +∑ ∑ ∑  

Case 3: 1 2,  3ns s= =  and 2 1 12,  1   or   3,  2n ns s s s−≥ ≥ = =  and 2 11,  2ns s −≥ ≥ . 
Two cases are similar by symmetry. We consider the first case: 

1 22,  2s s= ≥  and 13,  1n ns s −= ≥ , this implies that  

1 2 1
1 7 12 ,  ,  3,  1
8 4 8n ns s s s −′ ′ ′ ′= + = = = +  and 

( )
2

1 1 2 1
1 1 3

1 7 1 7 72 3 1 4 1
8 4 8 4 4

n n n

j j n n j
j j j

nD s s s s s s s n
−

−
= = =

′ ′ ′ ′ ′ ′= = = + + + + ≥ + + + + + + − = +∑ ∑ ∑  

But, we have the 2-domination number is positive integer number, also we have  
7 32

4 4 4
n nn  − = +  

 for ( )3,7 mod8n ≡ , 

( )

( )

( )

7 1    For   0, 4 mod8 ,
4

7 52 1   For   1,5 mod8 ,
4 4 4

7 6   For   2,6 mod8 ,
4 4

n n

n nn n

n n

 + ≡
 − + = + ≡   
 + ≡

 

Thus implies that  

( )

( )
1

2 ; 3,7 mod8 ,
4

2 1; 0,1, 2, 4,5,6 mod8 ,
4

nn n
D

nn n

  − ≡     ≥  
  − + ≡    
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Finally, we get  

( ) ( )

( ) ( )

2 4

2 4

2 : 3,7 mod8 ,
4

2 1: 0,1, 2, 4,5,6 mod8 ,
4

n

n

nP P n n

nP P n n

γ

γ

 × = − ≡  
 × = − + ≡  

 

This complete the proof of the theorem. □ 
Theorem 3.4. 

( )
( )

( )
2 5

2 : 1, 2,3,5 mod 7 ,
7

2 1: 0, 4,6 mod 7 .
7

n

nn n
P P

nn n
γ

  + ≡    × = 
  + + ≡   

 

Proof. Let a set D defined as follows: 

( ) ( ){ } ( ) ( ) ( ) ( ){ }{
( ) ( ){ } ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ } }

2,1 , 4,1 1, , 2, , 5, : 2 mod 7

         3, : 3 mod 7 1, , 4, , 5, : 4 mod 7

         2, , 3, : 5 mod 7 2, , 5, : 6 mod 7

         1, , 4, : 0 mod 7 3, , 4, : 1 mod 7  and 1

D j j j j

j j j j j j

j j j j j j

j j j j j j j

= ∪ ≡

∪ ≡ ∪ ≡

∪ ≡ ∪ ≡

∪ ≡ ∪ ≡ ≠

 

We can check that the following sets are 2-dominating set for 5 nP P×  (see Figure 6, 
for 5 23P P× ) as indicated: 

{ }{ } ( ) ( ) ( ){ } ( )
( ){ } ( )

( )
{ }{ } ( ) ( ){ } ( )
{ }{ } ( ) ( ) ( ){ } ( )

2, , 3, , 5, : 1 mod 7 .

2, : 0, 4 mod 7 .
: 2 mod 7 .

2, , 4, : 3,5 mod 7 .

1, , 3, , 5, : 6 mod 7 .

n

n

n

D K D n n n n
D n n
D n
D K D n n n

D K D n n n n

− ∩ ∪ ≡

∪ ≡

≡

− ∩ ∪ ≡

− ∩ ∪ ≡

 

We have 2
7
nD n  ≤ +   

 and 

( )
( )

( )
2 5

2 : 1, 2,3,5 mod 7 ,
7

2 1: 0, 4,6 mod 7 .
7

n

nn n
P P

nn n
γ

  + ≡    × ≤ 
  + + ≡   

 

This complete the proof of the theorem. □ 
Lemma 3.3. The following cases are not possible: 
1) (1, 2, 3, 1). 
2) (1, 2, 1). 
3) (1, 4, 1, 1). 
 

 
Figure 6. A 2-dominating set for P5 × P23. 



R. Shaheen et al. 
 

41 

4) (1, 3, 1, 3, 1, 3). 
5) (2, 1, 3). 
6) (2, 2, 2, 2, 2, 2). 
Proof. It follows directly from the drawing. 
Lemma 3.4. 
1) There is one case for subsequence ( ) ( )1 2 3 4, , , , 2, 2, 2, 2, 2j j j j js s s s s+ + + + = . 
2) There is one case for subsequence ( ) ( )1 2 3, , , 1,3,1,3j j j js s s s+ + + = . 
3) There is one case for subsequence ( ) ( )1 2 3 4, , , , 1,3,1,3,1j j j j js s s s s+ + + + = . 
4) There is one case for subsequence ( ) ( )1 2 3 4, , , , 1, 2,3, 2,1j j j j js s s s s+ + + + = . 
Proof. It follows directly from the drawing (see Figure 7). 
Lemma 3.5. 

1) 
3

8
j

j
j

s
+

≥∑ . 

2) 
5

12
j

j
j

s
+

≥∑ . 

3) 
6

14
j

j
j

s
+

≥∑ . 

4) If 3js =  then 
6

15
j

j
j

s
+

≥∑ . 

5) If 4js =  then 
6

16
j

j
j

s
+

≥∑ . 

Proof. 1) By Lemma 3.3, imply that 
3

8
j

j
j

s
+

≥∑ . 

2) By 1, we have 
3

8
j

j
j

s
+

≥∑ . If 
3

8
j

j
j

s
+

=∑ , then we have the cases  

( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , 1, 2,3, 2 , 1,3,1,3 , 1,3, 2, 2 , 1, 4,1, 2 , 2, 2, 2, 2j j j js s s s+ + + = . 

From Lemma 3.3, we have 4 5 4j js s+ ++ ≥ , this implies that 
5

12
j

j
j

s
+

≥∑ . 

If 
4

9
j

j
j

s
+

≥∑  then 4 5 3j js s+ ++ ≥ . This implies that 
6

12
j

j
j

s
+

≥∑ . 

3) We have 
2

5
j

j
j

s
+

≥∑  and 
6

4
5

j

j
j

s
+

+

≥∑ . If 
6

4
5

j

j
j

s
+

+

=∑ , then there is one case 

( ) ( )4 5 6, , 1,3,1j j js s s+ + + =  (where the cases ( ) ( )1, 2,1 , 1, 2, 2  are not possible). But the  

case ( )1,3,1  is not compatible with any of the cases when 
3

8
j

j
j

s
+

=∑ , this implies that  

 

 
Figure 7. Cases 1, 2, 3 and 4 of Lemma 3.4. 
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3

9
j

j
j

s
+

≥∑ . Then 
6

14
j

j
j

s
+

≥∑  (where the case ( )1,3,1,3,1,3  is not possible). If 

6

4
6

j

j
j

s
+

+

≥∑  then 
6 3 6

4
8 6 14

j j j

j j j
j j j

s s s
+ + +

+

= + ≥ + =∑ ∑ ∑ . 

4) We have 3js ≥ , then from 2 is 
6

15
j

j
j

s
+

≥∑ . 

5) We have 4js ≥ , then from 2 is 
6

16
j

j
j

s
+

≥∑ . This complete the proof of the Lemma. □ 

Lemma 3.6. If 
6

14
j

j
j

s
+

=∑ , then 1js =  or 6 1js + = . 

Proof. We suppose the contrary 6, 2j js s + ≥ . From Lemma 3.5, 6, 3j js s + < , else  
6

15
j

j
j

s
+

≥∑ . Now, we must study the case 6 2j js s += = . We have 
5

2
10

j

j
j

s
+

+

=∑ , by Lem-  

ma 3.3, the case ( )2, 2, 2, 2, 2, 2  is not possible, this implies that not all elements of the 
subsequence ( )1 5, ,j js s+ +  are equal to the value 2. If 1 2 3 4 5, , , , 2j j j j js s s s s+ + + + + ≥

  
where at least one of them is equal or greater than 3, then 

6

15
j

j
j

s
+

≥∑ , this is a contra-

diction with 
6

14
j

j
j

s
+

=∑ . Now, we have 
5

10
j

j
j

s
+

=∑ , where one of the subsequence ele-  

ment ( )1 5, ,j js s+ +  is at most equal the value 1 (where 1 4js≤ ≤ ). We consider the 
cases 1js =  for 1 5j j j+ ≤ ≤ + : 

1) 1 1js + =  or 5 1js + =  (where two cases are similar), we study the case 1 1js + =   
then 2 4js + = , these implies that 1 2 7j j js s s+ ++ + = . By Lemma 3.5, we have 

6

3
8

j

j
j

s
+

+

≥∑  then 
6

15
j

j
j

s
+

≥∑ , this is a contradiction. 

2) 2 1js + =  or 4 1js + =  (where two cases are similar), we study the case 2 1js + =
 

then 1 3js + ≥ , (because the case ( )2, 2,1  is not possible). If 1 3js + =  then 3 3js + ≥   

and we have 6 2js + =  then 
5

4
4

j

j
j

s
+

+

≥∑  (because two cases ( ) ( )1, 2, 2 , 2,1, 2  are not 

possible). Thus implies that
6

2 3 1 3 4 2 15
j

j
j

s
+

≥ + + + + + =∑ , this is a contradiction. 

3) 3 1js + = , then we have two subcases results from 2 4 6j js s+ ++ ≥ : 
Subcase 1: 2 4 3j js s+ += =  then 1 5, 2j js s+ + ≥  (because two cases  

( ) ( )1 2, , 2,1,3j j js s s+ + =  and ( ) ( )4 5 6, , 3,1, 2j j js s s+ + + =  are not possible). Thus implies  

that 
6

15
j

j
j

s
+

≥∑ , this is a contradiction. 

Subcase 2: If 2 42,  4j js s+ += =  or conversely (two cases are similar in studying), so  

we will study case 2 42,  4j js s+ += =  then 5 1,js + ≥  if
 5 2js + ≥ , then 

6

15
j

j
j

s
+

≥∑ , be-

cause 4 5 6 8j j js s s+ + ++ + ≥ , we have 
3

8
j

j
j

s
+

≥∑ . Then
 

6

15
j

j
j

s
+

≥∑ , this is a contradiction). 

If 5 1js + = , then 4 5 6 7j j js s s+ + ++ + = . We have 
3

8
j

j
j

s
+

≥∑ . This implies that 
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6

15
j

j
j

s
+

≥∑  this is a contradiction. 

Finally, we get if 
6

14
j

j
j

s
+

=∑ , then 1js =  or 6 1js + = . This completely the proof. □ 

Result 3.1. If 
6

14
j

j
j

s
+

=∑ , then from Lemma 3.6, we have the cases for subsequence  

( )1 2 3 4 5 6, , , , , ,j j j j j j js s s s s s s+ + + + + + : 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3

4 5 6

7 8 9

10

: 1, 2,3, 2,1, 4,1 ,      : 1, 2,3, 2, 2, 2, 2 ,      : 1, 2,3, 2, 2,3,1 ,

: 1, 2,3,3,1,3,1 ,      : 1,3,1,3,1, 4,1 ,       : 1,3,1,3, 2, 2, 2 ,

: 1,3,1,3, 2,3,1 ,      : 1,3,1,3,3, 2,1 ,       : 1,3,1, 4,1,3,1 ,

: 1,3, 2, 2, 2, 2

a a a

a a a

a a a

a ( ) ( ) ( )
( ) ( ) ( )

11 12

13 14 15

, 2 ,   : 1,3, 2, 2, 2,3,1 ,      : 1,3, 2, 2,3, 2,1 ,

: 1,3, 2,3,1,3,1 ,    : 1, 4,1, 2,3, 2,1 ,      : 1, 4,1,3,1,3,1 .

a a

a a a

 

It is 15 cases (where 1js =  with 
6

14
j

j
j

s
+

=∑ ). We have three cases with 1 2js + = ,  

1 3js + =  and 1 4js + = . 
Case 1: 1 2js + =  (including the cases 11 and  2j js s += =  or 6 51 and  2j js s+ += = ). 

We have these cases are 1 2 3 4 8 12 14, , , , , ,a a a a a a a  and comes before these cases, 1 4js − =
 

or comes after these cases 7 4js + = , i.e., if 11,  2j js s += =  then 1 4js − =  and if 

6 51,  2j js s+ += =  then 7 4js + = . 
Case 2: 1 13,  4j js s+ += =  and these are the 8 remaining cases. We will study these 

cases after rejecting isomorphism cases when there is two cases or more, where 

( ) ( )6 6, , , ,j j j js s s s+ +=  , then we will study only one case. We have 8 cases as fol-
lows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 6 7 9

10 11 13 15

: 1,3,1,3,1, 4,1 ,  : 1,3,1,3, 2, 2, 2 ,  : 1,3,1,3, 2,3,1 ,  : 1,3,1, 4,1,3,1 ,

: 1,3, 2, 2, 2, 2, 2 ,  : 1,3, 2, 2, 2,3,1 ,  : 1,3, 2,3,1,3,1 ,  : 1, 4,1,3,1,3,1 .

a a a a

a a a a
 

We note that two cases 5 15,a a  are similar where one of them is contrary to the oth-
er one, so we study the case 5a . Also, two cases 7 13,a a  are similar, so we study the 
case 7a . Then we study these cases: 5 6 7 9 10 11, , , , ,a a a a a a . □ 

Notice 3.2. We note that all the possible cases in Result 3.1, do not begin or end with 
3 or 4 and it do not begin or end with 1 5j js s ++ ≥  or 5 6 5j js s+ ++ ≥  such that 

2js =  or 6 2js + = , and 1 3js + =  or 5 3js + = . Thus implies that if 12,  3j js s += = ,  

then 
6

15
j

j
j

s
+

≥∑ . Also, we note cases 5 6 7, ,a a a  are beginning with (1, 3, 1, 3), but from  

Lemma 3.4, we get 1 4js − = . Now, remains our three cases for studying by the follow-
ing lemma are: 

( ) ( ) ( )9 10 11: 1,3,1, 4,1,3,1 ,  : 1,3, 2, 2, 2, 2, 2 ,  : 1,3, 2, 2, 2,3,1 .a a a  □ 

Result 3.2. If 1 3,  1j js s+ = =  where ( ){ }1,jk s j∩ =  or ( ){ }2,jk s j∩ =  then 

1 4js − = , also for ( ){ }4,jk s j∩ =  or ( ){ }5,jk s j∩ =  because it are similar to two 
cases ( ){ }2,jk s j∩ =  or ( ){ }1,jk s j∩ = , respectively. □ 

Lemma 3.7. If 
6

14
j

j
j

s
+

=∑ , such that 5 63,  1j js s+ += = , then 
13

7
15

j

j
j

s
+

+

≥∑ . Furthermore, 
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if 
13

7
15

j

j
j

s
+

+

=∑  then 
20

14
15

j

j
j

s
+

+

≥∑ . 

Proof. By Result 3.2, if ( ){ }6 1, 6jk s j+ ∩ = + , ( ){ }6 2, 6jk s j+ ∩ = + , 
( ){ }6 4, 6jk s j+ ∩ = +  or ( ){ }6 5, 6jk s j+ ∩ = +  then 7 4js + = . From Lemma 3.5, we  

get 
13

7
16

j

j
j

s
+

+

≥∑ .
 
Assume ( ){ }6 3, 6jk s j+ ∩ = +  then we have two cases for 5jk s+ ∩ : 

Case 1. ( ) ( ) ( ){ }5 1, 5 , 3, 5 , 5, 5jk s j j j+ ∩ = + + + . Then 7 4js + = , by lemma 3.5,  
13

7
16

j

j
j

s
+

+

≥∑ . 

Case 2. ( ) ( ) ( ){ }5 1, 5 , 2, 5 , 5, 5jk s j j j+ ∩ = + + +  or  
( ) ( ) ( ){ }5 1, 5 , 4, 5 , 5, 5jk s j j j+ ∩ = + + +  and both cases are similar, so we will consider  

the first case. We have 73 4js +≤ ≤  then by Lemma 3.5, 
13

7
15

j

j
j

s
+

+

≥∑ . If 7 4js + =  then 

13

7
16

j

j
j

s
+

+

≥∑ . Assume 7 3js + = , if 
13

7
16

j

j
j

s
+

+

≥∑  the proof is finish. Assume 
13

7
15

j

j
j

s
+

+

=∑   

then we have cases 8 1, 2,3 or 4js + = . 
Subcase 2.1. If 8 4js + =  then 9 1js + ≥ . This implies that  

13 13

7 10
3 4 1 8 8 16

j j

j j
j j

s s
+ +

+ +

≥ + + + = + =∑ ∑  

{By Lemma 3.5, 
3

8
j

j
j

s
+

≥∑ }. 

Subcase 2.2. If 8 3js + =  then 
13

9
9

j

j
j

s
+

+

≥∑ . If 
13

9
9

j

j
j

s
+

+

>∑  then 
13

7
16

j

j
j

s
+

+

≥∑ . Assume 

that 
13

9
9

j

j
j

s
+

+

=∑  then we have only one case ( ) ( )9 13, , 1,3,1,3,1j js s+ + =  or  

( ) ( )9 13, , 1, 2,3, 2,1j js s+ + = . For any case we have 8 4js + = . So, we get 
13

9
9

j

j
j

s
+

+

>∑ . 

Which implies that 
13

7
16

j

j
j

s
+

+

≥∑ . 

Subcase 2.3. If 8 1js + =  then 9 4js + =  {because the case  

( ) ( )5 6 7 8 9, , , , 3,1,3,1,3j j j j js s s s s+ + + + + =  is not possible, by Lemma 3.3}. Then  
13 13

7 10
3 1 4 8 8 16

j j

j j
j j

s s
+ +

+ +

≥ + + + ≥ + =∑ ∑ . 

Subcase 2.4. If 8 2js + =  then 7 83,  2j js s+ += = , we have the following cases: 

2.4.1. 9 3js + ≥  then 
13 13

7 10
3 2 3 8 8 16

j j

j j
j j

s s
+ +

+ +

≥ + + + ≥ + =∑ ∑ . 

2.4.2.
 9 1js + ≠  {because there is only one case for ( ) ( )7 8 9, , 3, 2,1j j js s s+ + + =  such 

that 

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }7 8 9   2, 7 , 3, 7 , 4, 7 , 1, 8 , 5, 8 , 3, 9j j j j jK K jK S j j j+ + + +∪ ∪ ∩ = + + + + +  

But according to distribution vertices 5jk S+ ∩  and 6jk S+ ∩  we have 

( ) ( ) ( ){ }
5 7
2, 7 , 3, 7 , 4, 7

jk
j j j

+ ∩

≠ + + +
. 

2.4.3.
 9 2js + =  then 7 8 9 7j j js s s+ + ++ + = . This implies that  
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( ) ( )7 8 9, , 3, 2, 2j j js s s+ + + = . We will study the cases that leads to 
13

7
15

j

j
j

s
+

+

=∑ , i.e., 

13

10
8

j

j
j

s
+

+

=∑ , {because the cases which leads to 
13

7
16

j

j
j

s
+

+

≥∑  the proof will be done}. Now,  

we have the fixed case ( ) ( )7 8 9, , 3, 2, 2j j js s s+ + + =  We will consider the vertices 

10jk S+ ∩  which imply the following: 

2.4.3.1. If 10 4js + =  then ( )11 12 133, 2, 2, 4, , , ,j j js s s+ + +  this implies that 
13

11
4

j

j
j

s
+

+

=∑   

and ( ) ( )11 12 13, , 1, 2,1j j js s s+ + + =  is not possible. 

2.4.3.2. If 10 3js + =  then ( )11 12 133, 2, 2,3, , ,j j js s s+ + +  and 
13

11
5

j

j
j

s
+

+

=∑  which imply  

that ( ) ( ) ( ) ( )11 12 13, , 2,1, 2 , 2, 2,1 , 1, 2, 2j j js s s+ + + =  or (1, 3, 1), and the only possible case 
is (1, 3, 1). Thus implies that ( ) ( )7 13, , 3, 2, 2,3,1,3,1j js s+ + = . By Lemma 3.4 and  

Lemma 3.5 is 14 4js + = , these implies that 
20

14
16

j

j
j

s
+

+

≥∑ . 

2.4.3.3. If 10 2js + =
 

then ( )11 12 133, 2, 2, 2, , ,j j js s s+ + + , i.e., 
13

11
6

j

j
j

s
+

+

=∑ . We have  

11 1js + ≠  {because the case ( )2, 2,1  is not possible}. Then we have the following cases 
for 11 12 13, ,j j js s s+ + + : 

1). If 11 4js + =  then 12 1js + =  and 13 1js + = , but the case ( )4,1,1  is not possible. 
2). If 11 3js + =  and 12 1js + =  then 13 2js + = , also the case ( )3,1, 2  is not possible. 
3). If 11 3js + = , 12 2js + =  and 13 1js + =  then ( ) ( )6, , 3, 2, 2, 2,3, 2,1j js s + =  which  

gets 7 4js + =
 

and 
13

7
16

j

j
j

s
+

+

≥∑ .
 

4). If 11 2js + =  and 12 2js + =  then 13 2js + = , but the case ( )3, 2, 2, 2, 2, 2, 2  is not 
possible. If 11 2js + = , 12 3js + =  and 13 1js + =  then we gets  

( ) ( )6, , 3, 2, 2, 2, 2,3,1j js s + =  During the proof of Lemma, we notice that if 3js =   

and 1 1js + = , then 
8

2
15

j

j
j

s
+

+

≥∑ . This complete the proof. □ 

Result 3.3. Based on the Lemma 3.6, and the other Lemmas and results precede it.  

We see that when we have case of 
6

14
j

j
j

s
+

=∑ , then the only case that comes after it, is 

13

7
15

j

j
j

s
+

+

=∑  such that ( ) ( )7 13, , 3, 2, 2, 2, 2,3,1j js s+ + =  which continues in the same  

way or it is followed by 7 columns contain 16 vertices from S {by Lemma 3.6,  
20

14
15

j

j
j

s
+

+

≥∑ , because 12 3js + = , 13 1js + = }. When this case is repeated then 
6

15
n

j
j n

s
= −

≥∑  

and then when the case 
6

14
j

j
j

s
+

=∑  it is necessary, the case 
6 1 7

6
16

j q r

j
j q

s
+ + − +

+ +

≥∑  exists as 

well {where 6 1 7j q r n+ + − + ≤ } these implies that 
1

15
7

n

j
j

ns
=

 ≥   
∑  then  

( )2 5
1

2
7

n

n j
j

nP P s nγ
=

 × = ≥ +   
∑ . □ 

Lemma 3.8. Let S be 2-dominating set for 5 nΡ Ρ×  then: 
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1) ( )1 1 2 12 and 4 4, 2n n ns s s s s s−≥ + ≥ + ≥ ≥ . 

2) If 1 2 4s s+ =  then 1 2 3 8s s s+ + =  ( 1 4n ns s− + =  then 2 1 8n n ns s s− −+ + = ). 
3) ( )1 2 3 2 16 6n n ns s s s s s− −+ + ≥ + + ≥ . 

4) 
4

1 3
9 9

n

j j
j j n

s s
= = −

 
≥ ≥ 

 
∑ ∑ . 

5) 
5

1 4
10 10

n

j j
j j n

s s
= = −

 
≥ ≥ 

 
∑ ∑

 
and if 

5

1
10j

j
s

=

=∑  then 
6

1
14j

j
s

=

≥∑ , also if 
4

10
n

j
j n

s
= −

=∑  

then 
5

14
n

j
j n

s
= −

≥∑  

6) 
6

1 5
13 13

n

j j
j j n

s s
= = −

 
≥ ≥ 

 
∑ ∑ . 

7) 
7

1 6
15 15

n

j j
j j n

s s
= = −

 
≥ ≥ 

 
∑ ∑ . 

8) If 1 2 5s s+ =  then either 
5

1
11j

j
s

=

≥∑
 

or 
6

1
14j

j
s

=

≥∑ , also if 1 5n ns s− + =  then ei-

ther 
4

11
n

j
j n

s
= −

≥∑  or 
5

14
n

j
j n

s
= −

≥∑ . 

Proof. The study of dominating sequence ( )1 2, , , ns s s  is the same as the study of 
the dominating sequence ( )1 1, , ,n ns s s−  , so we study one case ( )1 2, , , ns s s . Also, the  

study of 
1

r

j
j

s
=
∑  is the same as the study of 

1

n

j
j n r

s
= − +
∑ . 

1) We have 1 2s ≥ , if 1 2s =  then 2 3s ≥  thus, 1 2 5s s+ ≥  if 1 3s ≥  then  

( )2 1 1 4js s≥ ≤ ≤  these implies that 1 2 4s s+ ≥ . 
2) If 1 2 4s s+ = , then we have only one the case ( ) ( ) ( ){ }1 1,1 , 3,1 , 5,1k s∩ =  these 

implies that ( ){ }2 3, 2k s∩ =  and 3 4s =  then 1 2 3 8s s s+ + = . 

3) If 1 2 5s s+ ≥ , then 
3

1
6j

j
s

=

≥∑  {because 1 4js≤ ≤ } and if 1 2 4s s+ =  then by 2, 

is 
3

1
8j

j
s

=

=∑ . 

4) If 1 2 4s s+ =  then 
4

1
8j

j
s

=

=∑
 

these implies that 
4

1
9j

j
s

=

≥∑  and if 1 2 6s s+ ≥  

then 
4

1
9j

j
s

=

≥∑  {because 3 4 3s s+ ≥ }. Assume that 1 2 5s s+ = , then we have three 

cases: 
4.1) 1 22,  3s s= =  then 3 4 4s s+ ≥ , because the case ( ) ( )2 3 4, , 3,1, 2s s s =  is not 

possible. Also the case ( ) ( )2 3 4, , 3, 2,1s s s =  is not possible, else when  
( ) ( ) ( ){ }2 2, 2 , 3, 2 , 4, 2k s∩ =  and this is not possible. 

4.2) 1 23,  2s s= =  then 3 4 4s s+ ≥  because the cases ( ) ( )2 3 4, , 2, 2,1s s s = ,  
( ) ( )2 3 4, , 2,1, 2s s s =  are not possible. 

4.3) 1 24,  1s s= =  then 3 4 4s s+ ≥ , because the cases ( ) ( )1 2 3 4, , , 4,1, 2,1s s s s = ,  

( ) ( )1 2 3 4, , , 4,1, 2, 2s s s s =  are not possible. Thus implies that we have 
4

1
9j

j
s

=

≥∑ . 
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5) By Lemma 3.4, we have two cases for 
4

1
9j

j
s

=

=∑  and these two cases are  

( ) ( )1, 2,3, 2,1 , 1,3,1,3,1 , furthermore these cannot be shown here because 1 2s ≥ . Thus  

implies that we 
5

1
10j

j
s

=

≥∑ . 

6). If 1 2 5s s+ ≥  then 
6 6

1 2
1 3

5 8 13j j
j j

s s s s
= =

= + + ≥ + =∑ ∑ . 

(where by Lemma 3.5, we have 
3

8
j

j
j

s
+

≥∑ ). Let 1 2 4s s+ =  then 
3

1
8j

j
s

=

=∑  these im-

plies that 
6 6

1 4
8j j

j j
s s

= =

≥ +∑ ∑ . Thus implies that 
6

1
8 5 13j

j
s

=

≥ + =∑  {because 
2

5
j

j
j

s
+

≥∑ }. 

7) If 1 3s ≥  then from Lemma 3.5, 
7

1
15j

j
s

=

≥∑ . Let 1 2s =  {because 1 1s > } then 

2 3s ≥ . This implies that 
7

1
15j

j
s

=

≥∑  {by Notice 3.2}. 

8) If 1 2 5s s+ =  then either 
5

1
11j

j
s

=

≥∑  or 
6

1
14j

j
s

=

≥∑ . We have 1 2 5s s+ = , then  

we have three  
cases: 

8.1) 1 24,  1s s= = , then 3 4 5 7s s s+ + ≥  because the cases  
( ) ( ) ( ) ( ) ( )1 2 3 4 5, , , , 4,1, 2, 2, 2 , 4,1,3, 2,1 , 4,1, 2,3,1  or 4,1,3,1, 2s s s s s =  are not possible.  

Thus implies that 
5

1
11j

j
s

=

≥∑ .  

8.2) 1 22,  3s s= = , then 
5

1
10j

j
s

=

≥∑
 

and if 
5

1
10j

j
s

=

=∑  then  

( ) ( )1 2 3 4 5, , , , 2,3,1,3,1s s s s s = . By Lemma 3.4, 6 4s = . Thus implies that 
6

1
14j

j
s

=

≥∑ . 

8.3) 1 23,  2s s= = , then ( )1 2 3 4 5, , , ,s s s s s  it has minimal numerals in the following 
cases ( ) ( ) ( ) ( )1 2 3 4 5, , , , 3, 2, 2, 2, 2 , 3, 2,1, 4,1  or 3, 2,3,1,3s s s s s =  and for the case  
( ) ( )3 4 5, , 1,3,1s s s =  is not compatible with the case ( ) ( )1 2, 3, 2 .s s =  Thus implies that  

5

1
11j

j
s

=

≥∑ . This completes the proof. □ 

Theorem 3.5. 

( )
( )

( )
2 5

2 : 1,2,3,5 mod 7 ,
7

2 1: 0,4,6 mod 7 .
7

n

nn n
P P

nn n
γ

  + ≡   × = 
  + + ≡   

 

Proof. By Result 3.3, we have ( )2 5
1

15
7

n

n j
j

np p sγ
=

 × = ≥   
∑ . By Theorem 3.4, we get

( ) ( )2 5 2 : 1, 2,3,5 mod 7 .
7n
np p n nγ  × = + ≡  

 

Now, for ( )0, 4,6 mod 7n ≡ , by Theorem 3.4, we have ( )2 5 2 1
7n
np p nγ  × ≤ + +  

. 
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From Result 3.3, we have ( )2 5 2
7n
np p nγ  × ≥ +   

. We will study the cases: 

1) ( )0 mod 7n ≡ . We have ( )2 5
1

n

n j
j

p p sγ
=

× = ∑ . So, we consider the following: 

a) 1 2 4s s+ =  then 1 2 3 8s s s+ + =  and by Lemma 3.8,  

( ) ( )

( )

4

2 5 1 2 3
1 4 3

2 5

78 2 2 9,
7

7 1417 2 14 2 2 2 2 1.
7 7 7 7

n n n

n j j j
j j j n

n

np p s s s s s s n

n n n np p n n n n

γ

γ

−

= = = −

−
× = = + + + + ≥ + − + +

− +    × ≥ + − + = + = + + ≥ + +      

∑ ∑ ∑
 

b) 1 2 5s s+ ≥  if 1 2 6s s+ ≥  then  

( ) ( )
5

2 5 1 2
1 3 4

76 2 7 10
7

7 142 2 1.
7 7

n n n

n j j j
j j j n

np p s s s s s n

n nn n

γ
−

= = = −

−
× = = + + + ≥ + − + +

− +  = + = + +  

∑ ∑ ∑
 

Let 1 2 5s s+ =  then by Lemma 3.8, 
5

1
11j

j
s

=

≥∑  or 
6

1
14j

j
s

=

≥∑ . If 
5

1
11j

j
s

=

≥∑  then 

( ) ( )
5 2

2 5 1
1 1 6

711 2 7 5
7

2 1 2 1.
7 7

n n

n j j j n n
j j j

np p s s s s s n

n nn n

γ
−

−
= = =

−
× = = + + + ≥ + − + +

 = + + = + +  

∑ ∑ ∑
 

{where the case 1 4n ns s− + =  is the same as 1 2 4s s+ = }. If 
5

1
11j

j
s

=

<∑  then by Lemma 

3.8, we have 
6

1
14j

j
s

=

≥∑  

( ) ( )
5

2 5 1 2
1 3 4

76 2 7 10
7

7 142 2 1.
7 7

n n n

n j j j
j j j n

np p s s s s s n

n nn n

γ
−

= = = −

−
× = = + + + ≥ + − + +

− +  = + = + +  

∑ ∑ ∑
 

And with Theorem 3.4, we get ( ) ( )2 5 2 1: 0 mod 7
7n
np p n nγ  × = + + ≡  

. 

2) When ( )4 mod 7n ≡  we have two cases: 
a) 1 2 4s s+ = . Thus implies that 1 2 3 8s s s+ + =  then  

( ) ( )3 1

2 5
1 1 4

15 4
8 2

7

102 2 1.
7 7

n n

n j j j n
j j j

n
p p s s s s

n nn n

γ
−

= = =

−
× = = + + ≥ + +

+  = + = + +  

∑ ∑ ∑
 

b) 1 2 5s s+ ≥  {where 1 5n ns s− + ≥ } then 

( ) ( )
2

2 5 1 2 1
1 3

45 2 4 5
7

102 2 1.
7 7

n n

n j j n n
j j

np p s s s s s s n

n nn n

γ
−

−
= =

−
× = = + + + + ≥ + − + +

+  = + = + +  

∑ ∑
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Then by Theorem 3.4, we get ( ) ( )2 5 2 1: 4 mod 7
7n
np p n nγ  × = + + ≡  

. 

3) ( )6 mod 7n ≡ . We have two cases: 
a) If 1 2 4s s+ =  then 1 2 3 8s s s+ + = . Thus implies that 

( ) ( )
3

2 5 1 2 3 2 1
1 4

68 2 6 6
7

2 1.
7

n n

n j j n n n
j j

np p s s s s s s s s n

nn

γ
−

− −
= =

−
× = = + + + + + + ≥ + − + +

 = + +  

∑ ∑
 

b) If 1 2 5s s+ ≥  then 1 5n ns s− + ≥ . Thus implies that 

( ) ( )
4 2

2 5 1
1 1 5

69 2 6 5
7

82 2 1.
7 7

n n

n j j j n n
j j j

np p s s s s s n

n nn n

γ
−

−
= = =

−
× = = + + + ≥ + − + +

+  = + = + +  

∑ ∑ ∑
 

By Theorem 3.4, we get
 

( ) ( )2 5 2 1: 6 mod 7 .
7n
np p n nγ  × = + + ≡  

 Finally, we get 

( )
( )

( )
2 5

2 : 1, 2,3,5 mod 7 ,
7

2 1: 0, 4,6 mod 7 .
7

n

nn n
p p

nn n
γ

  + ≡    × = 
  + + ≡   

 

This completes the proof. □ 
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