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ABSTRACT 
Using the linear space over the binary field that related to a graph G, a sufficient and necessary condition for the 
chromatic number of G is obtained. 
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1. Introduction 
Let ( ),G V E=  be a graph, where V is a set of vertices and E is a set of edges of G. A vertex coloring of a 
graph G is a coloring to all the vertices of G with p colors so that no two adjacent vertices have the same color. 
Such the graph is called p -coloring. The minimal number p is called the chromatic number of G, and is de-
noted by ( )Gχ . The so-called Four Color Problem is that for any plane graph G, ( ) 4Gχ ≤  [1]. 

The coloring of a graph G is an interesting problem for many people [2]. This is mainly caused by the Four 
Color Problem [3]. 

In this paper, putting a graph into a linear space over the binary field ( )2GF , we obtain the sufficient and 
necessary condition for the chromatic number of G. 

And as an application of above result, we give a characterization for a maximal plane graph to be 4-coloring. 

2. The Linear Space An over GF(2) 
Now we introduce the linear space over the field ( )2GF . 

Firstly, the field ( )2GF  contains only two members: ( ) { }2 0,1GF = , where the addition and multiplication 
are as usual excepting that 1 1 0+ = . 

Let { }1 2, , ,n nV a a a=   be the n vertices, the all vectors of the linear space nA  are formed of the symbolic 
expression 

( )
1

,  2
n

i i i
i

a GFα α
=

∈∑ . 

It has 2n  vectors. The addition of two vectors is defined by 

( )
1 1 1

n n n

i i i i i i i
i i i

a a aα β α β
= = =

+ = +∑ ∑ ∑ . 

Here, the n  vertices { }1 2, , , na a a  will serve as the most basic elements of the linear space nA . They will 
be as a basis of the linear space nA . For them the basic assumption is that these n vertices are linearly indepen- 
dent in nA . 
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According to the addition in ( )2GF , for any vector u  in the linear space nA , it has 
0u u+ = . 

Here we denote the zero vector by 0. 

For a vector 
1

,
n

i i
i

u aα
=

= ∑  the order of the vector u  is defined by 

1

n

i
i

u 'a
=

= ∑ , 

where the '∑  means that the addition is the usual addition in the integer set. 
A vector with k order is called a k-order vector, and a vector whose order is even is called an even-order vec-

tor. 
We now give some structures to the linear space nA . In other words, we want to “put” a graph into the linear 

space nA . 
In the linear space nA , 1-order vectors are vertices of a graph. The edge is expressed as the 2-order vertex, i.e. 

i ja a+  is the edge i ja a . So we have two ways to describe a edge: by i ja a  (in the usual sense), or by i ja a+  
(in the linear space nA ). 

In the following, we always discuss a graph in the linear space nA , it means we express edges with the 
second form. 

All the 2-order vectors in the linear space nA  are the all possible edges with n  vertices { }1 2, , , na a a , 
that we denote by AE : 

{ }{ }, , , 1, ,A i jE a a i j i j n= + ≠ ∈  . 

For a giving graph ( ),nG V E=  with n  vertices, in the linear space nA , the elements of the set E  are the 
2-order vectors of nA , then the edge set E  of G  is the subset of the set AE , AE E⊆ . 

We give two examples here. 
1) For the set AE  with all the 2-order vertices in nA , the graph ( ),n n AK V E=  is a complete graph, whose 

any two vertices are adjacent. 
2) For a graph ( ),nG V E=  with n  vertices, the complementary set of E  in the set of the 2-order vertices 

of nA  is \AE E . Then the complementary graph Ĝ  of the graph G  is ( )ˆ , \n AG V E E= . 
We now see the addition in nA . For a path of G  with a sequence of edges 1 1 2, , , ka b b b b b+ + + , where 

the end-points are a  and b , the sum of the edges is: 

( ) ( ) ( )1 1 2 ka b b b b b a b+ + + + + + = + . 

This expression indicates the relation between the addition in the linear space and the connectivity of a graph. 
That is why we put the graph into the linear space nA . 

Lemma 1. The sum of even-order vectors is even-order. 
This is clear by the property that 0i ja a+ =  if and only if i j= . 
As a special case of the Lemma 1, we have 
Lemma 2. Let ( )0, 1,2, ,

jia j k≠ =   are the vertices of G , if 

1 2
0

ki i ia a a+ + + = , 

then k  is even. 
Definition. Let An be the n-dimensional linear space derived by the graph ( ),nG V E=  above, and G AR E⊆  

be a set of 2-order vectors. Denote by GR  the linear subspace spanned by RG. If there are no edges of E in GR , 
i.e. 

GR E φ=                                            (1) 

then GR  is called an outer-kernel subspace of G . And GR  is a maximal outer-kernel subspace if the rank of 
GR  is maxima in all the outer-kernel subspace of G . 
Now we give some basic properties of a outer-kernel subspace of a graph G . 
By definition, GR  is a subspace of nA . Denote the set of all 2-order vectors of GR  by ( )GE R , then 

( ) ( )( )1,G GG R V E R=  is a subgraph of the complementary graph Ĝ  of G , here 1V  is the 1-order vectors  
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appeared in ( )GE R . The subgraph ( )GG R  consists of some connected blocks. 
Lemma 3. Let ( )1 1,g H E=  be a connected block of ( )GG R , and { }1 2, , , mH a a a=   be the vertices of 

1g , then 2m ≥ , 1g  is a complete graph mK  in the ( )GG R  and 

{ }1 2 2 3 1span , , , m mB a a a a a a−= + + +  
is the linear subspace of GR  

This lemma means that every connected block of ( )GG R  is a complete graph. 
Proof. Because GR  is spanned by 2-order vectors, so 2m ≥ . 
Suppose that 1 1, ,i j j ka a E a a E+ ∈ + ∈  for GR  is a linear space , then 

( ) ( )i j j k i k Ga a a a a a R+ + + = + ∈ . 

Since 1g  is connected block of ( )GG R , so 1i ka a E+ ∈ . On the other hand, if 1i ja a E+ ∈ , then 
,i ja a H∈ . Hence all the 2-order vectors formed by the set of vertices H  span the linear subspace B  of GR . 

Thus the connected block 1g  is a complete graph in ( )Gg R . 
Lemma 4. If 1 2 k Ga a a R+ + + ∈ , then k  is even and there exists a { }2, ,i k∈   such that 1 i Ga a R+ ∈ . 
Proof. By the definition of GR , k  is even. For GR  is spanned by 2-order vectors, so 1a  is in a connected 

block mK  of GR . Thus another vertex ( )1ia i ≠  of mK  must appear in 1 2 ka a a+ + + . 

3. The Main Results 
The outer-kernel subspace plays an important role in the problem of vertex coloring. 

Theorem 1. Let nG  be a graph with n vertices, then the sufficient and necessary condition for nG  to be 
p-coloring is that the rank of an outer-kernel subspace GR  of nG  is n p− . 

Proof. First we prove the necessity. Suppose that the graph nG  is p -coloring. Then all the vertices of nG  
can be divided into p  subsets by the colors: 

1 2 1, , , , , , ,   k k pS S S Q Q k p+ ≤  .                               (2) 

That means the vertices with a same color are in the same subset. Because it may have a subset with only one 
vertex, we denote the one-vertex subsets with different colors by 1, ,k pQ Q+  . 

The elements of subset ( )1,2, ,iS i k=   are not less then 2. Denote them by 

{ }1 2, , , ,   2
ii i i it iS a a a t= ≥ , 

then by (2) 

1

k

i
i

t p k n
=

+ − =∑ .                                       (3) 

Let 

{ }1 2 1 3 1, , ,
ii i i i i i itE a a a a a a= + + + , 1, 2, ,i k=  , 

and 
1 2G kR E E E=   , 

then the vectors of GR  are independent. Hence by (3), the dimension of subspace GR  spanned by GR  is 

1
dim

k

G i
i

R t k n p
=

= − = −∑                                 (4) 

It is clear that GR E φ= . 
For the sufficiency, suppose that there exists an outer- kernel subspace GR  with condition (1), and the di-

mension of GR  is n p− . 
We divide the vertices of G  into some subsets according to the subspace GR . If for two vertices a  and b  

there have 
Ga b R+ ∈ ,                                        (5) 

then we put a  and b  into a same subset. Like the notation of congruence we denote 

( )mod Ga b R≡ . 
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Obviously, if a vertex a appears in GR , then there has at least another vertex in the same subset with a. If a 
vertex does not appear in GR , then this vertex forms a subset by itself, i.e. the subset contains only one vertex. 

Lemma 5. The vertices from different subset are linear independence on GR , i.e. if 1 2, , , ma a a  belong to 
different subsets respectively, then 

( )1 2 0 modm Ga a a R+ + + ≡/ . 

In fact, if 1 2 m Ga a a R+ + + ∈ , by Lemma 4, there exists a vertex { }2 , ,i ma a a∈   such that 1 i Ga a R+ ∈ . 
That means 1, ia a  is in the same subset. 

Now we go on with the proof of the sufficiency. Suppose that the 2-order vectors 1 2, , , n pr r r −  form a basis 
of GR , and the vertices of the graph G are now divided into the disjoint subset 1 2, , , lN N N  by the method 
above. Take i ib N∈ , 1, 2, ,i l=  , then any vertex a of G must be in some subset iN  and by (5) we have  

,   i Ga b r r R= + ∈ . 

So any vertex of G  can be expressed by ib  and an element of GR . Thus by Lemma 5, 

1 2 1 2, , , ,   , , ,l n pb b b r r r −   

are the basis of linear space nA . Hence l p= . 
By the definition of GR  and (5) we know that the two vertices in the same subset iN  are non-adjacent. 

Thus, we can assign one color to the vertices of each subset iN . So we just need p colors for G. The graph is 
p -coloring. 

Due to Theorem 1 and the expression (4), we have: 
Theorem 2. For a graph G with n vertices, the sufficient and necessary condition for ( )G pχ =  is that the 

rank of a maximal outer-kernel subspace GR  is n p− . 

4. An Application to Plane Graphs 
As an application of Theorem 1, we consider a result of the coloring to the plane graph. 

A maximal plane graph is a graph G such that for any two non-adjacent vertices a and b of G, G added to the 
edge ab makes a non-planar graph. It is clear that all the faces of a maximal plane graph are triangles. 

A maximal plane graph is 3-CR-edge coloring if we can color its edges by 3 colors such that the three edges 
of every its triangle face are coloring by different colors. Later we will see that the CR in the definition is bor- 
rowed from the Cauchy-Riemann condition in the complex function theory. 

Theorem 3. If a maximal plane graph is 3-CR-edge coloring, then the graph is 4-vertex coloring. 
The inverse of the Theorem 3 is true, too. That means if a maximal plane graph is 4-vertex coloring, then the 

graph is 3-CR-edge coloring. 
Proof. We introduce the 2-demensional linear space 2A : 

( ) ( ) ( ) ( ){ }2 0,0 , 0,1 , 1,0 , 1,1A = . 

Let ( ),nG V E=  be 3-CR-edge coloring, and the all edges of G can map to the three elements  
( ) ( ) ( )0,1 , 1,0 , 1,1  of 2A  by their colors, respectively. That is the mapping f 

2:f E A→  

such that if , ,a b c  are the vertices of a face of G, then 

( ) ( ) ( ) 0f a b f b c f c a+ + + + + =                                (6) 

For a path of G with the end-point a, b and the sequence of the edges 
1 1 2
, , ,

ki i i ia a a a a b+ + + , we define 

( ) ( ) ( ) ( )1 1 2 ki i i if a b f a a f a a f a b+ = + + + + + + .                  (7) 

By the condition of 3-CR-edge coloring, the extending mapping f by (7) is dependent only on the end-point a 
and b, and independent on their path. 

Let nA′  be the ( )1n − -dimensional linear subspace spanned by all the 2-order vectors of the space nA . 
Then f is the homomorphic mapping from subspace nA′  onto the space A2. The homomorphic kernel R  con-
sists of such vector e of nA′  that satisfies 
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( ) 0f e =                                        (8) 

Suppose R  is the subset of 2-order vectors of nA′  that satisfies (8) and R  is spanned by R. Then by (8) we 
have 

R E φ= . 

Denote the linear independent spanning elements of R  by 1 2, , , me e e , that is just the basis of R . And 
dim R m= . 

We take , ,e e e Eα β γ ∈  such that 

( ) ( ) ( ) ( ) ( ) ( )0,1 , 1,0 , 1,1f e f e f eα β γ= = = . 

Then the linear subspace nA′  is spanning by 

1 2, , , , , , me e e e e eα β γ  . 

Hence 3 1m n+ ≥ − , and dim 4R m n= ≥ − . By Theorem 1, the graph G is 4-vertex coloring. 
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