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ABSTRACT 

The Zagreb eccentricity indices are the eccentricity version of the classical Zagreb indices. The first Zagreb eccentricity 
index (E1(G)) is defined as sum of squares of the eccentricities of the vertices and the second Zagreb eccentricity index 
(E2(G)) is equal to sum of product of the eccentricities of the adjacent vertices. In this paper we give some new upper 
and lower bounds for first and second Zagreb eccentricity indices. 
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1. Introduction 

Let G be a simple connected graph with vertex set V(G) 
and edge set E(G) so that  V G n  and  E G m . 
For any vertex , let deg(v) denote the degree 
of the vertex v. For vertices u and , the distance 
between u and v is defined as length of the shortest path 
connecting u and v and is denoted by d(u,v). The eccen-
tricity of a vertex , denoted by , is the 
distance between v and a vertex farthest from v i.e. 

. The radius 

v V G

v V

 , :v d v x


 v V G

 v G

x V  max  G  r r  
and diameter of a graph is the minimum and 
maximum eccentricity among the vertices of G i.e.  

G
 d d G

      minr r G   :v v V G
 

and 

      :v v V G



maxd d G    

respectively. Also the total eccentricity of a graph, de-
noted by G , is the sum of all the eccentricities of G [1] 
i.e.

     
 v V G

G v 


 

 
 

2

v V G

. 

The first and second Zagreb index of a graph were first 
introduced by Gutman in [2] which are the most known 
and widely used topological indices, defined as respec-
tively 

 1M G d v


 

   
 G

, 

 
 

2
,u v E

M G d u d v


   

Recently several Graph invariants based on vertex ec-
centricities subject to large number of studies. Analogues 
to Zagreb indices M. Ghorbani et al. [3] and D. Vukiče-

vić et al. [4] defined the Zagreb eccentricity indices by 
replacing degrees by eccentricity of the vertices. Thus the 
first and second Zagreb eccentricity indices of a graph G 
are defined as 

   
 

2

1
v V G

E G v


  , 

     
   

2
,u v E G

E G u v 


   

The lower and upper bounds of n-vertex trees with 
fixed diameter and matching number and extremal trees 
with respect to Zagreb eccentricity indices were studied 
by R. Xing et al. [5] and recently K. C. Das et al. in [6] 
presented some properties, upper and lower bounds of 
Zagreb eccentricity indices and also characterize the ex-
tremal graphs. 

Another useful eccentricity and degree based topo-
logical index called eccentric connectivity index was first 
introduced by Sharma, Goswami and Madan [7] and is 
defined as 

     
 

   
   ,

degc

v V G

u v E G

G v v

u v

 

 







   



  

There was a vast research regarding various properties 
of this topological index [8-10]. 

The study of determining extremal properties such as 
upper bounds and lower bounds of some graph invariants 
were subject to a large number of investigations [11-15]. 
The aim of this paper is to study similar extremal proper-
ties for Zagreb eccentricity indices. In this paper we pre-
sent some new upper and lower bounds of Zagreb eccen-
tricity indices in terms of number of vertices (n), number 
of edges (m), radius (r), diameter (d), total eccentricity 
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  G



, the first Zagreb indices (M1(G)), the second 
Zagreb indices (M2(G)) and the eccentric eccentricity 
index c G . 

2. Bounds for the First Zagreb Eccentricity 
Index 

We now give some lower and upper bounds of first Za-
greb eccentricity index. In [6] Das et al. proved the fol-
lowing upper bound of E1(G). 

Theorem 2.1. Let G be a simple connected graph with 
n vertices and m edges, then 

    34G mn n  

P

1 1E G M  

with equality if and only if 4G   or nG K  or G is 
isomorphic to a (n ‒ 1, n ‒ 2)-semiregular graph. 



 2 2
1E G nd 

 

Also, in [5] Xing et al. give the following result. 
Theorem 2.2. Let G be a simple connected graph with 

n vertices and m edges, then 

nr  

with equality if and only if G all the vertices of G are of 
same eccentricity. 

Also in [6] Das et al. give lower bounds for E1(G) in 
terms of n and d. Now we prove some new upper and 
lower bounds of E1(G). 

Theorem 2.3. Let G be a simple connected graph with 
n vertices and m edges, then 

 2
G

E G
n




2 2 2

2

1 1 1

1

     





   
 

1  

with equality if and only if G all the vertices of G are of 
same eccentricity. 

Proof Using the Cauchy-Schwartz inequality, we get 

     

     

22 2

1 2

1 21 1

n

n

v v e

v v e

  

  

   

       



  

and hence using the definition of total eccentricity index 
and first Zagreb eccentricity index the desired result fol-
lows. Clearly in the above inequality equality holds when 
all the vertices of G are of same eccentricity. 

Theorem 2.4. Let G be a simple connected, then 

1

2
1

1

M G

n




G K

E G  

with equality if and only if n . 

Proof We have, for all ,  v V G    
1

D v
v

n
 


,  

with equality if an only if nG K , where  D v

   ,
u V G

d v u


 
 

 
is the 

degree distance of the vertex v and is defined as 

 D v   . 

Hence from the definition of first Zagreb eccentricity 
index, we can write 

 
 

2

1 2

1

1 v V G

E G D v
n 




          (2.1) 

 Now since   for all , so from 
(2.1) we get the desired result with equality if and only if 

degD v v  v V G

      1vdeg 1v n  and  , that is .  n

Corollary 2.1. Let G be a simple connected graph 
with n vertices and m edges, then 

G K

   
 

1
1 2

8
4

11

M G m
E G n

nn
  


 

with equality if and only if G is a path of length one. 
   2 2 degD v n v   , for all Proof Again since, 

 v V G , with equality if and only if 1, 1nG K  , so 
from (2.1) we get the desired result. Since the equality 
(2.1) holds if and only if n  so the equality holds 
in this result if and only if G is a path of length one 
which is the only complete graph as well as complete 
bipartite graph. 

G K

n
Theorem 2.5. Let G be a simple connected graph on n 

vertices and 0 be the number of vertices with eccentric-
ity one in G, then 

   1 04 3E G n n   

with equality if and only if 0

2n

n n
G K


  , where 

 0n n

n
 0n n
 0:1iS v i n  



 is even. 

Proof Since 0 be the number of vertices with eccen-
tricity one in G, so the remaining vertices are of 
eccentricity at least two. Let be the  

set of vertices such that 1iv  01,2, ,i n 

     
 

 2

1 0 0 0 0
\

4
u V G S

E G n n n u n n n


     

 for .  

Then from the definition of first Zagreb eccentricity in-
dex, we have 

 

from where the desired result follows. Clearly, in this  

theorem equality holds if and only if 0

2n

n n
G K


,   

 n nwhere 0

Theorem 2.6. Let G be a simple connected graph with 
n vertices and m edges, then 

 is even. 

     1E G r d G nrd  

1, 2, ,i n

 

with equality if and only if all the vertices of G are of 
same eccentricity. 

Proof To prove this theorem, using the following 
Diaz-Metcalf inequality, we have, if ai and bi, 

 i i iha b Ha are real numbers such that  
1, 2, ,i n

 
for  , then 
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   
m 

1

n

i i
i

h H a b


 

a b  1, 2, ,i n 
v 1, 2, ,i n

2 2

1 1

n n

i i
i i

b hH a
 

           (2.2) 

In the above inequality equality holds if and only if 
or i for every . By setting 

i  and , for 
i ib h
ib 

iHa
1ia   

   
1

n

i
i

h H v


 

, in (2.2) from 
above inequality we get 

 2 2

1 1

1
n n

i
i i

v hH
 

  
 

Now using the definition of first Zagreb eccentricity 
index and total eccentricity index we get 

     1E G h H  G hHn   

Since,  ir v d   for 1, 2, ,i n  , so we have 

 and . Hence the desired result follows 
from above. Clearly in the above inequality equality 
holds if and only if all the vertices of G are of same ec-
centricity. 

h r H d

Theorem 2.7. Let G be a simple connected graph, then 

       1E G n r   1 1G n n r   

In the above inequality equality holds if and only if all 
the vertices of G are of same eccentricity. 

Proof Let, sum of eccentricities of the vertices adja-
cent to 

   
 

   
,i j

i i i
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
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 


 

  1

j
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v
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   
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so that 
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2

1
1i

n
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E G v
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 

 
 

 

  

 

 

from where we get the desired result. Obviously in the 
above inequality equality holds if and only if all the ver-
tices of G are of same eccentricity. 

Theorem 2.8. Let G be a simple connected graph on n 
vertices and m edges, then 

   1E G n G






1

1

G r n

G n r

  
 

   

ia i

1 1 1

n n n

i i i i
i i i

b a b
  

  

1 2a a 1 2 nb b b   . 

Now setting 

 

i ia v and  i i ib v , for 
i n

In the above inequality equality holds if and only if all 
the vertices of G are of same eccentricity. 

Proof We will prove this theorem using the following 
Chebyschev’s inequality: Let  and b  are real num-
bers, then 

n a  

with equality holds if and only if 

na    or 

1, 2, ,  , we ge  

    i i iv v m v 

t from (2.3)

  

   
1 1 1

1

n n n

i i i
i i i

n v m

G E G

 


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

  
     (2.4) 

Again since 
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1

1i i
i

G n v n v r  

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 with equality holding if and only if 

 
n

i iv m

    1 2v v    nv , 

we get from (2.4) 
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   
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1

1

1

n G nr n G

n r E G

   

 
 

from where we get the desired result. Clearly in this ine-

  1G E G

quality equality holds if and only if all the vertices are of 
same eccentricity. 

Theorem 2.9. Let G be a simple connected graph 
where all the vertices must not be of equal eccentricity, 
then 

        1G d r G ndr n a b d r1E          

where G consists of a number of vertices with eccentric-
ity d and b number of vertices with eccentricity r. In the 
above inequality equality holds if and only if eccentrici-
ties of the vertices are equal to r + 1, r, d ‒ 1, d. 

Proof For any vertex  iv V G , we have 

     
     2

i

i i

v
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 

 
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      

with equality holds if and only if   1iv r 
 

or 
  1iv d  

 
for 1, 2, ,i n  . Now sum ve 

inequ lity for 
ming the abo

a  ir v d  , we get 

  iv n b d r       

    
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1
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


 
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So,  
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 

    
     

2 2 2 2 2

1

i

i
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n a b d r nrd a b rd
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




 

    
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from where we get the desired result. In the above ine-

1E G

quality equality holds if and only if 

   , d . 

From the above theorem the followi esult directly 
follows. 

, 1, 1iv r r d   

ng r
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Corollary 2.2. Let G be a simple connected graph 
with n vertices and m edges, then 

1d r   

where k is the number of vertices having eccentricity 
equal to d or r. 

 the Second Zagreb 
Eccentricity Index 

G) in terms of 
m, ng upper bound of E (G). 

     
 

1E G d r G ndr  

n k 

3. Bounds for

In [6] Das et al. give lower bounds for E2(
 d and proved the followi 1

Theorem 3.1. Let G be a simple connected graph with 
n vertices and m edges, then 

      2
2 2E G M G nM G mn    1

with equality i  or nG K or G is 
isomorphic to  n ‒ gular graph. 

ed the
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n 

f and on
a (n ‒ 1,

ly if 4G P
 2)-semire

Also, in [5] Xing et al. prov  following result. 
Theorem 3.2. Let G be a simple connected grap
vertices and m edges, then 

 2 2
2mr E G md   

with equality if and only if G all the vertices of G are of 
same eccentricity. 

es and m edges, then 

Now we prove some new upper and lower bounds of 
E2(G). 

Theorem 3.3. Let G be a simple connected graph with 
n vertic

   2
G  

with equality if and only if G all the vertices of G are of 
same eccentricity. 

e get 

2

2

m
E G

n


Proof Using the inequality between arithmetic and 
geometric mean, w

   
   
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   
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,
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j
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v
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
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   

1

i
m

d v

i
i

P v

 , so that taking natural  

lo oth sides and us
get 

1
iv

m
 

Now let, 

garithm on b ing Jensen’s inequality, we 
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G
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Thus 
  2

ln

m
G

P
n

 
  

 
, so that    2

2 2

m
E G G

n
 , 

which is the desired result. In this inequality equality 
holds if and only if all the vertices of G are of same ec-
centricity. 

em 3.4. Let G be nnected graph, the

1n n n

Theor a simple co n 

   2E G G m   

where, 

c

 c G
 

is the eccentric connectivity index of G. 
In the above inequality equality holds if and only if 
  1u   or   1v   for all    ,u v E G . 

  1v 
 

for all  v V G , we have Proof Since 
        1u v u v      . So from the definition of 

agrebsecond Z  eccentricity index, we can write 

     
 

 
 

 
, ,u v u

E G u v v m   
 E v E  

2
G G

u        

Now since 

        
 


   ,v V G u v E G

v
 

degc G v v u      , 

the desired result follows from above. In the above ine-
qu olds if and only if   1u  or ality equality h 

     1v   for all ,u v E G , for example if and only 
if nG K  or 1, 1nG K  . 

Theorem 3.5. Let G be a simple connected graph with 
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n vertices and m edges, then 
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2
1

2

M G
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Proof Since, for all  v V G ,  

with equality if and only if nG K . 
 

1

D v
v

n
 


, with  

equality if an only if nG K , like eorem 2.4, using 
 eccentricity index the desired 

be a sim le connected 
with n vertices , then 

Th
definition of second Zagreb
result follows. 

Corollary 3.1. Let G p graph 
and m edges

   
 

 2 1
2 2

2
4

11

M G M G
E G m

nn
  


 

with equality if and only if G is a path of length one. 
Proof Since,   2 2 deD v n    g v  for all 

 v V G , with equality if and only if 1, 1nG K  , like 
Corollary 2.1, from the Theorem 3.5 we have 

      
   

 
  

   
2

,

1
deg deg

1 u v E G

u v
n 

 


  

,1 u v E G



from where we get the desired result. Like Corollary 2.1, 

2

2
4 deg degE G m u v

n
    

Copyright © 2013 SciRes.                                                                                OJDM 



N. DE 

Copyright © 2013 SciRes.                                                                                OJDM 

74 

in this inequality equality holds if and only if G is a 
of length one. 

Theorem 3.6. Let G be a simple connected graph, then

path 

 

        1 1 cr G    

1 in v r    

1, 2, ,i n  , we have 

2

1

2
E G m G n  

In the above inequality equality holds if and only if all 
the vertices of G are of same eccentricity. 

Proof Since, 

        i i iv m G v   

for 

     
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  cm G       
1
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2

1
2 2 1

2

i i i
i

c

v v m

G m n r r G









      

  

from where we get the desired result. Obviously i
above inequality equality holds if and only if all the ver-
tices of G are of same eccentricity. 

Corollary 3.2. Let G be a simple connected graph 
with n vertices and m edges, then 
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i i
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1 n
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with equality if and only if nG K or G is obtained 
from K  by removing a perfect matc
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