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ABSTRACT 

It is difficult to find Boolean functions achieving many good cryptographic properties. Recently, Tu and Deng obtained 
two classes of Boolean functions with good properties based on a combinatorial conjecture about binary strings. In this 
paper, using different approaches, we prove this conjecture is true in some cases. This conjecture has resisted different 
attempts of proof since it is hard to find a recursive method. In this paper we give a recursive formula in a special case. 
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   1. Introduction 

Let x be a nonnegative integer. If the binary expansion of 
x is 
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then the Hamming weight of x is  
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In [1] Tu and Deng proposed the following conjecture. 
Conjecture 1: Let  
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where . Then the cardinality 12nSt
 . 

Based on this conjecture, Tu and Deng [1] constructed 
two classes of Boolean functions with many good cryp- 
tographic properties. In this paper we always use the fol- 
lowing bijection, where nX  is the set of binary strings 
of length  except the string consisting of n copies of 
1. 
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We use t  to denote the length of a binary string  

0 1 1nt t t t   . Let    0 1 11 nt t  
11 100 0, 
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– 1 1t t 
k m

. And we  

use the following notation 1 0  where 
there are k consecutive 1 and m consecutive 0 in the 
string. 

:

In [1] Tu and Deng construct an algorithm which they 
used it to show that the conjecture above is true when 

. Cusick, Li and Stanica [2] show that Conjecture 

1 is true when 2 or 4w t w t t  

1 2 2, 2.nt n   

. In this paper, 
we will consider the following conjecture, which is 
equivalent to Conjecture 1. 
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Let 

     
      

: 0 2 2, 1,

mod 2 1 , .

n

n

S t a a w x w a

t a x w a w b n

     

    
 

then 12nS 

0 1 1.nt t t t 

t . 
The following lemma is easy so we omit the proof. 
Lemma 1.1 Let   Then following state- 

ments are true: 

   1 1 0 1 1 ;i i n iS t S t t t t t t    1)   

   w t w t n2)   ; 
    : , ,tS S t a b a     is bijective.  3) The map 

 Hence .tS S t   

So the authors in [3] actually showed that Conjecture 2 
is true when  

   2 or 4w t t w t  



. 

According to Lemma 1.1. Deng and Yuan [4] show 
that Conjecture 2 is true if  6.w t 

 S t

nX

 
The outline of this paper is as follows. In Section 2 we 

introduce some notations. In Section 3, we consider what 
happen if we change some digit 1 into 0 in the strings. 
We get a recursive formula about  and prove a 
new case of the conjecture. 

2. A Partition of  

The following lemma is about the relation between 
 w t a   ( )w t w a , which is proved in [4].    and 
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Lemma 2.1 Let  
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which are disjoin unions. We define a partition on X  
according to Lemma 2.1. 

Definition 2.1 Let  be a binary string of 
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If 1 1 2 21 0 1 0 1 0n nr sr s r st    with each 1ir  , then we say 
s n . Jean-P. Flori and H. Randriam 

 give some asymptoti  eac

   1

3. Main Results 

that the block of t  i
[5] c results when h   1is w t  . 
In particular, they show that Conjecture 2 is true if the 
block of t is smaller than 3 or each ir  is sufficient la ge 
for a fixed length of block. We give a recursive formula 
to show that we can restrict our attention to the case each 

ir  is smaller than the block of t  in this situation. They 
also conjectured that 

 
 r

   1 1 11 11 0 1 0 1 0 1 0n n n nr s r sr s rS S     if 3nr  . 1s

Lemma 3.1 Let  

1 210 10 10 rs s st    

an

1 2 2 1 110 10 10 10r rs s s sT       

1r

d  

rs

with  

s r   and t T n  . 

Let 

 r

i jj i
m s





1
1  i r  for 1 1   , 

   is freeT a X    

and  

1
: T

n ma

     .j jT S T T    

  

 

Then

      2 1
10

2 2 2
rr j r

j rj
S T S t T T  


    

Proof. Note that for any  1 2, , ,
t

rx x x , if 1i ix m  , 

Copyright © 2013 SciRes.                                                                                OJDM 



G. X. DENG 51

then jx r each j i , moreover in this case we 
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This finishes the proof. 
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Corollary 3.1 With the same notations in Theorem 3.1
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