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ABSTRACT 

Riemann zeta function  s


 has a key role in number theory and in its applications. In this paper we present a new 

fast converging series for s


. Applications of the series include the computation of the  and recursive com- 

putation of , 

 3

 2 1s  2s  and generally   ,s s R . We discuss on the production of irrational number se- 

quences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals. 
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1. Introduction 

Riemann zeta function plays an important role in modern 
number theory and its applications, especially in infor- 
mation theory and signal processing [1]. The Riemann 
zeta function  s  is defined for complex numbers s  
with  by  R s 1

 
1

1
s

n

s
n






                (1) 

For  the Riemann zeta function is of the gen- 
eral form  

sN

   
2π

2
s

s
N s

               (2) 

where  is an integer. For example  N s   22 π 6  ,  

  4π 904  and   66 π 945  . 

Closed form solution for  is not 
known. Especially the infinite sums converging to 

 2 1 ,s s  N
 3  

have been extensively studied. Apery has proved that 
 is irrational [2,3]. However, his proof does not 

concern on other values of 
 3

 2 1s  . Also, it is not 
known if  3  is transcendental or not. The series (1) 
converges very slowly. Some acceleration on this series 
is achieved by asymptotic expansion with Bernoulli 
numbers [4]. In this context the Euler’s transformation 
is also efficient. Integral representations of the Riemann 
zeta function at odd integers has been described in [5, 
6]. 

In this work we describe some new results on the con- 
verging series of the zeta function. Our primary aim is to 

 

main result is as follows. 
Theorem 1. Suppose th  s  

e foll

develop fast converging series for . The 

at 

2 1 ,s s  N

is the Riemann zeta 
function defined by (1). Th owing infinite series  

converges as 
 

2

ln 2
2s

s

s

 . 


2 we provide a proof of Theorem 1. In Sec- 
tio

In Section 
n 3 we present some applications of the Theorem 1, 

which include the converging series for even and odd 
Riemann function (Lemmas 1 and 2) and fastly converg-
ing series for  3  (Lemma 3). In Section 4 we apply 
the results of heorem 1 to develop fast recursive 
method for computing the 

the T
 s  values (Lemma 4). In 

Section 5, we describe a m d version of the Theo-
rem 1. 

odifie

2. Proof of Theorem 1 

We may write 
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       (3) 

Then we apply the well known logarithmic series 

  1
1 1 1 1

n 

1

ln 2 1
2 3 4n n

               (4) 

By grouping the terms into pairs we obtain 
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
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 (5) 

Due to (3) we have  

 
2
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 


                     (6) 

which completes the proof. 

rem 1 3. Applications of Theo

Lemma 1.  
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Proof: We may write 
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By dividing the last series into two parts we have 
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Lemma 2. 
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Proof: We may write 
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By separating the last series into two parts and due to 
Th

s 

eorem 1 and (9) we have 
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Lemma 3. 
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Proof: We may write (10) as 
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which equals (13). 

4. Recursive Computation of  s  

Lemma 4.      4 2s R s R s  , where  
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Proof: First we prove the Lemma 4 fo

1

r  5 . Based 
terms as on Lemma 2 we can write the first two 
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By substituting the equation for (Lemma
have  
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and generally  
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we obtain Lemma 4.  

5. Modified Version of Theorem 1 

 series Let us consider the zeta
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2 2s
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Due to the limit value the nominator ap- 
proaches zero and the series rated convergence. 
We directly have 
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Due to Lemma 1 we obtain, correspondingly 
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Finally, we have (Lemma 2) 
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6. Discussion 

One application of the present main result (Theorem 1) is 
the computation of the Riemann zeta function 
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However, first 0 term 160 s is needed for the 9 correct 
decimals. Due to Lemma 4 the convergence of the series 
of can be accelerated by recursive computation: 
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To obtain 9 correct decimals we need 
summation  for computation of
for ms for 

30 terms of the 
 5 , 9 terms  R s
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ser- 
 tion is that thoug

2
as deduced for  2 1s  , it is valid also for computa- 

tion of the s  values. An alternat ethod to ob- 
he  2

i
tain

ve m
 t s  values d be the deduction of the 

recursive method similar to Lemma 4 based on Lemma 1. 
However, the con of the series is not so acceler- 
ated. 

The mo  zeta series (21 - 23) have accelerated 
convergence. However, their application yields the same 
results for the series for  3  (Lemma 3) and the algo- 
rithm for rec  

woul

vergence 

dified

ursive com of putation s  (Lemm
Th

a 4). 
e fast convergence of the zeta series (21 - 23) has a sig- 

nificant value in testing the  s values. Previously the 
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[1]. 

lication of the fast converging series is the 
tation of the irrational number seque d in 

encryption coding. The seed number would be any 

One app
compu nces use

  ,s s R
computed as

. The irrational number sequences can be 
     2 4 2s R s R s    
eld an infinite number of irrat

 (Lemma 4). 
i ional number 

se

applied in co
nd the corresponding appli

This would y
quences for encryption keys. The fast recursion for 

computation of the zeta function maps is also useful in 
the analysis and synthesis of the log-sampled signals 

mpressive sampling scheme [7].  
Theorem 1 a cations (Lem- 

mas 1 - 3) give a new converging series for the Riemann 
zeta function. To the best of authors’ knowledge no 
previous studies concern on the convergence of the simi-  

lar series. Theoretically, the series of the form 
 s

1 !s s

where s! denotes the factorial function, would guarantee 
accelerated convergence. However, to conduct the cor- 
responding results (Lemmas 1 - 4) the convergence of the 
series (26) or some of its variant should be proved. This 

 ,  

NCES 
ley and R. E. Crandall, “Com- 

nd Applied Mathematics, Vol. 
.  

doi:10.1016/S0377-0427(00)00336-8

offers an interesting subject for future work. 
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