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ABSTRACT 

The line graph for the complement of the zero divisor graph for the ring of Gaussian integers modulo n is studied. The 
diameter, the radius and degree of each vertex are determined. Complete characterization of Hamiltonian, Eulerian, 
planer, regular, locally H  and locally connected   [ ]nL i   is given. The chromatic number when n  is a power 

of a prime is computed. Further properties for   [ ]nL i   and  [ ]n i   are also discussed. 
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1. Introduction 

The line graph  L G  of a graph G  is defined to be 
the graph whose vertex set constitutes of the edges of G , 
Where two vertices are adjacent if the corresponding 
edges have a common vertex in G . The importance of 
line graphs stems from the fact that the line graph 
transforms the adjacency relations on edges to adjacency 
relations on vertices. For example, the chromatic index 
of a graph leads to the chromatic number of its line graph. 
The zero divisor graph of a commutative ring R , 
denoted by  R , is defined as the graph whose vertex 
set is the set of all non-zero zero divisors of R  and 
edge set      = : , 0  and = 0E R xy x y R xy   . This 
type of graphs provides an example showing that algebraic 
methods could be applied to problems about graphs. The 
set of Gaussian integers, denoted by [ ]i , is defined as 
the set of complex numbers a bi , where ,a b  . If 
x  is a prime Gaussian integer, then x  is either 

1)  1 i  or  1 i , or 
2) q where q is a prime integer and  3 mod 4q  , or 
3) a bi , a bi  where 2 2 =a b p , p  is a prime 

integer and  1 mod 4p  . 
Throughout this paper, p  and ip  denote prime 

integers which are congruent to 1 modulo 4, while q  
and and iq  denote prime integers which are congruent 
to 3 modulo 4. All rings in this paper are assumed to be 
commutative with unity. The zero divisor graph for the 
ring of Gaussian integers modulo n  is studied in [1] 
and [2], the complement of this graph is discussed in [3]. 
While the line graph of the zero divisor graph for the ring 

of Gaussian integers modulo n is investigated in [4]. In 
this paper it should be kept in mind that  

  2[ ] = {1 }V i i  , and hence, its line graph is 0K ,  

[ ]q i  is an integral domain, so   0[ ] =q i K  . Further,  

 2 [ ]
q

i   is a complete graph whose complement is 

totally disconnected and thus its line graph is 0K . While  

  1, 1[ ] =p p pi K    , so its complement is disconnected 
with two components each of which is isomorphic to 

1pK  . Finally, note that the graph  2 [ ]q i   is bipartite, 
[1] and   2 21 2 1 21, 1

[ ] =q q q q
i K

 
  . 

In this paper, we investigate properties of the graph  
  [ ]nL i  . We find the diameter, the radius of  

  [ ]nL i  . We determine which   [ ]nL i   is Eu-  

lerian, Hamiltonian, regular, locally H , locally connec- 
ted or planer. Furthermore, the chromatic index and the 
edge domination number of  [ ]n i   where n  is a 
power of a prime are computed. While the domination  

number of  [ ]n i   is given. On the other hand, a for-  

mula which gives the degree of each vertex in  [ ]n i   
is derived, thus the degree of its complement as well as 
its line graph could easily be found. 

2. When Is   [ ]nL i   Eulerian or  

Planner 

If G  is a connected graph. Then G  is Eulerian if and  
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only if every vertex of G  has even degree. For a finite 
ring R , the line graph   L R  of a connected graph 
 R  is Eulerian if and only if all vertices of  R  

have the same parity ( see the proof of Lemma 3.10, [5]). 
On the other hand, if G  has both even and odd vertices, 
then so is its complement. So, for a connected graph 
 [ ]n i  , the graph   [ ]nL i   is Eulerian if and 

only if all vertices in  [ ]n i   are either even or all 
vertices in  [ ]n i   are all odd. But  [ ]n i   is con- 
nected if 1 2, 2 , ,m mn p q q q  [3] and  [ ]n i   is 
Eulerian if = 2,n p  or n  is a product of distinct odd 
primes [1]. It is easy to show that all vertices of  
 [ ]n i   are odd if and only if 2=n q . This proves the 

following theorem.  
Theorem 2.1   [ ]nL i   is Eulerian if and only if 

n  is a product of distinct odd primes.  
A planar graph is a graph that can be embedded in the 

plane, i.e., it can be drawn on the plane in such a way 
that its edges intersect only at their endpoints. 

Next we determine when the graph   [ ]nL i   is 
planar. 

In a graph G  the maximum vertex degree and the 
minimum vertex degree will be denoted by  G  and 
 G , respectively. 
The following theorem characterizes graphs G  whose 

line graph  L G  is planer.  
Theorem 2.2 [6] 
A nonempty graph G  has a planer line graph  L G  

if and only if 
1) G  is planer. 
2)    4G   , and 
3) if   = 4Gdeg v , then v  is a cut vertex. 

The graph  [ ]n i   is planer if and only if = 2,5n   

or 2q  [3]. For = 2n , 2q ,    0[ ] =nL i K  . While 
for = 5n ,   4 4[ ] =n i K K  , this graph is regular of 
degree 3. 

Thus we obtain the following. 
Theorem 2.3 The graph   [ ]nL i   is planer if 

and only is = 5n .  

3. The Diameter of   [ ]nL i   

For a connected graph G , the distance,  ,d u v , 
between two vertices u  and v  is the minimum of the 
lengths of all u v  paths of G . The eccentricity of a 
vertex v  in G  is the maximum distance from v  to 
any vertex in G . The diameter of G ,  diam G , is the 
maximum eccentricity among the vertices of G . Since  

 [ ]n i   is connected if 1 2, 2 , ,m mn p q q q  and each 

of  [ ]p i   and  1 2
[ ]q q i   is the union of two 

complete graphs, while  2
[ ]m i   and  

 [ ] , 3mq
i m   are the union of a nullgraph and a 

connected graph [3], we have the following.  
Theorem 3.1   [ ]nL i   is connected if and only if 

2
1 22, , ,n p q q q . 

Theorem 3.2 If = 2 , 2mn m   or = , 3mn q m  , then  

   [ ] = 2ndiam L i  . 

Proof. 1) Assume that = 2 , 2mn m   and  

   1 2 1 2 1 2 1 2= , = , = , =x x x i y y y i z z z i w w w i      

are two nonadjacent vertices in    [ ]nV L i  . Since 

for every 
2

[ ]ma bi i  , a  and b  are both even or 

odd [1], we have three cases: 
Case I: for = 1,2i , , ,i i ix y z  and iw  are odd. Then 

we have the path [ , ] [ , ] [ , ]x y x z z w      . 
Case II: for = 1,2i , ix  or iy  is odd(even) and iz  

or iw  is even (odd). Assume that 1 2,x x  are even and 

1 2,z z  are odd. Then we have the path  
[ , ] [ , ] [ , ]x y x z z w      . 

Case III: for = 1,2i , , ,i i ix y z  and iw  are even.  
Then 1 1 2 2

1 1 2 2[ , ] = 2 2 , 2 2t s t sx y i i        and  
3 3 4 4

3 3 4 4[ , ] = 2 2 , 2 2t s t sz w i i        where ,i i    

are odd and 1 ,i it s m   for 1 4i  . If 1 1 2, , ,t s t  or  

2 <
2

m
s   , say 1t , then 3 3 4, ,t s t  or 4 1<s m t , say 3t .  

So, we have the path [ , ] [ , ] [ , ]x y x z z w      . Now 
suppose that m  is odd. Then 

a) If 
1

= = ,
2i i i i

m
t s  

 , for = 1i  or 2, say for  

= 1i , then 3 3 4, ,t s t  or 4 1<s m t , say 3t . Hence, we 
have the path [ , ] [ , ] [ , ]x y x z z w      . 

b) If it  or 
1

=
2i

m
s


 and i it s , for = 1i  or 2, say  

for = 1i , then we have a path  
[ , ] [ , ] [ , ]x y x z z w       or  
[ , ] [ , ] [ , ]x y x w z w      . 

c) If 
1

= = , =
2i i i i

m
t s  

, for = 1i  or 2, say for  

= 1i , then 2 2

1
= =

2

m
t s


 implies that 2 2  . Other-  

wise 2t  or 2

1

2

m
s


 . Then we have a path  

[ , ] [ , ] [ , ]x y y z z w       or  
[ , ] [ , ] [ , ]x y y w z w      . 

2) Assume that = , 3mn q m   and  

   
1 1 2 2

1 1 2 2

3 3 4 4
3 3 4 4

, ,

, [ ]

t s t s

t s t s
n

q q i q q i

q q i q q i V L i

   

   

   

      
 



M. GHANEM  ET  AL. 

Copyright © 2012 SciRes.                                                                                OJDM 

26 

Then 1 1 2, ,t s t  or 2 <
2

m
s

 
  

, say 1t . Hence 3 3 4, ,t s t  or  

4 1<s m t , say 3t . Then we have the path  
1 1 2 2

1 1 2 2

3 31 1
1 1 3 3

3 3 4 4
3 3 4 4

,

[ , ]

,

t s t s

t st s

t s t s

q q i q q i

q q i q q i

q q i q q i

   

   

   

      

    

   

.   

Theorem 3.3 Let R  be a ring that is a product of 
two rings 1R  and 2R  with at least one of them is not 
ID with more than one regular element and the other has 
more than two regular elements. Then  

    = 3diam L R .  
Proof. Suppose that 1 2=R R R  and 1R  is not ID, 
 1 2reg R   and  2 3reg R  . Let   1 1z V R   

and    2 2 1u reg R  . Clearly,  
        1 21,0 , ,0 , 0,1 , 0, = 3d z u        in   L R . So,  

    3diam L R  . Now, let  

           1 2 1 2 1 2 1 2, , , , , , ,a a b b c c d d V L R        ,  

then 1 1 0a b   or 2 2 0a b   and 1 1 0c d   or 2 2 0c d  . 
So, we have three cases: 

Case I: 1 1 0a b   and 1 1 0c d  . Then  
 1 1 1,a c reg R  implies that  

           1 1 2 1 1 2,0 , , ,0 , ,z a a z c c E L R        .  

And 1a  or  1 1c Z R , say 1a  implies that  

           1 1 2 1 1 2,0 , , ,0 , ,u a a u c c E L R          

where    1 1 1u reg R c  . 
Case II: 2 2 0a b   and 2 2 0c d  . Then there exists 

   2 2 2 2,v reg R a c   and hence  

           1 2 2 1 2 2, , 0, , , 0,a a v c c v E L R        . 

Case III: 1 1 0a b   and 2 2 0c d   or 2 2 0a b   and 

1 1 0c d  . Let 1 1 0a b   and 2 2 0c d  . Then  
 1 1a reg R  implies that  

       1 2 1 2, , ,a a z c V L R     and  

   1 2 1 2, = ,z c d d  or        1 2 1 2, , ,d d z c V L R    .  

And if  1 1a Z R , then    1 2 1 2, = ,a c b b  or  

       1 2 1 2, , ,a c b b V L R     and  

   1 2 1 2, = ,a c d d  or        1 2 1 2, , ,a c d d V L R    . 

  
For = mn p , [ ]n m mp p

i      [7] and for  

1 2=n n n  with  1 2. . , = 1g c d n n , 
1 2

[ ] [ ] [ ]n n ni i i    .  

Moreover  2[ ] = 2reg i  and  [ ] 3mreg i   for  

2m  . An immediate consequence of Theorem 3.3 is the 
following.  

Theorem 3.4 Let = , 2mn p m   or n is a composite 
such that 1 2n q q . Then 

   [ ] = 3ndiam L i  .  

4. The Radius and the Girth of the Graph  

  [ ]nL i   

For a connected graph G , the radius of G ,  rad G , is 
the minimum eccentricity among the vertices of G . So, 

   rad G diam G . Since for any  

   [ , ] [ ]na b V L i   , [ , ]a b  and [ , ]ai bi  are non ad- 

jacent,    [ ] > 1nrad L i  . Using Theorem 3.2 gives  

for = 2 , 2mn m   or = , 3mn q m  ,  

   [ ] = 2nrad L i  . 

Theorem 4.1 If = , 2mn p m   or = mn t s  where  
1m  , t  is prime integer,  . . , = 1g c d t s  and 1 2n q q ,  

then    [ ] = 2nrad L i  . 

Proof. Since    [ ] > 1nrad L i   to show that  

   [ ] = 2nrad L i   it is enough to find a vertex  

   [ ]nv V L i    with eccentricity 2. If  

2 2= , = , 2mn p p a b m  , then  
 [ , ],[ , ] 2d a bi a bi x y    for every  

   [ , ] [ ]nx y V L i   . So  [ ] = 2mp
rad L i

    
  

 .  

Now, assume that = , 1mn t s m   and  

     ( , ), ( , ) [ ]nx y w z V L i   .  

Then we have four cases: 
Case I: = 2t . Then  

        1 ,1 , 1,0 , , , , 2d i x y w z        . 

Case II: =t p . Then  

        ,1 , ,1 , , , , 2d a bi a bi x y w z         . 

Case III: 1=t q  and = 1m . Then 2s q  and hence 
there exists   [ ]sa V i   . So,  

        0,1 , 1, , , , , 2d a x y w z        . 

Case IV: = , 2t q m  . Then  

        ,1 , 1,0 , , , , 2d q x y w z        .   

Theorem 4.2    [ ] = 2nrad L i   if and only if  

22, , ,n p q q  or 1 2q q .  
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Vising [8], proved that for a connected simple graph 
G  with n-vertices and radius 2, the upper bound of the  

number of edges of G  is 
 2

2

n n 
. Then Golberg [9]  

proved that the lower bound of numbers of edges of a  

simple connected graph G  with radius 2 is 
 3 1

4

n 
.  

So we can conclude the following.  
Theorem 4.3 For 22, , ,n p q q  or 1 2q q ,  

  [ ] =nL i t   implies that 

       3 1 2
[ ]

4 2n

t t t
E L i

 
   . 

The girth of a graph G ,  g G  is the length of a 
shortest cycle contained in the graph. If the graph does 
not contain any cycles (i.e.. it’s an acyclic graph), its 
girth is defined to be infinity. If , , ,a b c a  is a cycle of 
length three in G . Then [ , ],[ , ],[ , ],[ , ]a b b c c a a b  is a 
cycle of length 3 in  L G . So,    = 3g L G  when- 
ever   = 3g G . In [3] it is proved that the girth of  

 [ ]n i   equals 3 for 22, ,n q q . So, we have the fol-  

lowing.  
Theorem 4.4 For 22, ,n q q ,    [ ] = 3ng L i  .  

5. The Locally Connected Property of the  

Graphs  [ ]n i   and   [ ]nL i    

We say that a vertex v  is locally connected if the 
neighborhood of v ,  N v , is connected; and G  is 
locally connected if every vertex of G  is locally con- 
nected.  

Theorem 5.1 If 1 2= ,R R R    2ireg R   for  
= 1,2i  and either 1R  or 2R  is not ID, then  R  is 

locally connected.  
Proof. Suppose that 1R  is not ID and  

    ,x y V R  . Then we have two cases: 
Case I: = 0x  or = 0y . If = 0x , then there exists 

  1 1z V R  . So       1,1 ,z a b E R   for all  
    , ,a b N x y . And if = 0y , then there exists  

 1 1 { }u reg R x   such that     1,0 ,u N x y . There- 
fore,      1,0 ,u a b E R   for every  
    , ,a b N x y . So   ,N x y  is connected. 

Case II: 0x   and 0y  . Then there exist  
 1 1 { }v reg R x  ,  2 2 { }v reg R y   and  
  1 1z V R   such that    1 1 2,0 , ,v z v  and  

    20, ,v N x y . Moreover,  
        1 1 2 2 1 2,0 , , 0, ,v z v v z v E R  . And for every 
   ,t s Z R ,   1,0 ,v t s  or      20, ,v t s E R  . 
So   ,N x y  is connected.   

Theorem 5.2 If 1 2= ,R R R    2ireg R   for  

= 1,2i  and either 1R  or 2R  is not ID, then  
  L R  is locally connected.  

Proof. Suppose that 1R  is not ID,   1 1z V R    

and        , , ,x y z w V L R    , then we have three  

cases: 
Case I: = = 0x z . Then  

           1 1,1 , , ,1 , ,z x y z z w E L R        . 

Case II: = = 0y w . If  1,x z reg R , then  

           1 1,1 , , ,1 , ,z x y z z w E L R        .  

Otherwise there exists  1 1 { , }u reg R x z  . So,  

           1 1,0 , , ,0 , ,u x y u z w E L R        . 

Case III: , 0x y   or , 0z w  . Assume that 0xy  , 
then 0z   implies that there exists  1 1 { }u reg R x   
satisfies  

           1 1,0 , , ,0 , ,u x y u z w E L R        .  

While 0w   implies that that there exists  
 2 2 { }v reg R w   satisfies  

           2 20, , , 0, , ,v x y v z w E L R        .   

From Theorem 5.1 and Theorem 5.2 we conclude the 
following.  

Theorem 5.3 If = , 1mn p m   or n  is a composite 
integer such that 1 2n q q , then both  [ ]n i   and  

  [ ]nL i   are locally connected.  

6. When Is   [ ]nL i   Hamiltonian? 

A Hamiltonian cycle is a cycle that visits each vertex 
exactly once (except the vertex which is both the start 
and end, and so is visited twice). A graph that contains a 
Hamiltonian cycle is called a Hamiltonian graph. The 
line graph of a graph G  with more than 4 vertices and  

diameter 2 is Hamiltonian [10]. But  2
[ ] , 2m i m   is  

disconnected with one isolated vertex  1 12 2m m i   
and the other component, call this component H , with  

diameter 2 [3]. So,    
2

[ ]mL i L H   
 

 . Similarly,  

 [ ]mq
i   has a connected subgraph H  with diameter  

2 and    [ ]mq
L i L H
   
 

 . Hence, the following 

result is obtained.  
Theorem 6.1 If = 2 , 2mn m   or = , 3mn q m  , then  

  [ ]nL i   is Hamiltonian.  

Oberly and Sumner [11] proved that every connected, 
locally connected claw free graph (i.e. it does not contain 
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a complete bipartite graph 1,3K ) is hamiltonian. Since 
the line graph is claw free, using Theorem 5.3, we get the 
following.  

Theorem 6.2 If = , 2mn p m   or n  is a composite  

integer such that 1 2n q q , then   [ ]nL i   is hamil-  

tonian.  

7. The Chromatic Number of the Graph  

  [ ]nL i   

The edge coloring of a graph G  is an assignment of 
colors to the edges of the graph so that no two adjacent 
edges have the same color. The minimum required num- 
ber of colors for the edges of a given graph is called the 
chromatic index of the graph denoted by  G . 

Lemma 7.1 [12] 
If G  has order 2s  and   = 2 1G s  , then  
   =G G  .  
Theorem 7.2 If = 2 , 2mn m  , then  

   2 1[ ] = 2 3m
n i    .  

Proof. Note that in  2
[ ]m i  , the induced subgraph,  

H , with      1 1

2
= [ ] 2 2m m

mV H V i i     
 

  is con-  

nected,   2 1= 2 2mV H   , [1] and  

   2
= [ ]mH i      

 
 . Since the vertex 1 i  is adja-  

cent to all other vertices in H , we have  
    2 1= 1 = 2 3mH deg i    . Using Lemma 6.1,  

  2 1

2
[ ] = 2 3m

m i     
 

 .   

Since  [ ]q i   is empty graph and  

   2
2 1[ ] = 1

q
i q K   is edgeless with 2 1q   verti- 

ces, we consider the case  [ ] , 3mq
i q  . 

Theorem 7.3 If = , 3mn q m  , then  

   2 2 2[ ] = 1m
n i q q       

Proof. Let    1 1= : , 0 .m m
qA q q i         

Then A  is the set of all isolated vertices in  [ ]mq
i  .  

So the induced subgraph, H , with the vertices 

   = [ ]mq
V H V i A

   
 

  is a connected graph,  

  2 2 2= mV H q q  . Clearly the vertex q  is adjacent to 
all other vertices in H  and hence,  

  2 2 2= 1mdeg q q q   . Using Lemma 7.1,  

  2 2 2[ ] = 1.m
mq

i q q      
 

    

Finally we find the chromatic index of  

 [ ] , 2mp
i m  . 

A subset D  of the vertex set  V G  is said to be 
independent if no two vertices in this set are adjacent. A 
clique of a graph is a maximal complete subgraph. A 
graph G  is said to be split if it’s vertex set can be 
partitioned into two subsets A  and B  such that A  
induces a clique and B  is independent in G .  

Lemma 7.4 [13] Let G  be a split graph. If  G  is 
odd, then    =G G  .  

Theorem 7.5 If 2=n p , then  

   3 2[ ] = 2 1n i p p p     .  

Proof. Since 2 2 2[ ]
p p p

i     , it is enough to find  

 2 2p p
   . First, we’ll show that  2 2p p

    is  

a split graph. Let  

    
    

2

2

= , :  and }

     , :  and ,

pp

pp

A u p u U

p v v U

 

 

  


   


 

 
 

      = , :  and 0,0pB p p      . 

Clearly,  2 2 =
p p

V A B   , A  induces a clique  

and B  is independent. Therefore,  2 2p p
    is a  

split graph. Moreover,  

   

         

2 2

2

3 2

= 1,

= [ ] 0, : 0 1,

= 2 1

p p

pp

deg p

i p p

p p p

 

    
 

    

  

 

   

is odd. From Lemma 7.4,  

  3 2[ ] = 2 1mp
i p p p       

 
 .   

A graph G  is said to be critical if G  is connected 
and    = 1G G    and for every edge e  of G , 
we have    \{ } <G e G   . The well-known Vizing’s 
theorem states that for a simple graph G ,  

   =G G   or   1G  .  
Lemma 7.6 [14] 
If G  is a critical graph, then G  has at least  
    2G G    of vertices of maximum degree.  
Therefore, if G  is a simple graph such that for every 

vertex v  of maximum degree there exists an edge vu  
such that     2G deg u    is more than the number 
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of vertices with maximum degree in G , we have  
   =G G   [13].  
Theorem 7.7 If = , 3mn p m  , then  

   2 1 2 2[ ] = 2 1m m
n i p p p       .  

Proof. Let   , pV      and  , mp
u v U  .  

Then the vertices of  m mp p
    with maximum de-  

gree have the form  ,p v  or  ,u p  where 0   
and 0   and  

    
      1

, =

                  ,0 : 0 ,

m mp p

m

N p v V

p p v



  

   
 

  

 
 

and 

    
      1

, =

                  0, : 0 , .

m mp p

m

N u p V

p u p



  

   
 

  

 
 

So,   2 1 2 2= 2 1m m
m mp p

p p p        
 

  . And 

the vertices of  m mp p
    with minimum degree 

have the form  1,0mp   or  10, mp   where  

     1,0 = , : 1m iN p u p i    and  

     10, = , : 1m iN p p v i   . So  

     1[ ] = 2m m
mp

i p p mp m p       
 

 .  

Therefore,  

   
  
  

1 1 2 1

1

[ ] 2

= 2 1

> 2 1

m m mp p p

m m m m

m m

i

p p p mp m p p p

p p p



  



           
   

       

 

  

.  

But the graph  m mp p
    has only  

  12 1m mp p p   vertices of maximum degree. So,  

  2 1 2 2= 2 1m m
m mp p

p p p         
 

  .  

Since [ ]m m mp p p
i     , the result holds.   

Since the edge coloring of any graph leads to a vertex 
coloring of its line graph, we obtain the following.  

Corollary 7.8 1) If = 2 , 2mn m  , then  

    2 1[ ] = 2 3m
nL i   . 

2) If = , 3mn q m  , then  

    2 2 2[ ] = 1m
nL i q q    . 

3) If = , 2mn p m  , then  

    2 1 2 2[ ] = 2 1m m
nL i p p p      .  

8. The Domination Number of  [ ]n i   

A subset D  of the vertex set  V G  of a graph G  is 
a dominating set in G  if each vertex of G , not in D , 
is adjacent to at least one vertex of D . The minimum 
cardinality of all dominating sets in G ,  G , is called 
the domination number of G . 

In  2
[ ] , 2m i m  , the vertex 1 12 2m m i   is an  

isolated vertex while the vertex 1 i  dominates all 
vertices in the second component. Therefore,  

 2
[ ] = 2m i   

 
 . The graph    2

2 1[ ] = 1
q

i q K  ,  

thus   2
2 [ ] = 1

q
i q    

 
 . In  [ ] ,mq

i   3m   the  

vertices 1 1m mq q i    are isolated while the vertex q  
is adjacent to all other vertices in  

   1 1[ ] : ,m m
m qq

V i q q i         
 

  ,  

so   2[ ] =mq
i q   

 
 . Since  

  2 21 2 1 11 2
[ ] =q q q q
i K K

 
   

and   1 1[ ] =p p pi K K   , 

    1 2
[ ] = [ ] = 2q q pi i    

 
  . 

The set     = 1,0 , 0,1D  is a minimum dominating set 

for  m mp p
   . And if 1 2=n n n , where  

 1 2. . , = 1g c d n n , then    1 2
[ ] [ ] [ ]n n ni i i      . This  

graph is connected and the set     = 1,0 , 0,1D  is a  

minimum dominating set for  1 2
[ ] [ ]n ni i   .  

Theorem 8.1 1) If 2, mn q , then  

  [ ] = 2n i   . 

2)   2
2 [ ] = 1

q
i q    

 
  and  

  2[ ] = , 3.mq
i q m    

 
  
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9. The Domination Number of   [ ]nL i   

The independence number of G ,  G , is the maxi- 
mum cardinality of all independent sets in G . A subset 
D  of the edge set  V G  of a graph G  is an edge 
dominating set in G  if each edge of G , not in D , is 
adjacent to at least one edge of D . The minimum 
cardinality of all edge dominating sets in G ,  G  , is 
called the edge domination number of G . The minimum 
cardinality of all independent edge dominating sets, 
 i G  , is called the independence edge domination 

number of G . The study of the domination number of 
the line graph of G  leads to the study of edge or line 
domination number of G , i.e.     =L G G   . On 
the other hand, for any graph G ,    =i G G    [15]. 

If S  is an independent set in G , then S  induces a 
complete graph in G . While if S  induces a complete 
graph in G , then it is independent in G . Recall that 

22 2
[ ]m mi    [2]. Then the sets,  

  22
= 2 :j

j m jA U    , = 1,2, , 2 1j m   form a  

partition for the set   22 mV   . Clearly, the set 

2 1

=
=

m

jj m
T A

  is the maximum independent set in  

 22 m  , while the set 
1

=1
=

m

jj
S A

  induces a maxi- 

mum complete subgraph in  22 m  . There are some  

edges joining S  to T , no other adjacency exists in  

 22 m  . Any edge dominating set for  22 m   must  

contain at least 2S    element in order to dominate  
S  . On the other hand, this dominating set for S   do-  

minates all other edges in  22 m  . Since  

2 1= 2 m j
jA   , then S  and T , could easily be com- 

puted to get the following theorem. 
Theorem 9.1 For = 2 , 2mn m  . 

1)     1[ ] = 2 2 1m m
n i   . 

2)   [ ] = 2 1m
n i   . 

3) 
      
    1 1

[ ] = [ ]

= [ ] = 2 2 1 .

n i n

m m
n

L i i

i

 

  

 

  

 


 

To study the graph  [ ] , 3mq
i m  , consider the 

partition of  [ ]mq
i   given by 

    = :  and ,

1 , .

k j
kj m k m jq q

A q q i U U

k j m

      

 

 
  

and not both , =j k m . The set  

= =
2 2

=
m m

kj mmm m
k j

T A A   
      

  
   

    
   is the maximum inde-  

pendent set, while 
1 1

2 2
=1 =1

=
m m

kjj k
S A

          
 
 
 
 

   induces a  

maximum complete subgraph in  [ ]mq
i  . There are  

some edges joining S  to T , and  [ ]mq
i   has no  

other adjacency. Easy calculations give  
 2 2 2= 1 m k j

kjA q q     when 1 , 1k j m   ,  
1= m j m j

mjA q q    and 1= m k m k
kmA q q    when  

,k j m . While 
2

2= 1
m

T q
 
     and  

2
2

2 2= 1
m m

S q q
   
      

 
 
 
 

. 

Thus we obtain the following theorem.  
Theorem 9.2 If = , 3mn q m  , then 

1)   
2

2
2 2[ ] = 1
m m

n i q q
   
      

 
  
 
 

 . 

2)   [ ] = 1m
n i q    if m  is even and 1mq   if 

m  is odd. 

3) 

        
   

2
2

2 2

[ ] = [ ]

1
= [ ] = 1 .

2

n i n

m m

n

L i i

i q q

 


   
      

 

 
   

 
 

 


 

Now, we move to the case = mn p . Let  

      = , : andk j
kj m k m jp p

A p p U U       . 

Clearly, the sets kjA  where 0 ,k j m   and not 
both , =k j m  or 0, partition the vertices of  

 m mp p
    and  22 2= 1m k j

kjA p p    . Let  

   1

1 0 0=1 =1

1 1
2 2

2 3
=1 =1

= =
2 2

1 1
2 2

4 5
=1 =1

= =
2 2

=

= , = ,

= and = .

m m

k kk k

m m

m m

kj kj
m mk j

k j

m m

m m

kj kj
m mj k

k j

S A A

S A S A

S A S A



          

   
      

          

   
      



   
   
   
   

  
   
   
   
   
   

 

   

   

 

Note that 1S  induces a complete graph in  
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 m mp p
   . Vertices in 

1

0=1

m

kk
A

  are adjacent to all  

vertices except some vertices in 
1

=1

m

kmk
A

  . Similarly, 
vertices in 

1

0=1

m

kk
A

  are adjacent to all vertices except 
some vertices in 

1

=1

m

mkk
A

 , and vertices in 0mA  are 
adjacent to all vertices except vertices in 0mA . On the 
other hand 0mA  induces a complete subgraph and 
vertices in this set are adjacent to all other vertices except 
those of 0mA . Clearly 2S  induces a complete subgraph. 
Vertices in 3S  form an independent set, and are 
adjacent to some vertices in 1 2 4 5 0mS S S S A    . 
Each of 4S  and 5S  induces a complete subgraph and 
are adjacent to some vertices in 1 2 3 0mS S S A   . 
Besides, there are some edges between 4S  and 5S . On 
the other hand,  

3

= =
2 2

= .
m m

kj mm
m m

k j

S A A
   
      

   

The above argument shows that  

   
    3

2
2 1 2 2 2

[ ] = [ ]

1
= [ ] = [ ]

2

1
= 2 2 .

2

m i mp p

m mp p

m
m

m m

L i i

i i S

P p p

 



     

         
    

       
   
 
   
 
 

 

   

10. The Degree of the Vertices in  [ ]n i    

and   [ ]nL i   

Now, we determine the cardinality of the annihilator of 
the element a bi ,  ann a bi  in [ ]n i . This helps 
find the degree of each vertex in  [ ]n i  , its 
complement, as well as the degree of each vertex in their 
corresponding line graphs.  

Theorem 10.1 If [ ]na bi i  , then  
  2 2=ann a bi c d   where  . . , =g c d a bi n c di  . 

Proof. Let [ ]na bi i   and 
 . . , =g c d a bi n c di  . Then  

      = [ ] : 0 modann a bi x i x a bi n    .  

   So, . 0 mod . 0 mod
a bi n

x a bi n x
c di c di

         
. 

But [ ]n

c di

a bi
U i

c di 

 
     

 . So, 0 mod
n

x
c di

    
  

and hence there exists [ ]m i  such that =
n

x m
c di

.  

Since  =m t c di r   where , [ ]t r i  and the norm 
of r  is less than the norm of c di ,  

   = : [ ] = [ ]c di c diann a bi r r i i    . By Theorem  

2 of [7], 2 2
2 2[ ] = =c di c d

i c d 
  , so the result  

holds.   
Theorem 10.2 Let   [ ]nv V i    and  

 . . , =g c d v n c di . Then  

 
2 2 2

2 2 2

1, if 0
=

2, if = 0

c d v
deg v

c d v

   


 
.  

The order of  [ ]n i   can be easily computed using 
formulas given in [1]. Thus we can find the degree of 
each vertex in the complement of  [ ]n i  , here we 
give the degree of each vertex in the line graph of 
 [ ]n i  , an analogous formula for the degree of 

vertices in   [ ]nL i   could be obtained. 
Corollary 10.3 Let      , [ ]nu v V L i   ,  

 . . , =g c d u n a bi  and  . . , =g c d v n c di . Then 

 
2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

[ , ]

4, if 0 and 0

= 5, if = 0 and 0

6, if = 0 and = 0

deg u v

a b c d u v

a b c d u v

a b c d u v

      
     
    

. 

Proof. Note that, for any graph G  and  uv E G ,  

     ( ) [ , ] = 2L G G Gdeg u v deg u deg v  .   

In the following we determine the degree of every 
vertex in the graphs  [ ]n i   when  

= 2 , 2, = , 3m mn m n q m   and = , 1mn p m  .  
Theorem 10.4 Let = 2 , 3mn m   and ,   are odd. 

Then in  [ ]n i  , 

1)  

2

2

2 1

2 1

2 1, if 1 < < and < 1 = < and
2 2

2 2, if < < or = < and
2 2

2 2 =

2 2, if = < and =
2

2 1, if 1 = < and =
2

k

k

k s

k

k

m m
k s m k or k s

m m
k s m k s m

deg i
m

k s m

m
k s

 

 
 

 

 





               
                 

       


       

. 
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2)    2 = 2k kdeg deg i   

2

2

2 1, if 1 <
2

=

2 2, if <
2

k

k

m
k

m
k m

       


      

. 

3)   = 1deg i  .  
Proof. 1) Note that,   { , }. . , 2 2 = 2k s min k sg c d n i   if  

k s  or    and    . . , 2 2 = 2 1k s kg c d n i i     

if and only if =k s  and =  . Moreover  

 2
2 2 = 0k k i   if and only if 

2

m
k

    
. 

2) Obvious. 
3) Note that if ,   are odd, then  
. . ( , ) = 1g c d i n i   .   
Theorem 10.5 Let = , 3mn q m  , ,   are rela- 

tively prime with q . Then in  [ ]n i  , 

 
2

2

1, if 1 and <
2

=

2, if
2

k

k s

k

m
q k s k

deg q q i
m

q k s

 

         
       

. 

Theorem 10.6 Let = , 1mn p m  , 2 2=p a b  and 
 . . , = 1g c d p . Then in  [ ]n i  ,  

    
 

 

 
 

2 2

2 2

2 2

2 2

1, if < and , 1
2

2, if ,
= .2

1, if = 0

1, if = 0

k s

k s

k s

s

k

deg a bi a bi

m
a b k or s k s

m
a b k s

a b k

a b s







 

       
        


 

  

 

11. When Is   [ ]nL i  ,   [ ]nL i    

Regular? 

A graph G  in which all vertices have the same degree 
is called regular graph. 

Regularity of  [ ]n i   was studied in [1]. However, 
we provide our own proof, since it comes as an im- 
mediate consequence of Theorem 10.2. Clearly, if 

2= 2, ,n p q , then  [ ]n i   is regular. If  
= 2 , 2mn m   or = , 3mn q m  , then the graph 
 [ ]n i   has a vertex which is adjacent to all other 

vertices and it is not complete graph, thus  [ ]n i   is 
not regular. 

Now, we show that  [ ]n i   is regular if and only if 

2= 2, ,n p q .  
Theorem 11.1 If 

=1
= π

mr j
jj

n   where π j s  are 
distinct Gaussian primes and 1jm   and  

2 , , , 2m m mn p q m  , then  [ ]n i   is not regular.  
Proof. Choose two vertices πt  and πs  such that 

π πt s , then    . . ,π = π . . ,π = πt t s sg c d n g c d n . So, 
the result follows.   

Next, we discuss regularity of the graph  

  [ ]nL i   and   [ ]nL i  . Clearly, if G  is re-  

gular, then  L G  is also regular, so if 2= ,n p q , then 
the graph   [ ]nL i   is regular. On the other hand, if 
G  is the complete bipartite graph ,r sK , then  

 [ , ] = 2deg u v r s   for all vertices in  ,r sL K . Thus  

  1 2
[ ]q qL i   is regular. While  2[ ] [ ]qi i    is a  

bipartite graph with partite sets  

      = 1 ,0 , 1,0 , ,0A i i  and 

     
     

1 , : [ ]

     0, : [ ] .

q

q

B i x x V i

x x V i

   

  




  

Moreover,   1 ,0 =N i B ,      1 ,1 = 1 ,0N i i   and 
  0,1 =N A . Thus,  

         1 ,0 , 1 ,1 1 ,0 , 0,1deg i i deg i          ,  

and hence,   [ ]L 2  q i  is not regular.  
Theorem 11.2 If = , 2mn t m  , t  is a prime and 

2n q , then the graph   [ ]nL i   is not regular.  
Proof. If = 2 , 2mn m  , then  

   1 1 11 , 2 2 2, 2 .m m mdeg i i deg i            If  

= , 3mn q m  , then    1 2 1, ,m mdeg q q i deg q q i        .  

And if = mn p , 2 2=p a b , 2m  , then  

    
      1

,

, .

m m

m m

deg a bi a bi

deg a bi a bi a bi


   

     

   

Theorem 11.3 Let 1 2=R R R  where 1R  and 2R  
are commutative rings with unity with at least one of 
them is not ID. Then   L R  is not regular.  

Proof. Suppose that 1R  is not ID and =i iR r , for 
= 1,2i . Let   1 1x V R  . If 2

1 = 0x , then  

       
     

1 2

1 1

,0 = 0, : 0

               , : 0,

N x a a R

y a y ann x x

 

  
 

and 2a R  if  
         1 1 1 20, , : 0ann x x x a a R     , hence  

    1 2 1,0 , 0,1 2 4deg x r r      . And if 2
1 0x  ,  
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       
      

1 2

1 1

,0 = 0, : 0

               , : 0,

N x a a R

y a y ann x x

 

  
 

and 2a R  if     1 10,ann x x   , hence  

     1 2 1,0 , 0,1 3deg x r r     . But  

1 2[(1,0), (0,1)] = 4deg r r  . So   L R  is not re- 
gular.   

So as a consequence of Theorem 11.2 and Theorem 
11.3, we conclude the following.  

Theorem 11.4 The graph   [ ]nL i   is regular if 
and only if 2

1 2= , ,n p q q q .  

Observe that, for 2= 2,n q ,  [ ]n i   is the empty 

graph.  3 2 4 21
[ ]

q q q q
i N K

 
   , so the line graph  

 3 [ ]
q

L i
  
 

  is regular. While  

  1 1[ ]n p pi K K      

which is regular, so is   [ ]nL i  . 

      
2

In [ ] , 1 ,1 3 1 , 2 .mL i deg i i deg i      
 

   

    2In [ ] , > 3, , , .mq
i m deg q qi deg q q

        
  

And in  [ ] , 2mp
L i m
   
 

 ,  

   2
, ,deg a bi a bi deg a bi a bi       . So, the graph  

  [ ]nL i   is not regular for = , 2mn t m  , t  is a 
prime and 2 3,n q q .  

Theorem 11.5 Let 1 2=R R R  where 1R  and 2R  
are commutative rings with unity such that 

   =V R t , =i iR r  for = 1,2i . If   2ireg R    

and 1 2r r , then   L R  is not regular.  
Proof. Since   2ireg R  , for = 1,2i , there exist 

   1 1 1u reg R   and    2 2 1u reg R  . Therefore  

           1 21,0 , ,0 , 0,1 , 0,u u V L R        . Since  

1 2r r ,  

    
    

1 2 1

2

1,0 , ,0 = 2 2 4 2 2 4

                              = 0,1 , 0,

deg u t r t r

deg u

      

  
.  

So,   L R  is not regular.   

Theorem 11.6 The graph   [ ]nL i   is regular if 
and only if =n p  or 3q .  

12. When is   [ ]nL i  ,   [ ]nL i   

Locally H? 

A simple graph G  is said to be locally H  if the 
neighborhood of each vertex in  V G  induces the same 
graph H . The cartesian product G H  of two graphs 
G  and H  is the graph with vertex set  
     =V G H V G V H  and two vertices in  
 V G H  are adjacent if and only if they are equal in 

one coordinate and adjacent in the other. Before we 
proceed, we give the following lemma.  

Lemma 12.1 1) If = , 3nG K n  , then  L G  is 
locally 2 2nK K   . 

2) If ,= , , 2m nG K m n  , then  L G  is locally  

1 1m nK K   .  
Proof. 1) Let   [ , ] nu v V L K , then  

    
  

[ , ] = [ , ] : { , }

                [ , ] : { , }

n

n

N u v u a a V K u v

a v a V K u v

 

  
 

each of the sets   [ , ] : { , }nu a a V K u v   and  
  [ , ] : { , }na v a V K u v   induces a copy of 2nK   and 

since we deal with an undirected graphs, then for a fixed 
a , [ , ]u a  and [ , ]v a  are adjacent. Thus the result 
holds. 

3) Let   ,[ , ] m nu v V L K , with partite sets A  and 
B  and with u A , v B . Then  

   
 

[ , ] = [ , ] : { } }

                [ , ] : { }

N u v u b b B v

a v a A u

 

  
.  

Each set induces a complete graph 1 1,n mK K  , res- 
pectively. And  [ , ]N u v  has no other edges. Thus 

 [ , ]N u v  induces 1 1n mK K  .   

In order for a graph to be locally H , it should be 
regular graph. Thus for the graph   [ ]nL i  , it 
suffices to check the cases 2

1 2= , ,n p q q q , and for  

  [ ]nL i  , we consider only the cases 3= ,n p q . 

Since   1, 1[ ] =P p pi K     and   1 1[ ] =P p pi K K   ,  

  [ ]PL i   is locally 2 2p pK K   and  

  [ ]PL i   is locally 2 2pK K  . In the same manner  

we can show that   1 2
[ ]q qL i   is locally  

2 22 21 2q q
K K

 
 ,   2 [ ]

q
L i   is locally 2 22q

K K

  and  

 3 [ ]
q

L i
  
 

  is locally 4 2 22q q
K K

 
 . 

Theorem 12.2 The following statements are equi- 
valent. 

1) The graph      [ ] [ ]n nL i L i    is regular, 
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2) The graph      [ ] [ ]n nL i L i    is locally 

H . 
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