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Abstract 
Practical resolution of consolidation problems that we often face requires an extensive and solid 
knowledge of the different parameters highlighted by the Terzaghi one-dimensional consolidation 
theory. This theory, with its assumptions, leads to a partial differential equation of second order in 
space and first order in time of pore water pressure. Analytical and numerical resolutions of this 
equation allow determining the water pressure variation before and after the application of a 
charge. Numerical modeling has enabled the simulation of the whole results obtained by the two 
methods of resolution (pressure, degree of consolidation, time factor, among others) to have a 
physical analysis and a lawful observation that lead to a suitable understanding of the phenome-
non of Terzaghi one-dimensional consolidation. 
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1. Introduction 
The unidimensional consolidation of soils has been described by Terzaghi using partial differential equations [1]. 
The resolution of these equations can be performed analytically and/or numerically [2] [3]. In this work, we re-
solved Terzaghi partial differential equations using Fourier method and finite difference respectively for analyt-
ical and numerical solutions. At a further step we used numerical modeling to represent graphically the two so-
lutions in order to validate the obtained results. 
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We consider an example of a clay layer drained on the faces and submitted instantly to the initial conditions to 
constant stress (load) [4] (Figure 1). It is assumed that the clay layer thickness is 2H with H = 8 m subject to its 
surface to a total stress Δσv = 30 kPa and with a consolidation coefficient estimated to 2 m2/year. 

Solving the Terzaghi one-dimensional consolidation equation, from the hydro mechanical modeling of the 
solid [2] [3], and adapted to the parameters of the problem allows for the following simulations: 
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                                    (1) 

where u∆  is the pore water pressure, vc  is the coefficient of consolidation, z  is the depth and t  corres-
ponds to the time. 

2. Analytical Method 
To solve this kind of first-order partial differential equation with respect to time and second-order with respect 
to space, we must combine two boundary conditions and initial condition for the interstitial pressure. 
 Boundary conditions (for all time t) 

-At the bottom of the layer, z = 0, we have: 

( )0, 0u t∆ =  

-On the surface of the layer, z = 2H, then: 

( )2 , 0u H t∆ =  

 Initial condition (for t = 0) 

( ) except for 0,0  and 2v z zz Hu σ == =∆ ∆  

If we apply the Fourier sine transform sF  on the left and right members of this equation: 
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The relation (2) is as follows: 
 

 
Figure 1. Example of a clay layer drained on the two faces (Modified from [4]). 
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Since the method used is the sine Fourier transform based on the odd frequency (sinusoidal) of the interstitial 
pressure, the development into Fourier series will not affect the coefficients an. 
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where 
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By substituting, the equation can be rewritten into this form: 
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By simplifying and separating constants we obtain the analytical solution of the Terzaghi’s equation from the 
Fourier method: 
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Assuming that the ∞ = 100, which is acceptable in numerical analysis [5], we can evaluate the numerical val-
ue of ∆u (which is the exact solution) [6] [7]. For this, we make a loop for each point (zi, ti) and calculate 

( )exact ,i iu z t∆ . By acting on the value maxt  of the consolidation duration, the following results are obtained 
(Figure 2(a) and Figure 2(b)): 

For a longer time of consolidation (e.g. 20 years), we obtain the following results (Figure 3(a) and Figure 
3(b)): 

For an infinite time, the phenomenon of pressure dissipation becomes more and more clear and the effective 
stresses are more important (Figure 4(a) and Figure 4(b)); this means that the load is transmitted to solid grains. 

The degree of consolidation and the time factor are derived from the exact solution of the consolidation equa-
tion.  
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Hence the representation of the function ( )v vU T  and the inverse function ( )v vT U  gives (Figure 5): 
The dimensionless term which is the ratio between the value of ∆u(z, t) at (t) and its initial value ∆u0 = ∆σv are 

simulated based on the reduced depth Z = z/H and for different values of Tv. 
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(a)                                                          (b) 

Figure 2. Evolution of the pore water pressure (a) and the effective stress (b) as a function of depth and time (we consid-
er here tmax = 1 year).                                                                                   

 

   
(a)                                                          (b) 

Figure 3. Evolution of the pore water pressure (a) and the effective stress (b) as a function of depth and time (we consid-
er here tmax = 20 years).                                                                                

 

  
(a)                                                          (b) 

Figure 4. Evolution of the pore water pressure (a) and the effective stress (b) as a function of depth and time (we consid-
er here tmax = 100 years).                                                                                
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Figure 5. Respective changes of Uv and Tv, one according to others.          

 

( )
( ) ( ) ( )2 2

00

, 2 14 1 exp 2 1 π sin π
π 2 1 4 2

v

m

u z t mT
m z

u m

∞

=

∆ +  = − +   ∆ +    
∑                     (13) 

Thus, we can see that the ratio ( )
0

,u z t
u

∆
∆

 reaches a maximum for Tv = 0 and Z = 0.2 after an increasing and  

linear evolution for Z comprise between 0 and 0.1 (Figure 6). Then for other values of Tv with time steps rang-
ing from 0.05 to 0.2, we obtain the other isochronous which respectively follow the first one, then with a time 
step of 0.1, the last isochronous; like the first isochronoous they show all ratio values that deviate more and 
more to 1 (which is the maximum value) when the time factor Tv tends to 1.  

3. Numerical Method 
The principle of this method consists in substituting the function ∆u(z, t) of the interstitial pressure at the point 
M at time t in a discrete function ( ),u z t∆ . It requires the selection of a mesh with ∆z as a space step and ∆t as 
time step. iku  or k

iu  is the interstitial pressure of water at the node (i, k). Which means that at the node zi = 
i∆z and at t = k∆t. 
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This form leads to address the resolution by an explicit scheme which uses a discretisation at zi node and at 
iteration n. By analogy to the consolidation equation the equality between the first order scheme in time and the 
second order centered scheme in space has been set 

Hence it may be evaluated to obtain: 
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Given 
2v
tc

z
θ ∆
=

∆
, this equation can be rewritten in the form that gives the interstitial pressure of the water at  
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Figure 6. Isochrones of pore pressure for different values of Tv as a function of Z.            

 
iteration k +1: 
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So the matrix of excess water pore pressure from the resolution is given by the following finite differential 
method: 
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Computed results in matrix form obtained by the numerical solution give also performances that converge 
towards an analytical solution. 

For greater stability, θ must be less than 1/2 [8]; however, we assume that θ = 1/4 and apply the other para-
meters of the problem for obtaining the following figures (Figure 7(a) and Figure 7(b)): 

For a longer time of consolidation (e.g. 20 years), we obtain the following results (Figure 8(a) and Figure 
8(b)). With these results, we can notice the phenomenon of dissipation that appears in a clear way: 

For an infinite time, the phenomenon of pressure dissipation becomes more clear and the effective stress more 
important (Figure 9(a) and Figure 9(b)). In fact, the load is transmitted to solid grains. 

These results show without any ambiguity that the water interstitial pressure is canceled through the soil layer 
thickness in the same way as noticed in the analytical resolution: 

The pore water pressure obviously vanishes over time with perfect coherence with Terzaghi’s relation (∆σv = 
∆σ' + ∆u). The load is more and more transferred towards the solid grains. Then the effective stress tends to the 
value of the initial stress which is applied at the soil surface. 
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(a)                                                          (b) 

Figure 7. Evolution of the pore water pressure (a) and the effective stress (b) as a function of depth and time (we consider 
here tmax = 1 year).                                                                                    

 

   
(a)                                                          (b) 

Figure 8. Evolution of the pore water pressure (a) and the effective stress (b) as a function of depth and time (we consider 
here tmax = 20 years).                                                                                   

 

   
(a)                                                          (b) 

Figure 9. Evolution of the pore water pressure (a) and the effective stress (b) as a function of depth and time (we consider 
here tmax = 100 years).                                                                                  
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4. Conclusions 
We found for the different parameters used in our simulations that we almost have the same changes in the nu-
merical and analytical resolutions [6] [7]. However, we notice more accuracy on the analytical resolution due to 
the fact that the numerical resolution gives an approximate solution while the finite differential method imposes  

some specific conditions that lead to a stable resolution; for the example 1
2

θ <  for the finite differential expli-

cit method. Nevertheless 
2v
tc

z
θ ∆
=

∆
 implies the choice of time and space step which combination will respect  

the explicit scheme rule [8]. 
The problem of Terzaghi one-dimensional consolidation can be easily solved by analytical and numerical 

methods; and the solutions resulting from this resolution may also be an interesting subject for numerical simu-
lation [9] in order to highlight more clearly the physical interpretation necessary to better understand soil con-
solidation. 
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Annexes 
(1) Analytical solution 
-Pore water pressure: 
function simulation(N,Cv,H,Tmax)  
lamda=4*30/pi; %hpa  
[z,t]=meshgrid(linspace(0,2*H,50),linspace(0,Tmax,50));  
V=0; % V represente la surpression  
for m=0:N  
V=V+lamda*(1/(2*m+1)*exp((2*m+1)^2*(pi^2)*(Cv*t/(4*H^2))).*sin((2*m+1)*pi*z/(2*H)));  
end  
mesh(z,t,V)  
xlabel depth(m); ylabel time(years); zlabel \DeltaU(z,t)  
for i=1:15  
view(-100+24*(i-1),30)  
m(:,i)=getframe;  
end  
-effective stress: 
function simulation_efective_stress(N,Cv,H,Tmax)  
lamda=4*30/pi; %hpa  
[z,t]=meshgrid(linspace(0,2*H,50),linspace(0,Tmax,50));  
V=0;  
for m=0:N  
V=V+lamda*(1/(2*m+1)*exp((2*m+1)^2*(pi^2)*(Cv*t/(4*H^2))).*sin((2*m+1)*pi*z/(2*H)));  
end  
q=30-V; % q=delta_sigma_prime_v : effective stress  
mesh(z,t,q)  
xlabel depth(m); ylabel time(years); zlabel \Delta\sigma\prime(z,t)  
axis([0 20 0 20 0 30]) 
(2) Numerical solution 
-Pore water pressure: 
clc; clear;  
k=4; %k=cv=  
dx=0.25;  
r=1/4; dt=dx*dx*r/k;  
Tmax=100;  
a=0;b=16;  
cla=0;clb=0;  
nx=(b-a)/dx;  
nt=Tmax/dt;  
x=0:dx:b; t=0:dt:Tmax;  
%[x,t]=meshgrid(linspace(0,2*b,50),linspace(0,Tmax,50));  
for i=1:nx-1  
N(i)=0;  
end  
N(1)=r*cla;  
N(nx-1)=r*clb;  
for i=1:nx-2  
M(i,i)=1-2*r;  
M(i,i+1)=r;  
M(i+1,i)=r;  
end  
M(nx-1,nx-1)=1-2*r;  
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for i=1:nx+1  
Ci(i)=30;  
end  
for i=1:nx-1  
h(i)=Ci(i+1);  
end  
j=1;  
h=h';  
while(j < nt + 2)  
for i=1:nx-1  
w(i,j)=h(i);  
end  
h=M*h+N';  
j=j+1;  
end  
for i=nx:-1:2  
for j=nt+1:-1:1 
w(i,j)=w(i-1,j);  
end  
end  
for j=1:nt+1  
w(1,j)=0;  
w(nx+1,j)=0;  
end  
mesh(t,x,w);  
xlabel time(t); ylabel depth(m); zlabel \DeltaU(z,t)  
for i=1:15  
view(-150+24(i-1),30)  
m(:,i)=getframe;  
end 
-effective stress: 
clc; clear;  
k=4; %k=cv= 
dx=0.25;  
r=1/4; dt=dx*dx*r/k;  
Tmax=100;  
a=0;b=16;  
cla=0;clb=0;  
nx=(b-a)/dx;  
nt=Tmax/dt;  
x=0:dx:b; t=0:dt:Tmax;  
%[x,t]=meshgrid(linspace(0,2*b,50),linspace(0,Tmax,50));  
for i=1:nx-1  
N(i)=0;  
end  
N(1)=r*cla;  
N(nx-1)=r*clb;  
for i=1:nx-2  
M(i,i)=1-2*r;  
M(i,i+1)=r;  
M(i+1,i)=r;  
end  
M(nx-1,nx-1)=1-2*r;  
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for i=1:nx+1  
Ci(i)=30;  
end  
for i=1:nx-1  
h(i)=Ci(i+1);  
end  
j=1;  
h=h';  
while(j < nt + 2)  
for i=1:nx-1  
w(i,j)=h(i);  
end  
h=M*h+N';  
j=j+1;  
end  
for i=nx:-1:2  
for j=nt+1:-1:1  
w(i,j)=w(i-1,j);  
end  
end  
for j=1:nt+1  
w(1,j)=0;  
w(nx+1,j)=0; 
end  
q=30-w; % q=deltasigmaprime ( i.e effective stress)  
mesh(t,x,q)  
xlabel time(t); ylabel depth(m); zlabel \Delta\sigma\prime_v(z,t)  
for i=1:5  
view(-80+24(i-1),30)  
m(:,i)=getframe;  
end 
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