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ABSTRACT 

This work is intended to be a simple contribution to building a model able to implement theoretical results related to the 
random oriented fiber reinforced concrete in a procedure that could be used in structures analysis and design involving 
fiber reinforced elements. Here follows a short outline: In the introduction chapter the problem is presented together the 
work done. Section 2 develops some ancillary concepts of this material and its mechanical properties, while in Section 3, 
following the path of other researchers, the assumptions made to solve the problem are presented, together with the 
most relevant results related to presence of 3D randomly oriented fiber. In the following section a review of the me- 
chanical process of fiber pull-out is done, and the results, mostly due to Victor Li researches, of a 3D randomly oriented 
synthetic fiber stress vs crack opening in a pull-out process from a cement matrix. In Section 5 the author, after making 
some assumptions about the configuration of the strain and crack geometry in the cross section where failure is assume 
to occur under flexural bending moment, the resultant stress is integrated to find the resultant internal moment vs in- 
creasing strain and crack width. In this analysis, the crack bridging law for synthetic fiber in FRC presented in the pre- 
vious section is taken into account. In Section 6, a procedure to find a cross section configuration in equilibrium under 
external bending moment has been built. Under the assumption of a perfectly plastic collapse mechanism a numerical 
simulation is conducted on a specimen that undergoes a four-point bending test. A comparison with the trend of a simi- 
lar test on a synthetic FRC sample has been done. The work is completed by the conclusions that could be inferred from 
this work. 
 
Keywords: Fiber Reinforced Concrete; Concrete Sample Test; Synthetic Fiber Composite Materials 

1. Introduction 

This work deals with composite materials formed by ce- 
mentitious matrix and inclusion of synthetic fibers, refer- 
ring in particular to fiber mechanical parameters typical 
of polyethylene and polypropylene fibers. The goal of 
this work consists in finding a model, simple but efficient 
enough to describe the contribution of the inclusion of 
straight fibers, randomly distributed, to the toughness and 
ductility of the composite, after briefly illustrating the 
mechanics of FRC and in particular the fiber pull-out 
phenomenon, which is assumed, as we see later, to be the 
most important factor in determining the increased duc- 
tility of the material.  

An analysis of a post-first crack behavior beam is con- 
ducted assuming a rigid-plastic model for a four-point 
bending test load picture. The assumptions on the strain 
diagrams and the crack opening profile, even though not 
directly based on fracture mechanics theory, allow us to  

define relations between an external moment after the 
first crack and related displacements. An iterative proce- 
dure has been set up to evaluate numerically beam con- 
figurations under bending moment and a subroutine has 
been programmed to implement this procedure 

2. Fiber Reinforced Concrete 

Mechanical Behavior of FRC Concrete: 
Ancillary Concepts 

A composite material can be defined as a material formed 
by two or more elements mixed on a macroscale [1]. This 
new material has particular properties that none of its 
components, used alone, can provide. We know that ce- 
mentitious materials generally have poor tensile strength 
and low fractural toughness. Fibers are inclusions for 
which one dimension, the length, is dominant over the 
other two. They can be aligned in one direction or ran- 
domly oriented in a plane or in space, and they can be 
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made of different materials (i.e. steel glass, asbestos, 
carbon, nylon, polypropylene, Kevlar and others).  

One of the most important limits to the fiber per- 
centage is given by the workability and the bundle phe- 
nomenon. The first is well known in the concrete tech- 
nology, and it regards the difficulty of pumping the mix- 
ture and casting it correctly into the molds due to an in- 
correct mix design or a too low water/cement ratio. The 
second limit is due to the trend of a group of fibers to be 
tightly bounded together, so that the total surface of the 
bundle in touch with the matrix is lower than the sum of 
fibers taken individually. To avoid this, it is necessary to 
reduce the percentage of fiber and to take care of the 
mixing phase technique. Currently, one of the materials 
most commonly used in FRC is steel fibers, which can be 
straight or hooked [1]. The other most common solution 
is given by synthetic fibers such as Polyethylene, Poly- 
propylene, Nylon and Kevlar. Compared to steel fibers, 
synthetic fibers generally cannot provide neither the 
same stiffness increment nor the same peak value when 
tensile deformation of the composite reaches the ultimate 
strain of the matrix. However, [2] they present the ad- 
vantages of a greater ductility and higher resistance to 
aggressive agents. Most importantly, unlike steel fibers, 
there are kinds of synthetic fibers, in which the interfa- 
cial shear stress during the fiber debonding shows a har- 
dening behavior with slippage, due to surface abrasion 
(Victor Li et al., [3]). The main contribution of fibers to 
composite cementitious material consists in converting a 
brittle material to pseudo-ductile material. That is, inde- 
pendently of the behavior of composite after its first 
crack (hardening of softening), the ultimate FRC strain is 
generally much greater with respect to the plain matrix; 
In general, although the failure mechanisms are more 
complicated, we can divide the failure mechanisms re- 
lated to cementitious matrix composites into the follow- 
ing modes: 

1) fiber pull-out (the composite failure occurs when 
the fibers are completely debonded). 

2) fiber failure (fiber fracture). 
According Kelly and Lilholt (1973) (cfr [1]) the com- 

posite tensile strength for the two specific modes can be 
predicted as follows: 

Fiber pull-out:  

 1c f m iV V    f fs           (1) 

Fiber failure:  

   1c f m f f i fV E E V f                 (2) 

where the coefficient Φi assumes values around 1/6. Vf is 
fibers volume/matrix volume ratio σm and σf are the fail- 
ure stress for matrix and fibers respectively Em, Ef are the 
Young moduli for matrix and fibers respectively. 

In cement based composites the fiber failure strain is 

usually much greater than that of the matrix 

 fu mu  .  

That means fibers carry an additional load after matrix 
failure. The minimum amount of fiber, related to the unit 
volume that ensures fibers can entirely withstand this 
additional load after matrix failure occurs is defined as 
the Critical Fiber Volume Fraction. 

This value has been derived by Hannant, D. J. (1978) 
[4] as 

 
mu

cr

mu fu f

V


  


 
           (3) 

where σfu and σmu are the ultimate stress of fiber and ma- 
trix respectively, and f   is the fiber stress at matrix 
failure. The critical fiber volume has been estimated at 
around 0.31% for steel fibers and 0.75% for polypro- 
pylene fiber. 

3. Principal Assumptions for the Model in 
the Pre-Cracking Analysis 

Before you begin to format your paper, first write and 
save the content as a separate text file. Keep your text 
and graphic files separate until after the text has been 
formatted and styled. Do not use hard tabs, and limit use 
of hard returns to only one return at the end of a para- 
graph. Do not add any kind of pagination anywhere in 
the paper. Do not number text heads—the template will 
do that for you. 

Finally, complete content and organizational editing 
before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

3.1. Model Behavior in the Pre-Cracking Phase 

The principal assumptions made related to this phase are 
the following: 

1) the mod opening depends only on the tensile prin- 
cipal stress (the biggest if both principal stresses are ten- 
sile) and the crack direction is orthogonal to this stress. 

2) there are no fiber bundles to consider, as the fiber 
volume Vs cement volume ratio is below 3%, so the fi- 
bers are expected to work independently of one another. 

3) the fibers are randomly oriented with respect to the 
crack direction, with somewhat a uniform 3D distribu- 
tion. 

4) the strength of every fiber is high enough to avoid 
the fiber failure. 

5) the behavior of both concrete and fibers remains lin- 
ear elastic. 

6) the axial stiffness is the only relevant stiffness in 
synthetic fibers. 

7) in the pre-cracking phase there is no slippage be- 
tween the fibers and the matrix, so the fiber strain is 
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equal to the matrix strain till the matrix tensile strain 
reaches the ultimate strain, that is  

c cu   

These assumptions are somewhat similar to the one on 
which the reinforced concrete theory is based. We as- 
sume the fibers contribute to the composite strength just 
as the steel rebar contributes to the reinforced concrete 
strength. The main difference is due to random orienta- 
tion, and in this work we assume the fibers were cast 
randomly and are distributed uniformly in space (3D) 
inside the matrix. 

3.2. Stress vs Deformation before the First 
Cracking, with Fibers Randomly Oriented 
in 3D 

The approach to the 3D model necessary leads to a pro- 
babilistic approach [4,5]. We consider a rectangular spe- 
cimen as shown in Figure 1: 

The position of a fiber and the incident angle formed 
with the normal to a generic cross section can be deter- 
mined by the following parameters (see Figure 2) x : 
the distance between the fiber centroid from this cross 
section, and   the angle in the space formed by the 
fiber axis with the x direction, corresponding to the stress 
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Figure 1. Specimen geometry. 
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Figure 2. 3D randomly oriented fiber with embedded length 
l and its end over the hemispherical surface, [4]. 

direction. We need to obtain the probability function for 
a fiber to have its position determined by x  and   
with respect to any cross section normal to x direction 
(see Figure 2). 

If we define E1 as the probability that the centroid is 
inside a range  , dx x x    and E2 as the probability 
that the fiber has an incident angle between   and 

d  , the probability density is given by P[E1]*P[E2], 
according Bayes’s theory for independent events. (or 
above version). 

However, the only values of x  are those that inter- 
cept the cross section plane, i.e.  

 2cos , 2cosx L L   .  
We assume the fiber centroid is uniformly distributed 

so that P[E1] =1/a, but if we refer only to a semi-domain 
 0, 2cosL   as in Figure 3, we will obtain the same 
result multiplying the probability by 2, i.e. P[E1'] =2/a. 
The probability function P[E2] for uniformly spherical is 
equal to:  

     2 sin sinP E f             (4) 

that means the number of fibers dN crossing the cross 
section plane with  , dx x x x      and  

 , d      is given by  

,

2
sintot fdN N d dx

a
               (5) 

and dN = 0 elsewhere, while where  is the total  .TOT FN

number of fibers in the specimen, equal to: 

.
c f

tot f
f f

A aV
N

A L
                 (6) 

The contribution of any fibers to the stress in x direc- 
tion is equal to 

cosf f f fT E A                 (7) 

where f , the fiber strain is equal to 
2cosf x                    (8) 
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Figure 3. A fiber crossing a matrix crack and its centroid 
position. 
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so the axial resultant due to the fiber elastic deformation 

. 5
f f x f

f tot f

E A L
T N

a


               (9) 

Leads to: 

0.2f f C x fT E A V               (10) 

The total tensile force due a strain 0 x cu    is 
equal to the total tensile force due a strain is equal to  

 1 0.2 0.2 f
c f ct x c f f

ct

E
T T T E A V V

E



    







   (11) 

It is possible to define an equivalent Young modulus 
equal to: 

 . 1 0.2 0.2 f
eq ct f f

ct

E
E E V V

E


  







 

In many cases, synthetic fibers generally have a 
Young’s modulus not much higher than mortar and con- 
crete’s modulus in the elastic phase under traction, and 
the percentage used in FRC composites is below 3%, 
thus we can assume reasonably for our goals: 

eq ctE E                  (12) 

4. Pull-Out Theory and Modeling for 
Synthetic FRC 

4.1. Single Fiber Pull-Out Theory 

The analysis of the single fiber embedded in a matrix is 
not simple as it depends in general on many parameters; 
thus, it is necessary to make some assumptions to obtain 
an analytical solution that can be used with a reasonable 
number of parameters and produces results generally in 
agreement with experimental tests. This section has been 
developed in according with the articles written by other 
researcher, in particular [5-7] We confirm the assumption 
from 1) to 6) but they are not enough to work in this sce- 
nario, and 7) no longer remains valid for every point of 
the fiber anymore. Four further important assumptions 
are necessary: 

7’) The fiber that remains in an elastic field (this can’t 
be always true) is frictionally bonded to the matrix; that 
is, interfacial stress depends only on the elastic stress at 
the tip of the debonded zone and on the fiber-matrix rela- 
tive slippage. 

8) The effect of elastic interfacial stress is negligible in 
the bonded area as it is assumed to decay quickly. 

9) After the debonding has occurred for the whole 
embedded length, the further fiber axial deformation is 
not considered, so the fiber moves a rigid motion.  

10) The effect of the angle ψ formed between the fiber 
axis and the normal to the crack plane can be taken into 
account considering the fiber as a frictional rope slipping 

on a pulley. As a result,   

    0
, e fP l P l 





             (4) 

for a single fiber.  
11) Before the crack opens, the matrix strain is as- 

sumed to be the same as the fiber strain, and no slippage 
occurs. After a crack opens, the fiber undergoes a jump 
in tensile stress as the capacity of the cracked matrix to 
carry loads vanishes or rapidly decreases with the crack 
mod. The pull-out of the single fiber and the analysis of 
fiber matrix interaction after the first crack appears, can 
be divided in two phases, as shown in Figure 4 consis- 
tenly with the assumptions made in 7’), 8) and 9); 

a) Fiber debonding: the breakage of the initial cohe-
sion (mechanical or chemical) existing between the fiber 
and the matrix. It begins where the elastic interfacial 
stress is supposed to be the highest, in a homogeneous 
matrix at the crack tip, and it ends with the complete 
breakage of the cohesion all along the fiber length, i.e. 
the debonded length is equal to the embedded length. 

b) Fiber pull-out: which occurs after the complete 
debonding.  

The fiber experiences a complete slippage with respect 
to the matrix. Generally, there still exists an interfacial 
shear stress that depends on the physical characteristics 
of the fiber surface and varies with the fiber slippage. 
This phase ends when the fiber is completely pulled out 
from the matrix.  

An important condition to ensure consistency with as-
sumption 4) must be established: the embedded fiber 
length l must be shorter than the critical length, Lc, de-
fined as the embedded length at which fiber failure can 
occur.  

*4
f u

C

d
L




               (14) 

4.2. Interfacial Shear Stress vs Slippage Law  

According to [5] the hardening behavior is relevant for 
synthetic fibers: in this work, the linear hardening model 
proposed by Bao and Song [8] has been used, thus the 
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(a)                         (b) 

Figure 4. Fiber debonding and fiber pull-out [3]. (a) Fiber 
deboning; (b) Fiber pull-out. 
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relation between the shear interface stress and the fiber 
slippage is the following: 

0 1
f

S

d

 
 

 
 

                (15) 

where S is slippage, df is fiber diameter, Young’s 
modulus not much higher than mortar and concrete’s 
modulus in the elastic phase The values of τ0 and β must 
be determined from experimental tests. 

Phase a)  (debonding) where l is the debonded 
length and L is the embedded length. We obtain, after  

l L

setting f f

m m

V E

V E
   

 02 4 1

m mV E

 



  the governing  

equation in the form [5]: 

   
2 2 2

2
f f

S z
S z

d dz

 



 


         (16) 

and, applying the boundary conditions 
1)   0 0S 

2) 
 

0f m

S z

z
 


  


 for z = 0 

it is possible to obtain the solution [2].  

  cosh 1  f

f

d z
S z

d




  
       

           (17) 

thus the load at the free end of the fiber is equal to  

  
2

0 sinh 1f

f

dl
P l

d

  


 
   

 
          (18) 

and at the end of Phase 1) l = L 

  
2

0 sinh 1f

f

dL
P L

d

  


 
   

 
         (19) 

As this phase is bilateral and symmetric, we can set the 
crack opening .     2z u z 

0

2
cosh 1 forf

f

d L
l L

d




  
       

      (20) 

and the load is equal to: 

   
22

0 01 1 1 for 
2

f

f

d
P L

d

   


 
       

 
. (21) 

Phase 2) (the fiber has been completely debonded).  
In this phase, ignoring the further axial deformation 

according to 9) the slippage is equal to:  

   0cosh 1f

f

d z
S z

d



and the load to: 

   

     

2

0
0

0 0 0

sinh sinh 1

1

f

f f

dL
P L

d d

L

   


      

    
              
     


.(23) 

This value of P (L, δ) is valid only for one side pull- 
out behavior (see Figure 4). However, it has been dem- 
onstrated [3] that fibers that can undergo a double side 
for most actual situations must have the shorter embed- 
ded length close to L/2 (see Figure 5 for details) so their 
relative percentage is low and they can be disregarded. If 
we had had a constant interfacial shear stress (i.e. 0  ) 
we would have obtained the following results for δ0 < δ < 
L (linear decreasing). 

0
0 1fP Ld

L

    
 


            (24) 

4.3. 3D Uniformly Distributed Fibers Pull-Out 
Theory 

The theory developed so far must be extended to a great 
number of fibers whose position is random to achieve 
useful results in terms of stress and crack opening. We 
maintain the assumptions stated before. Thus it is neces- 
sary to evaluate the probability that, depending on a 
given crack opening a fiber can be 

1) still embedded in both sides but in a debonding 
phase; 

2) completely debonded and in the phase of slipping in 
the shorter side and in the debonding phase in the longer 
side but still intersecting both crack faces. 

3) completely pull-out from the shorter embedded side 
and then removed from the model as providing no con- 
tribution to the tensile strength. Thus the bridging stress 
is according to 9) the slippage is equal to:  

   cos
2 2

2 0 0

4
d d

fL
f

B z
f

V
P p z

d


   





         (25) 

 
Stretched fiber segment bridging
stress 

Stretched embedded fiber
segment 

Stretched embedded fiber
segment 

s1(0)

 = 0 

l

s2(0)

fiber end
slippage 

fiber end
slippage 

Lf-l P=0 

  


  
        

       (22) 

Figure 5. Bilateral pull-out [2]. 
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that gives the following results [6] expressed in non-di-  1

2
*

* *
1

ˆ ˆ
ˆ ˆ2 for 0

ˆ ˆ
B

B g
    
  

 
        
   

mensional terms for *ˆ ˆ0     and the load to: (please 
see Equation (26) below) 

  (30) 

and for  *ˆ ˆ 1  
where g is the snubbing coefficient and 

 2

0

ˆ ˆ1 1
2

fB
B

f

L

d

   


 
     

 
         (27) 

1

1

2
f

f
f

L
V

d
 

 
 

 
               (31) 

While, for  ˆ 1 
This relation will be used in our model, as the influ- 

ence of the hardening parameter β is generally negligible 
in the debonding phase. 0

0B
B





              (28) 

2
f

f

L
 cosh 1k  k

d
 , , 

2
fL
 

 
 
 

 ,  4.4. Composite Ultimate Tensile Stress 

For what we pointed out above, there is a value of the 
parameter beyond which the bridging stress vs crack 
opening shows a rising branch whose value is around 2. 
[5]. Thus, if the parameter (Lf)/2df is smaller than 2, the 
maximum bridging stress occurs at *ˆ ˆ   that is equi- 
valent to state the following: 

 *
cosh 14ˆ f

f

kd

L



    is the normalized crack opening  

at which all fibers have completed debonding, and 

 0 0

1
1

2
f

f
f

L
g V

d
     is the normalizing stress and g  

2

2
cu k

                  (32) 
is the snubbing factor related to snubbing coefficient f 
with the relation for uniform fiber distribution in 3D. [1] 
the influence of slip-hardening parameter β in the de-  

for the model with linear hardening interfacial shear 
stress, or 

bonding stage  *ˆ ˆ0     is practically negligible, be-  1cu                   (33) 

for the model with constant interfacial shear stress, while 
for (Lf)/2df > 2 equivalent to state the following: 

cause k is generally around 0.1 for most synthetic fibers/ 
cement matrices The maximum stress in the post de- 
bonding phase can be found using the condition: 

 2

1 1̂
ˆ1 1

2
f

cu
f

L

d

 1  
 

    
 

          (34) 
0

ˆ
B








 

for the model with linear hardening. 
which occurs that occurs when 

5. Analysis of a FRC Cross Section under a 
Bending Moment after Crack Opening  1

2ˆ ˆ
3

c

c
 
   

with the condition *
1̂

ˆ   and we obtain In the previous section we faced the problem of rando- 
mly oriented fibers debonding and pull-out from a ce- 
mentitious matrix. We also found the stresses transmitted 
by the fiber after matrix cracking, relating to the various 
phases of crack opening. However, we have not yet dealt 
with the process that leads to define the crack width and 
its opening as forces acting on the cross section increase. 
For this purpose, a post crack analysis will be conducted 
on a specimen that undergoes a four-point bending test 
comparing the theoretical results relative to load vs de- 
flection and moment vs curvature will be compared to

*

2
2

ˆ2 1 3

f

f

L

d







             (29) 

as . That means a rising value of the normalized  *ˆ 1 
bridging stress is possible in the pull-out phase only if [6].  

2
2

f

f

L

d


  with an interfacial shear stress constant (i.e.  

0  ), the result would have been: 

 

2

1

* *
0

ˆ ˆ ˆ2 1
1 cosh 1 1 1

ˆ ˆ
B

B k k k


*ˆ

    



  


                            




                   (26)
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the test data. In this analysis, the crack bridging law for 
synthetic fiber in FRC presented in the last chapter will 
be considered. 

5.1. Models for Post Cracking Behavior and 
Preliminary Assumptions for the 
Cracked Beam Analysis 

We consider a beam under an increasing bending mo- 
ment M; until the moment reaches a critical value MCR, 
the displacements increase nearly linearly with the load 
and no macro crack has yet occurred. Suddenly there is a 
jump; that is, without significant load increases, a crack 
opens and displacements show a considerable increase. 
In this chapter we consider a cracked realistic configure- 
tion for strains and crack opening, see Figure 6 trying 
only to study the equilibrium between the stress on the 
concrete and the stress given by the bridging effect of the 
fiber. We are going to analyze the model of a beam under 
a condition of four-point bending. Our goal is to include 
the fiber bridging stress in the cracked cross section 
equilibrium, and to estimate this contribution to beam 
toughness and ductility.  

For this purpose the following assumptions are made: 
1) The behavior of the beam before cracking is linear 

elastic; after its cracking for its particular load pattern it 
is rigid-plastic [9], that is, all the further deformations 
beyond the elastic limit are only related to the deforma- 
tion of the cracked cross section. 

2) The position crack tip is located in the tensile stress 
area where the matrix strain reaches the value of  

CR
CR

c

f

E
  : the strain and the displacements related to the  

crack opening are both linear along the depth of the cross 
section. In particular, the crack opening is assumed lin- 
earfrom the crack tip to the value of Cmod at the lowest 
fiber of the cross section. 

3) The stress vs strain law of concrete in compression 
is theparabola rectangle EC2 [9] shown in Figure 7 then  

2

0
0 0

2 for 0c
c c

c Cf f
 

 
 

  
     
   

     (35) 

 
b 

c strain

strainy* 

h h 

displacement 

RCC

RCT

RσB

ct 

 

Cnod  

Figure 6. Assumed strains and displacements diagrams in 
the cracked cross section. 

EC2
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Figure 7. Compressive stress vs strain according EC2 [9]. 
 

0forccf f C CU           (35 bis) 

where we assumed 0

2
0.002C

t

f

E



   and  

0.0035CU   
For concrete tensile stress vs strain, we can assume [8] 

the relations law is linear  

for 0CT CT CT CRE             (36) 

for
1 200

CR
CT CT CR

f  


 


   (36 bis) 

where E, the Young modulus (tangent to the curve at the  

0,0 point) is equal to  5.500  in MPaC CE f f   and  

CR CRf E . 
In this chapter, however, we consider the concrete 

cracked zone unable to transmit tensile stress, so the 
post-peak branch is ignored. 

4) The process of crack front proceeding can be consid- 
ered quasi-static, i.e. no dynamic effects are considered. 

5.2. Compatibility and Equilibrium Equations 
for the Cracked Cross Section 

If we define the strain at the upper surface of the beam 
over the neutral axis as εcx and its maximum value as εcf, 
the displacement of the extreme fiber for this load picture 
is given by 

0
0

2
d

3

L

cx cfx L                 (37) 

As Δ0 is equal to the “virtual” overlapping upper cross 
section fiber in the rigid body motion, [10] we can define 
the slope semi-angle formed by the crack opening equal 
to: 

0

2c
 

                  (38) 

where c is the depth of the neutral axis (see Figure 8) 
and the settlement of the mid-span point is equal to  

2

l
d d                 (39) 
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P/2 

P/2 

L 
h = L/3

L/3 

x = 0 x = L

Axial strain of
top fiber (εx) 0 

dθ 

εcf 
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dCmod 

d
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dθ 

 

Figure 8. A kinematic mechanism of a fai1ure [10]. 
 
plus the elastic deflection, which, according to the Euler- 
Bernoulli’s beam theory, is given by 

3 223 23

1296 216e

PL ML

EI EI
               (40) 

The crack opening is given by (see Figure 8) 

mod 2dC d h c  

d 0



           (41): 

The translation equilibrium equation is the following:  

     
*0

0 *

d d
yc

C CT B
y h c

y b y y b y y b y  


     (42) 

while the rotation equilibrium equation is the following 

     
*0

0 *

d d d
yc

C CT B
y h c

y by y y by y y by y M  


    (43) 

As cf
cx y

c


   in compression and 2X d y    in  

the cracked area we can rewrite the for a rectangular sec- 
tion so 

2

02
0 0

for
3

cf cf
CC C cfR f bc

 
 

 
 

   
 

      (44) 

 00
0

2
for

3
cf

CC C cf cu
cf cf

R f bc
    

 

 
   
 
 

 (44 bis) 

while the resultant moment of the compressed concrete 
with respect to the neutral axis, is equal to 

2
2

02
0 0

2 1
for

3 4
cf cf

CC C cfMR f bc
 

 
 

 
   

 

2
2 0

02

1 1
for

2 12CC C cf cu
cf

MR f bc
   


 
     

 
 (45b) 

As we assume in c), the concrete is able to transmit 
tensile stress to where the cross section is not cracked. 
We can evaluate the tensile concrete stress resultant then  

2ˆ
ˆfor 0

2
T CT

CT CT CR
CF

E cb
R

  


       (46a) 

Where 
 

ˆ
CT

CF h c

c





  is the concrete strain at lowest  

fiber, and 
2

ˆfor
2
T CR

CT CT CR
CF

E cb
R

  


  ,       (46b) 

The moment of RCT is equal to 
2 3

2

ˆ
ˆfor 0

3
t CR

CT CT CR
CF

E c b
MR

  


       (47a) 

2 3

2
ˆfor

3
t CR

CT CT CR
CF

E c b
MR

  


      (47b) 

5.3. Resultant of Fiber Bridging Stress 

The resultant of fiber bridging stress and its position de- 
pends, as we indicate in (3, 27) on crack opening profile. 
As we can see from Figure 9, three situation can be veri- 
fied: 

1) Cmod corresponds to a normalized crack opening 
*

mod
ˆ ˆ0 C   . 

2) Cmod corresponds to a normalized crack opening 
*

mod
ˆ ˆ 1C   . 

3) Cmod corresponds to a normalized crack opening 
. mod

ˆ 1C 

where mod
mod

2ˆ
f

C
C

L
  the normalized maximum crack  

 

 
c

h

b

y 

case a) case b) case c)

Cmod

neutral 
axis 

Cmod Cmod

δ* 
δ*

δ* 

 
 , (45a) Figure 9. Possible bridging stress diagrams in function of 

the normalized Cmod. 
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opening. 
In 1) the stress resultant is given by: 

 * mod mod
1 *

ˆ ˆ4 1
ˆ ˆ3 2

a
b

C C
R gb h c y 

 


   
 
 

*


    (48) 

Then 
In 2) the stress resultant is made of two terms as the 

bridging law changes for *ˆ ˆ 1   .  
Then 

1
b b

BR R R   2
b                 (49) 

where  

 
*

*
1 1

mod

ˆ5
ˆ6

bR gb h c y
C

           (50) 

 
   

    

*

* 2
2 0 mod mod

mod

3 *3 4 *4
mod mod

1ˆ ˆ ˆ ˆ2
ˆ 2

1 1ˆ ˆ ˆ ˆ1 2
3 4

b
h c y

R b C C
C

C C

*2   

   

     

     


 

(51) 

where 
2

f

f

L

d


   

In 3)  where  remains the 
same, while  

1
c c

BR R R   2
c

1
b

1
cR R

    

    

*
2 0

mod

*3 *4

* 1ˆ ˆ1 2 1
ˆ 2

1 1ˆ ˆ1 2 1 1
3 4

c h c y
R b

C
*2   

   

     

     


 (52) 

It is not easy to find the value of Cmod for which the 
bridging stress reaches its maximum value. However it is  

clear that for mod 2
fL

C  , i.e.  for a given crack  mod
ˆ 1C 

length the contribution of RσB begins to decrease, so does 
its moment as the arm decreases too. 

This means that unless there are concentrated rein- 
forcements (e.g. steel bar), it is likely the crack will begin 
to propagate rather than the Cmod increasing beyond this 
value. 

The resultant moment with respect to the neutral is 
given, referring to the same situation 1), 2), 3), by the 
following relations: 

1) *
mod

ˆ ˆ0 C     

 

 

2 mod mod
1 1 * *

mod mod

* *

ˆ ˆ4 1
*

ˆ ˆ5 3

ˆ ˆ4 1
* *

ˆ ˆ3 2

a
B

C C
M gb h c y

C C
y h c y

 
 

 

 
    

 


2) *
mod

ˆ ˆ 1C    there are two components 

1
b b

2
b

B B BM M M            (54a) 

where 

 2* *2

*
1 1 12

mod

ˆ7
ˆ15

b
B

h c y
M gb R y

C




 
     (54b) 

   

     

 

2*

2 *2
2 0 mod2

mod

3 *3 4 *4
mod mod

5 *5 *
mod 2

1 ˆ ˆ
ˆ 2

1 1ˆ ˆ ˆ ˆ2 1 2
3 4
1 ˆ ˆ
5

b
B

h c y
M b C

C

C C

C R y

 

  

 

   

     

  



2
c

(54c) 

3)  mod
ˆ 1C 

1
c c
B B BM M M          (55a) 

where 1
c

1
b

B BM M  and: 

      

    

2*

*2 *3
2 0 2

mod

*4 *5 *
2

1 1ˆ ˆ1 2 1
ˆ 2 3

1 1ˆ ˆ1 2 1 1
4 5

c
B

h c y
M b

C

R y

   

   

     

     


 

(55b) 

6. Procedure to Find External Moment vs 
Curvature Relation in the Cracked Cross 
Section 

In the last paragraph, we defined for a given cross section 
configuration the stresses resultant and their moment 
resultant with respect to the neutral axis once we know 
the upper fiber strain cf, the neutral axis position c and 
the crack opening Cmod (cfr. Figure 8). 

The parameter Cmod is not independent from the others. 
In fact, as we showed before, using the rigid plastic 
model we can define 0  and   [10] and then  

   
mod 0

2

3 cf

h c h c
C L

c c


 
          (56) 

So the equation system is defined by two equation in 
two unknown 

0CC CT bR R R N              (57) 

6RCC RCT R b

L
M M M P           (58) 







   

 

 

 (53) 

and the unknowns are cf and c. Once we know this pa- 
rameter, we are able to obtain Cmod and the rigid plastic 
deflection. 

6.1. Equation in the Non-Dimensional Form 

The two equilibrium equations can be written using non- 
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dimensional terms, avoiding reference to the cross sec- 
tion dimensions. If we divide the first by cf bh  and the  

second by 2
cf bh  setting 

c

h
  , C

CR
CR

f
f

f


 we obtain  



CC CT B
CC CT B

C C

R R RN

f bh f bh


    
    

 
  (60) 

where 

 CC
CC CF

C

R
A

f bh
   


,  ,CT

CT CT CF
C

R
L

f bh
   




2

 

1B B B     with 

 1
1 1 CR

B MOD
C CF

g
C C

f

  


 
     

 0
2 1 CR

B MOD
C CF

D C
f

 
  


 

     
  

where the coefficients A, C, D, L, are expressed in Ap- 
pendix 3 and if no external force is applied to the beam 
we have 

0   

The non-dimensional expression for the moment can 
be put in the following form; 

2 CC CT B
C

M

f bh
      


         (61) 

where  is the. moment due to com- 

pressed concrete’ 

2
CC CFB   

 2 ,CF CTL   

1

CC   is the moment 

due to concrete in tension 2B B B     is the moment  

due to bridging fiber stress where 

   

1
1

mod mod

1

ˆ ˆ1

CR
B

c CF

CR CR

CF CF

g

f

F C C C
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

 
  

 

 
     

  
     
   

  (62)  

   

0
2

mod mod
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ˆ ˆ1

CR
B

c CF

CR CR

CF CF

f

H C D C

   


   
 

 
     

  
     
   

  (63) 

The coefficients A, B, C, D, F, H, L, are expressed in 
Appendix 3. 

6.2. Iterative Procedure  

The goal of this procedure is to find a link between ex- 
ternal moment vs curvature and vs crack opening in the 
post cracking phase i.e. just after the first crack appears. 
This procedure operates on equilibrium equation, disre- 

propagation. The flow-chart is shown in Figure 10. For a 

garding the problems related to the crack stability and  

 

mensional 

hen it  

is necessary t

given concrete strain in compression at the upper fiber cf 
going from 0 to cu (set equal to −0.0035) with a defined 
step, a trial position of the neutral axis is assumed (e.g. 

 1 0.33trial  ). Then it is possible to define all the nondi-  

resultant and check the equilibrium; if  
 1 0trialR   then tensile components overcome t

o increase the neutral axis parameter 
   2 1
trial trial      otherwise if  1 0trialR   compres-  

sion components are prevalent so neutral axis parameter  

must be decreased then    2 1
trial trial    . The process  

can be repeated until a satisfactory convergence is achiev- 
ed. 

The convergence criterion can be focused on the resul- 
tant residual i.e. 
 

Assume a trial position for the 
neutral axis (1) = 0.33 

Evaluation of RCC, RCT, RB 

 

Evaluation of Residual  

R(j) = RCC
(j) + RCT

(j)
  + RB

(j) - N 

Abs (R(j)) < tol.?
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no 

(j+1) = (j) +  if R > 0 
otherwise 
(j+1) = (j) -   

no
Yes

Output Moment, Crack opening, 
Curvature 

(n)
cf < cu 

Assume cf
(n+1) = cf 

(n) +  cf 

Input parameters 

b, h, L, fc’, Lf , df, Ef, Vf, K, 0, 
, 0 and evaluate the derivate 
parameters 

End procedure 
 

Figure 10. The procedure flow chart. 
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 nR    tol.trial nR   where tol. is a tolerance value  

(i.e. tol. = 0.01). 
nce is achieved it is possible to define 

an
If the converge
 external moment, the crack opening from the Equation 

(10), and the curvature from the relation 

1 cfK
c




                (64) 

Then for a given fiber reinforced concrete beam with 
gi

e default tolerance is set, for the normalized residual, 
eq

6.3. A Numerical Example 

roperties of fiber and 
m

ven mechanical and geometric properties is possible to 
obtain a series of data related. Similarly to a reinforced 
concrete cross section, the ultimate strength and defor- 
mation field are defined by geometrical and mechanical 
parameters, which have to be investigated for every 
situation depending on fibers length, strength, Young 
modulus, interfacial stress and volume percentage above 
all. 

Th
ual to 10−3, while the incremental step for cf can be set 

to Δcf = 0.0001. An important influence in the conver- 
gence has the incremental step for ξ, that can be initially 
set to Δξ = 0.01 but in case of switching sign of the re- 
sidual R, it could need being reduced (i.e. using bisection 
method). A simple flow chart is represented in the next 
page (Figure 10). 

A first numerical example will be performed with the 
model SPECTRA 900 ECC (randomly distributed Spec- 
tra fibers in a cement matrix) [3]. 

According to this article the p
atrix are the following 

25 GPamE   2mu .2 MPa   
efficient). 

g = 2 (where g is the 

n be untreated and plasma 
tre

her mechanical parameter are summarized in 
T

snubbing co
Polyethylene fibers ca
ated; in the second kind the elastic interfacial shear 

strength is higher (0.8 MPa vs 0.47 MPa). In this nu-
merical test we assume fiber percentage to be 0.75%, that 
is according to (2) enough to be above the critical per-
centage. 

The ot
able 1. The cylindrical compressive concrete strength 

and the peak tensile concrete strength are obtainable by 
the following relations 

2

2
20.66 MPa

5.500
1

2.066 MPa
10

m
C

CR C

E
f

f f

  

 
 

The result in italic font are related to the first crack, 
as

d assuming a 
fo

to the first crack,  
 

Table 1. SPECTRA 900 ECC parameters [2]. 

Fiber 0 f/(2df)

sumed to occur, as we mentioned before, when the 
elastic stress at the lower fiber of the cross section 
reaches the characteristic tensile strength, assumed, for 

the cement and concrete matrix, to be around 1/10 of the 
characteristic cylindrical compression strength.  Moment 
vs crack opening has been plotted for two series, the first 
is made up of the data related to hardening parameter β = 
0.00125 and the second to β = 0. These diagrams will be 
compared to the similar given by [5]. 

The numerical simulation is conducte
ur point bending test on prismatic specimen 100 × 100 

× 350 assuming a span length of 300 mm. The results can 
be summarized in the Tables 2 and 3. 

The result in italic font are related 

l. (mm.) d. (μm) E (Gpa) β τ  (MPa) βL

Untr. 12.7 38 117 0. 5 012 0.48 2.09 

P .lasma tr 12.7 38 117 0.0128 0.8 2.14 

 
Table 2. Numerical results for SPECTRA 900 untreated τ0 

εcf ξi μυ 
Cmod 

) 
Total 

P (kN)
Crack 

= 0.48 MPa  = 0.0125. 

(mm. displ. length

10  10  −3 −3  (mm.) (mm.)

0.00 0.  

0. 0. 2 1

0.

 0 0 0.000 00 0 

0.05  5.4  0.004 2.23 0 

0.083  13.8  0.011 5.69 0 

0.100 471 14.7 02 0.033 6.07 3.99

0.200 0.355 20.1 0.072 0.068 8.30 49.83

0.300 0.283 22.7 0.152 0.117 9.38 63.90

0.400 0.235 24.0 0.260 0.181 9.96 71.64

0.500 0.202 25.0 0.395 0.259 10.33 76.46

0.600 0.177 25.5 0.558 0.350 10.57 79.86

0.700 0.158 25.8 0.751 0.454 10.66 82.33

0. 80 0.143 25.8 0.96 0.571 10.66 84.22

0. 90 0.13 25.7 1.20 0.704 10.61 85.81

1.00 119 25.3 1.48 0.852 10.45 87.12

1.10 0.110 24.7 1.78 1.016 10.20 88.22

1.20 0.101 23.9 2.15 1.205 9.87 89.25

1.30 0.092 22.6 2.57 1.424 9.33 90.21

1.40 0.083 20.8 3.09 1.698 8.59 91.21

1.50 0.073 18.0 3.81 2.066 7.43 92.30

1.60 0.051 9.9 5.95 3.148 4.09 94.63

1.70 0.001 0 -    
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Table 3. Results for SPECTRA 900 ECC plasma treat τ0 

u Cmod displ. P (kN) Crack 

ed 
= 0.8 MPa  = 0.0128. 

εcf ξi μ

   (mm.) mm.  mm. 

0.00  0. 0 

2.  

0. 0.0207 

 

E+00  00 0 0.000 0 0.00 

5.00E−05  0.005  0.004 23 0.00 

8.26E−05  0.014  0.011 5.69 0.00 

1.00E−04 492 0.016 0.032 6.57 10.16 

2.00E−04 0.432 0.026 0.0526 0.058 10.87 38.96 

3.00E−04 0.373 0.032 0.1009 0.092 13.18 52.43 

4.00E−04 0.326 0.035 0.1654 0.134 14.59 60.67 

5.00E−04 0.289 0.038 0.2466 0.185 15.5 66.38 

6.00E−04 0.260 0.039 0.3424 0.243 16.11 70.48 

7.00E−04 0.236 0.040 0.4532 0.308 16.53 73.62 

8.00E−04 0.217 0.041 0.5782 0.380 16.86 76.09 

9.00E−04 0.201 0.041 0.7155 0.459 17.07 78.06 

1.00E−03 0.187 0.042 0.8681 0.545 17.15 79.73 

1.10E−03 0.176 0.042 1.0336 0.638 17.19 81.13 

1.20E−03 0.166 0.042 1.2102 0.736 17.15 82.31 

1.30E−03 0.156 0.041 1.404 0.843 17.07 83.39 

1.40E−03 0.148 0.041 1.6119 0.957 16.86 84.33 

1.50E−03 0.141 0.040 1.8352 1.079 16.57 85.18 

1.60E−03 0.133 0.039 2.0815 1.212 16.2 85.99 

1.70E−03 0.127 0.038 2.3477 1.355 15.74 86.74 

1.80E−03 0.120 0.037 2.6526 1.518 15.12 87.50 

1.90E−03 0.113 0.035 2.9978 1.700 14.34 88.26 

2.00E−03 0.106 0.032 3.3915 1.907 13.39 89.01 

 
ssumed to occur, as we mentioned before, when the 

 

s that, despite the sim- 
pl

mpt to link the behavior of a FRC 
der a four point bending test, has 

a
elastic stress at the lower fiber of the cross section 
reaches the characteristic tensile strength, assumed, for 
the cement and concrete matrix, to be around 1/10 of the 
characteristic cylindrical compression strength. 

Moment vs crack opening has been plotted for two se-
ries, as shown in Figure 11 the first is made up of the 
data related to hardening parameter β = 0.00125 and the 
second to β = 0. 

These diagrams will be compared to the similar given 
by [5] (see Figure 12). As we can see comparing the two 
diagrams above, even though they refer to little different 
picture but in any case to the same mechanical properties 
of the material (the numerical simulation related to Z. 

Lin and V. C. Li work is related to a beam with an initial 
little crack while in our example we assume the central 
cross section uncracked, in addition the heights are dif- 
ferent), the trend external moment vs crack opening is 
confirmed as the trend of different behavior between the 
configuration fiber with hardening parameter with re- 
spect to the one with fiber the constant shear interfacial 
stress. In our simulation the initial moment has been ob- 
tained assuming linear elastic model until the moment 
reaches the value of the first crack moment and setting 
the crack lengths equal to zero. 

Even the diagrams load vs displacement of the loaded 
points (see Figure 13), confirm

icity of assumptions on which this analysis is based on, 
it is possible to implement the FRC model based on the 
fiber pull-out in a procedure able to catch the main trends 
of mechanical behavior in a beam synthetic fiber rein- 
forced cementitious matrix composites element that un- 
dergoes an external moment.  

7. Conclusions  

In this paper, an atte
rectangular beam un
been made. The assumption about a failure configuration 

 

 

Figure 11. Diagrams moments vs crack length for SPEC- 
TRA 900 ECC according the built model. 

 

 
Figure 12. Flexural stress vs. crack length relation of a pre-
cracked beam [5]. 
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Load vs. displacement of the third point 

SPECTRA 900 
ECC Vf = 0.75% 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

0.000 0.50 1.00 1.50 2.00 2.50 3.00 

Loaded point displacement (mm). 

3.50

untreated β = 0.0125 
untreated β = 0 

Load 
(kN). 

Figure 13. Load vs displacement of the third points for  = 
and  = 0.0125. 

attern for the cross section is consistent 

ork has been given by
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Appendix 1 

From compatibility equation.  

   
f m f

S z
S z u u

z m 


    
  

If we set the origin of the coordinate system z at the tip of the debonded area using the congruence equation  and the 
equilibrium equations 

 4f

f

s

z d

 



 

 dl

f o
f

f

P d z z

A




 
 

 

(where l is the debonded length and L is the embedded length). 

Appendix 2 

Details for resultants of concrete and fiber stresses evaluation on the cross section  

 
ˆ 2

0 0 0

d d d
2

CTh c h c
t t

CT CT t ct ct ct
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E cb E cb
R y b y E b y


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 

 
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* * 2

0 0 0

d d d
2

CRy y
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CT CT t ct ct ct
cf CF
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R y b y E b y


CR

   
 

       

where y* is the distance taken from the neutral axis corresponding to peak tensile stress and to the crack tip, equal to  

*
0

CF

c
y 


 . 
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Appendix 3: Non Dimensional Form Coefficients Evaluation 
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