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ABSTRACT 

The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive 
immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of 
harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically 
verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed 
from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw 
acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of 
structural systems even when the data is contaminated with relatively large amounts of noise. 
 
Keywords: Structural Health Monitoring; Clonal Selection Algorithm; Symbolic Time Series Analysis; Adaptive  

Immune; Building Structures 

1. Introduction 

Structural health monitoring (SHM) for predicting the 
onset of damage and deterioration of building structures 
is receiving more and more attention because of the ris- 
ing numbers of aged structures and high costs caused by 
unpredictable hazards. 

Some success has been achieved with various heuristic 
optimization algorithms such as genetic algorithms 
(GAs), evolution strategy (ES), simulated annealing (SA), 
particle swarm optimization (PSO), clonal selection al- 
gorithm (CSA), and differential evolution (DE). These 
heuristic stochastic search techniques seem to be a prom- 
ising alternative to traditional approaches. The SA and 
GA methods have been used to accurately describe the 
dynamic behaviors of structures [1]. Cunha & Smith used 
GAs to identify the elastic constants of composite mate- 
rials [2]. PSO has been used to estimate the severity of 
damage and identify parameters of shear frame building 
structures [3]. An improved CSA, called adaptive im- 
mune CSA (AICSA), has been used for structural dam- 
age localization and quantification [4,5]. Moreover, DE 
has been used to identify induction motor problems [6] 
and structural systems [7]. These heuristic approaches 
are very powerful in many applications. However, they 
are often sensitive to noise. 

Symbolic time series analysis (STSA) for anomaly 
detection in complex systems [8] has the potential to deal 
with noise. Several case studies [9-11] have shown that 
STSA is more effective at anomaly detection than pattern 
recognition techniques such as principal component 
analysis and neural networks. STSA has also been used 
for fault detection in electromechanical systems, such as 
in three-phase induction motors [12] and helical gear- 
boxes in rotorcraft [13]. 

We studied the feasibility of using the Euclidean dis- 
tance of a state sequence histogram (statistical features of 
the symbol series that transformed from time series data) 
of symbols as an objective function of AICSA for the 
purpose of identifying structural parameters. We theo- 
retically investigated the effects of parameters in STSA 
and conducted various numerical tests to show how com- 
bining AICSA and STSA improves performance of 
structural parameter identification. The results show that 
with the proper parameters, our methodology is a reliable 
and effective way of identifying structural parameters. 

2. Symbolic Time Series Analysis 

It may be appropriate to say that, while classical data 
analysis focuses on individuals, symbolic data analysis 
deals with concepts, a less specific type of information. 
Through symbolic conversion, the original time series *Corresponding author. 
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signals are converted into sequences of discrete symbols, 
and the statistical features of the symbols can be used to 
describe the dynamic statuses of a system. 

Consider a structural system . The response of raw 
acceleration data can be recorded by using sensors. A 
section of this data is  0 1 1T  , which can be 
obtained by sliding a rectangular window with length T 
along the time series of raw acceleration. The first step is 
to transform the raw acceleration data into a binary sym- 
bol series  0 1 1 . 



, , ,x x x 





, T   , ,  0, 1i T i  equals 
“0” or “1” due to a partition line. After that, we select an 
integer  (word length) and define the symbolic state 
at time t as the vector 



1
t

r
s  containing the follow-up r 

output symbols, namely 

   1 1, , , ,t t t t rs       0, 1t T r        (1) 

ts  defines a state series  0 1 1T r  . A binary 
coded t

, , ,s s s
s  should be transformed into the decimal do- 

main, and note that ts  can take  possible values 
(called “states”), which can be listed in a finite set 

. We can then derive the statistics of 
the symbolic state, i.e., compute the vector of the ob- 
served state frequencies   , where 

 (integer 

2rQ 

 ,

0 1 1, , , Qd d  

1Q 




0,1,S 

D d
id 0, 1i Q  ) is the number of occurrences 

of . Also, since there are T r  states in the S i 1 

 
state series in total, D can be normalized as 

1

D

T r 

26T 

. 

In the example shown in Figure 1, the window length 
 and the sampling points of a raw acceleration 

data series are shown as small circles, which have dif- 
ferent values; the x-axis is time and the y-axis is accel- 
eration data. The partition line is the one with the mean 
value of the raw acceleration data series. Thus, the whole 
space is separated into two regions. The acceleration data 
that falls inside the upper region is symbolized by “1”; 
otherwise, it is “0”. The result of the symbolization is a 
binary coded symbol series that only contains “0” and 
“1”. In this example, a word length of 3 was used to cre-
ate words, which means the first three symbols “1 0 0” 
are chosen as the first word, and the second to fourth  

symbols “0 0 0” are chosen as the second word. By re-
peating this procedure, 24 words can be created from the 
symbol series. Every binary coded word needs to be 
transformed into the decimal domain. Take the first word 
as an example. “1 0 0” can be transformed to  
4  2 1 01 2 0 2 0 2    

u

, which is called a “state”. A 
state series can be obtained after all the words are trans- 
formed from the binary domain to the decimal domain, 
which constitutes the values 0 - 7. 

As shown in Figure 1, the occurrence number of cer- 
tain states in the state series varies. A bar graph used to 
plot the occurrence number of every state in a state series 
is called a “state sequence histogram” (SSH). The corre- 
sponding SSH for this example is plotted in Figure 2(a). 
Taking state “5” as an example, the corresponding count 
number is “3”, meaning that state “5” occurs three times 
in the state series (as marked in the state series of Figure 
1). Also, the SSH can be normalized, which can be ac- 
complished by dividing the occurrence number of each 
state by the total number of states in the state series 
(Figure 2(b)). 

3. Proposed Method 

3.1. Procedure 

In the research field of structural parameter identification, 
the time response of the system is usually compared with 
that of a parameterized model using a norm or some per- 
formance criterion to give us a measure of how well the 
model explains the system. 

We will explain our methodology (Figure 3) using a 
physical system with input  and output y. Let 
  1, ,iy t i T 

 , , ,
T n

 denote the value of the actual system 
at the ith discrete time step. Suppose that a parameterized 
model able to capture the behavior of the physical system 
is developed and this model depends on a set of n 
parameters, i.e., 1 2 nx x x x R 

ˆ
. Given a can- 

didate parameter value x and a guess 0X  of the initial 
state,   ˆ 1, ,iy t i T 

Acceleration series

1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1

, the value of the parameterized 
model, i.e., the identified system at the ith discrete time 
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Figure 1. Process of symbolizing a time series of raw acceleration data. 
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Figure 2. State sequence histogram (SSH). 
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Figure 3. Procedure of AICSA combining STSA for identi- 
fication of structural parameters. 
 
step, can be obtained. Hence, the problem of system 
identification boils down to finding a set of parameters 
that minimize the prediction error between the system 
output y t

 ˆ , ,i

, which is the measured data, and the model 
output y x t  which is calculated at each time instant 

 . it
Usually, our interest lies in minimizing the predefined 

error norm of the time series outputs, e.g., the following 
mean square error (MSE) function, 

     2
ˆ ,i i1

1 T

i
f x y

T 
  t y x t           (2) 

where ·

* n

 represents the Euclidean norm of vectors. 
Formally, the optimization problem requires one to find a 
set of n parameters x R

( )
 so that a certain quality 

criterion is satisfied, namely, that the error norm f   is 
minimized. The function ( )f   is called a fitness func- 
tion or objective function. Typically, an objective func- 
tion that reflects the goodness of the solution is chosen. 

In our methodology, we introduce an index, the rela- 
tive state sequence histogram error (RSSHe), to measure 
the distance between SSHa and SSHb (SSHa and SSHb are 
the system output and model output, respectively). The 
definition is: 

 

21

0
21

0

i Q i i
b ai

i Q i
ai

d d
RSSHe

d

 



 








id

           (3) 

where  is the frequency of state i in SSHa or SSHb. /a b

Inspired by the clonal selection principle (CSP), the 
clonal selection algorithm (CSA) has been used to deal 
with optimization problems because of its search capa- 
bility is superior to those of classical optimization tech- 
niques [14]. 

Although CSA has great advantages over the genetic 
algorithm (GA), it is still difficult to use it to solve 
complex problems. To be able to solve complex pro- 
blems, in AICSA, three strategies, i.e., secondary re- 
sponse, adaptive mutation regulation and vaccination, are 
used to improve the CSA’s convergence speed and glo- 
bal optimum search. For detailed information about 
AICSA, please refer to [4,15]. 

3.2. Guideline for Parameter Selection 

In STSA, the main parameters are the word length and 
window length, and they control the resolution of the 
whole representation space. For a window length T and 
word length r, two limiting cases of SSH are predefined 
as: 

Case 1: All states in the SSH are distributed uniformly,  

and the frequency of each state is 
1

2r
. 

Case 2: Only one state in the SSH has the frequency of 
1; the frequencies of the other states are 0. 

Suppose there are two different SSHs: SSHa and SSHb. 
From Equation (3), when SSHa corresponds to limiting 
case 1 and SSHb to limiting case 2, the maximum value 
of RSSHe is: 
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when SSHa and SSHb are the same, the minimum RSSHe 
is 0. Then, 

 min max,RSSHe RSSHe RSSHe  0, 2 1r   
   (5) 

Since the minimum changeable unit in SSH is 
1

1T r 
,  

the change in frequency of one state in SSH will ab- 
solutely be related to the change in frequencies of other 
states. Supposing that there are only two minimum unit 
differences between SSHa and SSHb, the minimum 
distinguishable RSSHe is:  
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when SSHa is limiting case 1, the maximum distin- 
guishable  will be: 

( 1)
max 2

1

r

T r



disRSSHe
 

min
disRSSHe

              (7) 

when SSHa is limiting case 2, the minimum distin- 
guishable  will be: 

mi
disRSSHe n 2

1T r


 
                (8) 

The resolution is: 

 12 2
,

1 1

r

T r


min max
dis dis,RSSHe RSSHe

T r

 
 

 
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   (9) 

Note that we also need to consider the number of the 
possible distributions of states in one SSH. If the number 
of states in SSH is  and the minimum changeable unit  

is 
1

1T r 
N

1T r 
2r

2 1

2

r

rSSH T r
N C 

 


 

, finding the total number of possible dis-  

tributions SSH  of SSH boils down to a classic com- 
bination problem, which is “put  identical balls 
in  different boxes”. The combinatorial number is:  

             (10) 

As we can see, longer window and word lengths are 
related to higher resolution, which means that the self 
and non-self spaces can be separated much more ac- 
curately. This is the key to obtaining accurate structural 
parameter identification. 

So far, our discussion of the effect of the window 
length and word length has been based on a case in 
which only one story’s output (raw acceleration data) is 
used, but structures with multiple degrees of freedom 
(MDOF) may have more outputs than that. Supposing the 
outputs from N stories can be obtained, the boundary of 
the solution space is: 

N

min max,

0, 2 1
N

r

RSSHe RSSHe RSSHe

    

        (11) 

The resolution falls to: 
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            (12) 

Also, the total number of possible distributions in- 
creases to: 

NN

SSH T r
N C 

 
   

 t t t

              (13) 

From Equations (11) to (13), it is evident that as more 
story outputs are obtained, the more accurate the identi- 
fication results will be. 

4. Effects of Parameter Selection for SDOF 
Model 

4.1. Description of SDOF Model 

For simplicity and generality, we used a single-story 
shear frame structure as a representative case to verify 
the effect of the parameters in STSA, and we modeled it 
as a single degree-of-freedom (SDOF) lumped mass sys- 
tem (Figure 4). As for the structure, its mass was 1000 
kg, stiffness 1.000 MN/m, and natural frequency 5.032 
Hz. The dynamic equation is [16]: 

MX CX KX f t              (13) 

 

gx
1 1,k c

1m
1x

 

Figure 4. Single-story shear frame structure. 
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30where M, C, and K are respectively the mass matrix, 
damping matrix, and stiffness matrix.  f t  is the force  
vector linked to the ground acceleration. X , X

 

, and X  
are respectively relative acceleration, velocity, and 
displacement response. The sampling frequency was 100 
Hz. In the simulation, the input signal was Gaussian 
white noise. The root-mean-square error (RMSe) was 
used to verify the feasibility and performance of the 
identification results. RMSe is defined as 

2

, real,

2
real,1

c i i

n

ii

k k

k





k

1

n

iRMSe  
         (14) 

where ,c i  and real,i  are the candidate stiffness and 
real stiffness of the ith story, respectively. 

k

To test the noise immunity of our method, noise at 
levels of 5%, 10% or 20% was added to the raw accel- 
eration data. 

4.2. Effect of Varying the Window Length and 
Word Length 

As stated before, the window length and word length are 
the control parameters in STSA. In the simulation, the 
mass distribution and damping parameters were assumed 
to be known and the stiffness of each story was set as the 
objective parameters that needed to be identified. In the 
first verification, the word length was varied from 1 to 12 
and the window length was 3000. In the second verifica- 
tion, the word length was 9 and the window length was 
varied from 500 to 6000 at intervals of 500. Each test 
was run 10 times independently by choosing an initial 
value of AICSA randomly every time. The parameters of 
AICSA were the same as in [4,5]. 

Figures 5 and 6 indicate that the word length and 
window length greatly affected the performance of the 
methodology. Larger word and window lengths yielded 
better performance. The reason is that, as theoretically 
shown in Section 3.2 (Equations (4)-(10)), a longer word 
or window can symbolize the raw acceleration data much 
more accurately than a shorter one. As the word length 
and window length increase, much more dynamic infor- 
mation about the system is captured, the identified results 
become more accurate, and the maximum and mean 
RMSe decrease. In the simulation, a word length more 
than 9 and window length more than 3.0E+03 gave ac- 
ceptable results. 

Table 1 (under the label “STSA”) lists the identifica- 
tion results of the SDOF structure using a word length of 
9 and a window length of 3000 for different noise levels. 
For comparison, we estimated the parameters and RMSe 
for an SDOF model using raw acceleration data as input, 
for a data length of 3000, i.e., the same as the window 
length in STSA; the results are listed under the label 
“RAW”. 
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Figure 5. Effect of varying word length for a window length 
of 3000. 
 

18

500 1000 2,000 3,000 4,000 5,000 6,000

2

4

6

8

10

12

14

16

Window length

R
M

S
e 

(%
)

 

 

Mean
Maximum

 

Figure 6. Effect of varying the window length for a word 
length of 9. 
 
Table 1. Estimated parameters and RMSe for SDOF model 
using STSA (with word length 9 and window length 3000) 
or raw acceleration data as input. 

Calculated value (MN/m) 

 
True 
value 

(MN/m)
No  

noise 
5%  

noise 
10% 
noise

20% 
noise

k 1.000 1.000 1.000 1.000 1.000
STSA

RMSe  0.00% 0.00% 0.04% 0.04%

k 1.000 1.000 0.991 1.031 1.065
RAW

RMSe  0.00% 0.90% 3.12% 6.54%

 
As we can see, although AICSA using raw accelera- 

tion data gives good results for the noise-free case, its 
RMSe greatly increases as the noise level grows. In con- 
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trast, our method has good noise immunity; the identifi- 
cation results stay accurate as the noise level increases. 
Even for the high noise level of 20%, the RMSe of the 
results is only 0.04%. 

5. Extension to MDOF Models 

5.1. Description of MDOF Models 

Next, we tried to see if our methodology can be reliably 
used to identify the parameters of an MDOF system. 
Here, we choose three cases, a 3-DOF, 5-DOF (shown in 
Figure 7 as an example) and 10-DOF structure, as exam- 
ples. These structures were modeled as multiple degree- 
of-freedom lumped mass systems. Table 2 summarizes 
the structural parameters. In these structures, the mass of 
each story was 1000 kg, and the stiffness of each story 
was 2.000 MN/m. The damping ratios of all MDOF 
structures were the same, i.e., 0.03 and 0.05 for the first 
and second modes, respectively. 

5.2. RMSe for MDOF Models 

In the input signal of the MDOF simulation, was Gaus- 
sian white noise, as was used in the SDOF simulation. 
The stiffness of each story was unknown and needed to 
be identified. The methodology of combining AICSA 
with STSA was compared with AICSA using raw accel- 
eration data. Window and word lengths were the same as 
before, and the full output of the structure was used. 

Table 3 lists the identified stiffness of each story of 
the 3, 5 and 10 DOF models. The estimated parameters 
for the 3, 5 and 10 DOF models using AICSA using raw 
acceleration are not listed for lack of space, but Table 4 
summarizes the RMSe of the identification results of the 
3, 5 and 10 DOF models using AICSA combining with 
STSA as well as AICSA using raw acceleration data. 
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Figure 7. 5-DOF shear frame structure. 
 

Table 2. Parameters of MDOF models. 

DOF 1 2 3 4 5 

Mass (kg) 1000 1000 1000 1000 1000

Stiffness (MN/m) 2.000 2.000 2.000 2.000 2.000

Table 3. Estimated parameters for 3, 5 and 10 DOF models 
with a word length of 9 and window length of 3000. 

Calculated value (MN/m) 

 
True 
value 

(MN/m)
No  

noise 
5%  

noise 
10% 
noise

20% 
noise

k1 2.000 2.000 1.994 2.006 2.028

k2 2.000 2.000 1.998 2.025 1.9843-DOF 

k3 2.000 2.000 2.017 1.992 1.992

k1 2.000 2.000 2.001 2.000 2.014

k2 2.000 2.000 1.999 2.003 1.989

k3 2.000 2.000 2.021 1.987 2.007

k4 2.000 2.000 1.997 2.031 1.963

5-DOF 

k5 2.000 2.000 2.000 1.993 1.996

k1 2.000 2.000 2.004 1.996 1.995

k2 2.000 2.000 1.996 2.013 1.983

k3 2.000 2.000 2.009 2.001 2.023

k4 2.000 2.000 1.997 2.020 1.998

k5 2.000 2.000 2.005 1.993 2.003

k6 2.000 2.000 2.009 1.982 2.004

k7 2.000 2.000 1.999 1.989 1.969

k8 2.000 2.000 2.013 2.001 1.996

k9 2.000 2.000 2.005 2.000 1.990

10-DOF

k10 2.000 2.000 1.991 1.993 2.001

 
Table 4. RMSe for 3, 5 and 10 DOF models using STSA or 
raw acceleration as input. 

RMSe 
 

No  
noise 

5%  
noise 

10%  
noise 

20%  
noise 

3-DOF 0.00% 0.91% 1.35% 1.66% 

5-DOF 0.00% 1.08% 1.74% 2.08% SATA

10-DOF 0.02% 1.11% 1.68% 2.21% 

3-DOF 0.00 % 3.11% 5.38% 8.39 % 

5-DOF 0.00% 1.47% 3.99% 5.67% RAW

10-DOF 0.07% 4.26% 5.84% 10.01%

 
Figure 8 compares the RMSes of the identification re-

sults for different structures when using our methodol- 
ogy (the “STSA” column in Tables 1 and 4). As we can 
see, AICSA combining STSA can identify the parame- 
ters of a structure accurately regardless of whether the 
structure is SDOF or MDOF. RMSe does increase 
slightly as the DOF of the structure increase, because the  
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Figure 8. RMSe for 1, 3, 5 and 10 DOF models. 
 
solution space of the identification problem becomes 
much more complex as the DOF go up. 

Moreover, AICSA combining STSA outperformed 
AICSA using raw acceleration data (results under the 
“RAW” label in Table 1 and 4) on the MDOF models. 
Furthermore, it provided much better estimates when the 
output data was contaminated with noise. These results 
clearly show that our methodology has excellent noise 
immunity. 

5.3. Estimation Using Partial Outputs 

The simulations results of the MDOF structures are 
based on the full output of the structural acceleration data. 
For an SDOF structure, only one output can be used, but 
for MDOF structures, it may be the case that not all out- 
puts are available. Therefore, to verify the methodology 
on only partial output, a 5-DOF structure was simulated 
and data from some of its stories (randomly chosen) were 
used. The simulated output data was noise-free, with 5% 
noise, 10% noise, or 20% noise. The window length was 
3000, and the word length was 9. 

The results in Figure 9 illustrate that even using par- 
tial data, the proposed method gets acceptable results. 
Note that for a certain noise level, the RMSe of the iden- 
tification results increase as the number of outputs de- 
creases. Moreover, Equations (11)-(13) can be numeri- 
cally proved to be right as t more outputs are obtained. 

6. Conclusion 

We conducted a feasibility study of a parameter identifi- 
cation method based on symbolic time series analysis 
(STSA) and adaptive immune clonal selection algorithm 
(AICSA). Harmful noise in the raw acceleration data was 
alleviated by employing STSA. The effect of varying the 
parameters of word length and window length in STSA 
was evaluated theoretically and verified numerically. A 
comparison with AICSA using raw acceleration data  

Noise level 0
Noise level 5%

Noise level 10%
Noise level 20%

Output story 5

Output story 3,5

Output story 2,3,5

Output story 2,3,4,5

Output story 1,2,3,4,5
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R
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S
e
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Figure 9. Comparison of RMSe due to partial output. 
 
revealed that our methodology provided better estimates 
of structural parameters when the data was contaminated 
by noise. The results show that with the proper parame- 
ters, our methodology is a reliable and effective method 
for structural parameter identification. 
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