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ABSTRACT 

Achievements are presented for truss models of RC structures developed in previous years: 1) Two constitutive models, 
biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simu-
lation; both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε 
law; 2) A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames; it has been 
compared with test results and describes, in a simple way, the formation of plastic hinges; 3) Thanks to the very simple 
geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both 
with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dy-
namic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted 
as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of pre-
venting, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead 
to a global instability of the RC column; 4) The proposed truss model is statically indeterminate, so it exhibits some 
features, which are not met by the “strut-and-tie” model. 
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1. Introduction 

In 1967, in a pioneering work [1], D. Ngo and A. C. Scor-
delis presented a detailed finite element model for a RC 
beam, in which separate finite elements are used for con-
crete and steel reinforcement. The material nonlinearities 
of the reinforcement can be easily described by the 
nonlinear uniaxial σ-ε law of a bar element. However, it 
is difficult to represent the nonlinear biaxial or triaxial 
stress-strain behavior of concrete or any other material. 
The relevant problems are discussed in two state-of-the- 
art reports on nonlinear finite element analysis of RC 
structures, one by P. G. Bergan and I. Holand in 1979 [2] 
and another in a special publication of ASCE in 1982 [3], 
written by specialists on this field, under the co-ordina-
tion of A. C. Scordelis. Also, the difficulties appearing in 
the application of finite elements to nonlinear problems 
have been discussed in the series of three Conferences F. 
E. No. Mech. (Finite Elements in Nonlinear Mechanics), 
organized by J. H. Argyris in the Institute of Statics and 
Dynamics, University of Stuttgart, Germany in the years 
1978, 1981, 1984 [4]. 

In order to describe the nonlinear biaxial or triaxial 

stress-strain behavior of a structure by the Finite Element 
Method, constitutive models for the structural materials 
have to be developed in order to be embodied in the in-
dividual finite elements. Efforts to develop such constitu-
tive models have been made by many researchers, e.g. 
plasticity models by W. F. Chen [5] and Z. Mroz [6], the 
plastic-fracturing model of Z. P. Bazant [7], as well as 
the more practical contributions by D. Darwin [8] and K. 
I. Willam [9], for nonlinear, biaxial and triaxial, respec-
tively, stress-strain behavior of concrete. 

In 1977 [10], N. J. Burt and J. W. Dougill presented a 
random network constitutive model, in order to describe 
the nonlinear biaxial stress-strain law of a material, and 
noticed that equivalent results can be obtained by use of 
simple regular networks. By applying this idea, P. G. 
Papadopoulos developed in 1984 and 1986 [11,12] a bi-
axial and a triaxial network constitutive model, based on 
a regular plane octagon and a regular space rhombic do-
decahedron, respectively, in which sides and diagonals 
are bars obeying the nonlinear uniaxial σ-ε laws of the 
material under simulation. Results from the above net-
work constitutive models have been found in satisfactory 
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approximation with corresponding published test results 
[13-15].  

Trusses have been used not only in constitutive models, 
but also in finite elements of structures. In 1978 [16], E. 
Absi, in his “theorie des equivalences” stated that simple 
truss finite elements give equivalent results with the 
usual more complicated continuum finite elements. This 
idea was extended to problems with material nonlineari-
ties and to the nonlinear static and dynamic analysis of 
plane RC frames by P. G. Papadopoulos [17,18]. A sim-
ple truss finite element was proposed, based on a plane 
rectangle in which all sides and diagonals are bars obey-
ing nonlinear uniaxial σ-ε laws of concrete or steel. So, 
the nonlinear biaxial stress-strain behavior of the element 
is, in a simple way, described, thus the embodying of a 
constitutive law in the individual finite elements is no 
more needed. Results from nonlinear static analysis for 
cyclic loading, as well as nonlinear seismic dynamic 
analysis of simple plane RC frames, by the proposed 
truss RC element, were compared with corresponding 
published test results and found in a satisfactory ap-
proximation with them [19,20]. As the bars of the pro-
posed finite element include the main material nonlin-
earities of concrete and steel, that is concrete tensile 
cracking and ultimate compressive strength, as well as 
tensile yield of reinforcement, the proposed truss model 
can, in a simple way, describes the formation of plastic 
hinges in a RC frame. 

Afterwards, some other versions of E. Absi ideas for 
truss finite elements were developed for plane structures, 
under various names but all similar to each other, e.g. 
“truss analogy” in 1997 [21] for steel structures, “lattice 
model” in 1997 [22] and “lumped stress model” in 2002 
[23], the latter two for RC structures.  

In 1987 [24] J. Schlaich invented the so called “strut- 
and-tie” model, which is a statically determinate truss 
model, consisting of concrete and steel bars. These bars 
include the main material nonlinearities of a RC structure. 
So, the “strut-and-tie” model can effectively describe the 
main stress-strain states of a RC structure, that is bending, 
shear and even torsion in 3D, thus it has been proved as a 
very useful practical tool in analysis and design of RC 
structures. 

The “strut-and-tie” model has been further developed 
by other researchers, as by T. T. Hsu in 1993 [25], by F. 
J. Vecchio and M. P. Collins in 1993 [26], as well as by 
ASCE-ACI Committee on shear and torsion in 1998 [27]. 

The proposed here truss model is a statically indeter-
minate structure, so it exhibits some features that are not 
met by the statically determinate “strut-and-tie” model: 

1) It can describe lateral expansion (Poisson ratio) ef-
fect. 

2) It takes into account geometric nonlinearities, by 
writing the equilibrium equations and updating the stiff-

ness matrix, both with respect to the deformed truss, 
within each step of a static incremental loading or within 
each time step of a dynamic analysis. This is easily 
achieved thanks to the very simple geometry of a truss. 

By this proposed truss model which includes geometric 
nonlinearities, the confinement of a RC column is inter-
preted as a structural stability effect of concrete [28-30]. 

And, beyond the already known roles of the transverse 
reinforcement [31-33] (that is, shear transfer, reduction 
of concrete spalling, preventing of buckling of longitu-
dinal reinforcement, increase of compressive stiffness, 
strength and ductility of the confined concrete core), an-
other significant role of the transverse reinforcement is 
revealed by the proposed truss model with structural in-
stability, that of retarding and even preventing, by its 
close spacing and sufficient amount, the buckling of in-
ner longitudinal concrete struts, which would lead to a 
global instability of the RC column. 

Results from the application of this proposed model 
with structural instability on RC column confinement 
have been found in a satisfactory approximation to Codes 
requirements [34-36], regarding the spacing and amount 
of transverse reinforcement, which, in turn, are based on 
test results, too. 

In the following, some of the achievements of the 
above proposed truss models for nonlinear analysis of 
structures, mainly RC structures, proposed in previous 
years, will be described in more detail. 

2. Truss Constitutive Models 

A biaxial and a triaxial constitutive model for the nonlin-
ear stress-strain law of a material have been developed 
[11,12], based on a regular plane octagon and a regular 
space rhombic dodecahedron, respectively, in which 
sides and diagonals are bars obeying the nonlinear uni-
axial σ-ε law of the material under simulation. So, in a 
simple way, by the nonlinear uniaxial σ-ε laws of the bars, 
the nonlinear biaxial or triaxial stress-strain behavior of 
the whole truss is described. Results from the above truss 
constitutive models, for various loading histories, have 
been found in satisfactory approximation to correspond-
ing published test results [13-15]. Both above truss con-
stitutive models show a dependence of the Poisson ratio 
value ν on the curvature κ of the nonlinear uniaxial σ-ε 
law of the material under consideration, as shown in 
Figure 1. 

3. Truss Finite Element for Plane RC Frame 

A truss finite element is proposed for beams of a plane 
RC frame, based on a rectangle, in which all sides and 
diagonals are bars, obeying nonlinear uniaxial σ-ε laws of 
concrete or steel, as shown in Figure 2. The σ-ε law of 
concrete bars includes tensile cracking, ultimate com-
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pressive strength, as well as loading-unloading rules after 
compressive yield. Whereas, the σ-ε law of a steel bar 
includes ultimate tensile and compressive strengths, as 
well as loading-unloading rules after tensile or compres-
sive yielding. 

 

(c)

(a) (b) 

(d)

4. Determination of Bar Sections 

In the above proposed truss finite element for beams of 
plane RC frames, the cross-section areas of steel bars are 
reasonably and easily determined as sums of sections of 
the corresponding steel reinforcing bars. Whereas, in 
order to determine the cross-sections areas A1, A2, A3 of 
the concrete bars of the truss element as shown in Figure 
3(b), we have to compare it to the corresponding contin-
uum concrete beam element of Figure 3(a), as regards 
three representative stress-strain states in the linear elas-
tic region. And we chose, as such characteristic states, 
the pure bending, the confined axial deformation as well 
as the confined transverse deformation. 

For the pure bending shown in Figure 3(c), the curva-
ture angle of the beam element is Ml EJ  where  

3 12J wh , whereas for the truss element 2 l h    

where 1

M
l l A

h
  . By combining the above equations 

we obtain 1 6A wh . 

 

 (a) (b) (c) 

 

Figure 1. Dependence of Poisson ratio ν on the curvature κ 
of nonlinear uniaxial σ-ε law of the material. (a) Metal κ = 0 
 v = 1/3; (b) Geologic material e.g. concrete κ < 0  ν < 1/3; 
(c) Rubber-like material κ > 0  ν > 1/3. 
 

 

(c) (b) 

(a) 

 

Figure 2. (a) Truss finite element for beam of a plane RC 
frame, with concrete and steel bars; (b) Nonlinear uniaxial 
σ-ε law of concrete bars; (c) Nonlinear uniaxial σ-ε law of 
steel bars. 

 

Figure 3. Comparison between characteristic stress-strain 
states of the concrete beam element and the corresponding 
truss element in order to determine the concrete bar sec-
tions. (a) Concrete beam element; (b) Corresponding truss 
element; (c) Pure bending; (d) Confined axial compression. 
 
For the confined axial deformation, the elasticity theory 

gives 
21- x

E
x 




20.2 ,  1 1 

. 

  , thus x xEFor     where  

x N wh  and x l l   

1 3S S

. In the corresponding state 
of the truss element shown in Figure 3(d), we have 

  cos 2N    

where   1
1

EA
Δl

l
S   and  3

3

EA
Δlcosθ

l/cosθ
S . 

From combination of above equations, we obtain 
3

3Α wh 3cos θ  

From similar considerations for confined transverse 
deformation, we obtain   3A wl 2 wh 3 3tg θ 2

Obviously, when the angle θ tends to zero, θ → 0, the 
sections tend to A3→

. 

 and A2→ . wh 3 wl 2

5. Nonlinear Static Analysis 

The incremental loading of the structure is preferably 
performed by strain control, which is a more stable pro-
cedure than stress control. The material nonlinearities are 
taken into account by the variations of the elasticity 
moduli E of the bars during the loading. Whereas, in or-
der to take into account geometric nonlinearities, the 
equilibrium equations are written and the global stiffness 
matrix updated, both with respect to the deformed truss, 
within each step of incremental loading. The local stiff-
ness matrix of a bar in 2D, consisting of elastic and geo-
metric part, is: 

2 2

E G 2 2
x x y y x y

x y y x y xo

c c c c c cEA N

c c c c c cl l

   
            

k k k  
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where A section, lo undeformed length, l present length, 
N axial force and cx, cy direction cosines of the bar. 

Whereas, the global stiffness matrix of the truss is: 

 diagK B k       1t
i bi n  B

 

 

where B Boolean linkage matrix and nb number of bars 
of the truss. 

Based on the proposed algorithm, a very short com-
puter program, with only about 200 FORTRAN instruc-
tions, has been developed, for the nonlinear static analy-
sis of a truss model of a plane RC frame. 

6. Nonlinear Dynamic Analysis 

A lumped mass is assigned to every free node of the truss. 
Zero damping and zero initial velocities are assumed. 
The resulting initial value problem:  

  0, ,  0 y y y

 , ,y r v c

ty q , 

where the state vector is  with r, v positions 
and velocities of nodes and c constitutive variables of the 
bars, is solved by the step-by-step algorithm of trapezoi-
dal rule, which coincides with the Newmark’s algorithm 
of constant average acceleration: 

 1

1

2n n n nt t   y y q ,y  1 1n n t   q ,y

ma 2.0t

, 

combined with a predictor-corrector technique with two 
corrections per step, PE(CE)2 [37]. So, there is no need to 
solve an algebraic system within each step of the algo-
rithm. 

The stability criterion of the algorithm is x  
0.5

 
rad and the accuracy criterion is max t    rad, that 
is min , which dictates the choosing of the time 
step-length Δt of the algorithm. 

4πt T 

An upper bound for the normal frequencies can be 
found from the norm of the matrix M–1K, where M mass 
matrix and K stiffness matrix of the structure:  

1
max

 M K  

Based on the proposed algorithm, a very short com-
puter program has been developed, with only about 150 
FORTRAN instructions, for the nonlinear dynamic 
analysis of a truss model of a RC frame. 

7. Applications to Analysis of Simple Plane 
RC Frames 

The above proposed truss finite element for plane RC 
frames, as well as the proposed algorithms for nonlinear 
static and dynamic analysis, have been applied to the 
nonlinear static analysis of a simple plane RC frame for 
cyclic loading [17], as well as to the nonlinear dynamic 
seismic analysis of a simple plane RC frame [18]. The 
results of these analyses have been found in satisfactory 

approximation with corresponding published test results 
[19,20]. 

As the nonlinear uniaxial σ-ε laws, of the bars of the 
proposed truss model, include all the main material 
nonlinearities of a RC structure, that is tensile cracking 
and ultimate compressive strength of concrete, as well as 
tensile yielding of steel reinforcement, the formation of 
plastic hinges in a RC frame is, in a simple way, de-
scribed, as shown in Figure 4. 

8. Application to Confinement of a 
RC Column 

In order to take into account geometric nonlinearities, by 
the proposed truss model, the equilibrium equations are 
written and the stiffness matrix is updated, both with 
respect to the deformed truss, within each step of a static 
incremental loading or within each time step of a dy-
namic analysis. This is easily achieved thanks to the very 
simple geometry of a truss.  

As the proposed truss model includes geometric 
nonlinearities, it interprets the confinement of a RC 
column as a structural stability effect of concrete [28-30]. 

In Figure 5(a), the compressive axial σ-ε diagram of a 
confined RC column is shown. An early small drop of 
the stress    is observed, which is due to a local in-
stability because of spalling (buckling) of outer concrete. 
As the loading further increases, preferably by strain 
control, for a significant value of the compressive axial 
deformation, the stress σ suddenly drops to zero, which is 
an obvious mark of global structural instability, observed 
in experiments and verified by the proposed truss model, 
too. 

In Figure 5(b), a part of a confined RC column, be-
tween two successive sets of transverse reinforcement, is 
shown. The longitudinal reinforcement is omitted, for 
simplicity. As the compressive axial loading N gradually 
increases, a lateral expansion of concrete occurs. For a 
significant compressive axial deformation, because of the 
large lateral expansion of concrete, a tensile yielding of 
the transverse reinforcement occurs, which implies a 
 

 

Figure 4. Description of formation of plastic hinges, in a RC 
frame, by the proposed truss model. “…...” cracked con-
crete. “------” reinforcement in tensile yielding. “//////” rigid 
parts. “ph” plastic hinges. 
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(a)                                     (b) 

Figure 5. (a) Compressive axial σ-ε diagram of a confined RC column. 1. Early small drop of stress due to spalling of outer 
concrete. 2. For a significant value of compressive axial deformation, the stress σ suddenly drops to zero, which is a mark of 
global structural instability; (b) A part of a confined RC column between two successive sets of transverse reinforcement. 1. 
Spalling of outer concrete. 2. Transverse reinforcement in tensile yielding. 3. Longitudinal concrete cracks. 4. Longitudinal 
concrete struts. 
 
further lateral expansion of concrete. So, wide longitudi-
nal-vertical concrete cracks are formed, and between such 
successive concrete cracks, inner longitudinal-vertical 
concrete struts are formed, which tend to buckle, leading 
to a global instability of the RC column.  

Beyond the already known roles of transverse rein-
forcement in a RC column [31-33] (that is shear transfer, 
reduction of concrete spalling, preventing of buckling of 
longitudinal reinforcement, increase of compressive axial 
stiffness, strength and ductility of the confined concrete 
core), another significant role of the transverse rein-
forcement is revealed by the proposed truss model with 
structural instability, that of retarding and even prevent-
ing, by its close spacing s and sufficient amount ρ (me-
chanical ratio), the buckling of the above inner longitu-
dinal-vertical concrete struts, which would lead to a 
global instability of the RC column. 

Results, from application of the proposed truss model 
with structural instability to the confinement of RC col-
umns, have been found in satisfactory approximation 
with corresponding requirements of codes [34-36], re-
garding the spacing s and the mechanical ratio ρ of 
transverse reinforcement; these requirements are, in turn, 
based on test results, too. 

9. Conclusions 

Some achievements have been presented for truss models 
of structures, mainly RC structures, which have been 
developed in previous years and found in satisfactory 
approximation with test results and Codes requirements: 

1) N. J. Burt and J. W. Dougill developed in 1977 [10] 
random network constitutive models and stated that 
equivalent results can be, in a simple way, obtained by 
regular networks. This idea was realized in 1984 [11] and 
1986 [12] by two network constitutive models, a biaxial 
and triaxial one, based on a regular plane octagon and on 
a regular space rhombic dodecahedron, respectively, in 

which sides and diagonals are bars obeying the nonlinear 
uniaxial σ-ε law of the material under simulation. Both 
models show a dependence of Poisson ratio on the cur-
vature of the nonlinear uniaxial σ-ε law of the material. 

2) E. Absi in 1978 [16], in his “theorie des equiva-
lences”, stated that simple truss finite elements give 
equivalent results with the usual more complicated con-
tinuum finite elements. This idea was extended in 1988 
[17,18] to structures with material nonlinearities, and 
applied particularly to the nonlinear static and dynamic 
analysis of plane RC frames. As the individual bars of 
the proposed truss finite element include, in their uniaxial 
σ-ε laws, the main material nonlinearities of a RC struc-
ture, that is the concrete tensile cracking, the reinforce-
ment tensile yield, as well as the ultimate compressive 
strength of concrete, the formation of plastic hinges in a 
RC frame can be, in a simple way, described. 

3) Compared to the “strut-and-tie” model for RC 
structures, invented by J.Schlaich in 1987 [24] and fur-
ther developed by other researchers, which proved as a 
very effective tool in the analysis of RC structures, the 
proposed here truss model exhibits the difference that it 
is a statically indeterminate, whereas the “strut-and-tie” 
model is statically determinate. So, the proposed truss 
model has some features that are not met by the 
“strut-and-tie” model: a) It can describe lateral expansion 
(Poisson ratio) effect. b) It takes into account geometric 
nonlinearities, by writing equilibrium equations and by 
updating stiffness matrix, both with respect to the de-
formed truss, within each step of a nonlinear static or 
dynamic analysis. So, it interpreted in 1999 [31] the con-
finement of a RC column as a structural stability effect of 
concrete. And revealed a significant role of transverse 
reinforcement, that of retarding and even preventing, by 
its close spacing and sufficient amount, the buckling of 
inner longitudinal concrete struts, which would lead to a 
global instability of the RC column. 
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