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ABSTRACT 

Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane 
proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, 2H solid-state 
NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains 
of phospholipid bilayers [8-13]. Moreover, 31P solid-state NMR spectroscopy can be used to investigate the interaction 
of peptides, proteins and drugs with phospholipid head groups [11-14]. The secondary structure of 13C=O site-specific 
isotopically labeled peptides or proteins inserted into lipid bilayers can be probed utilizing 13C CPMAS solid-state 
NMR spectroscopy [15-18]. Also, solid-state NMR spectroscopic studies can be utilized to ascertain pertinent informa- 
tion on the backbone and side-chain dynamics of 2H- and 15N-labeled proteins, respectively, in phospholipid bilayers 
[19-26]. Finally, specific 15N-labeled amide sites on a protein embedded inside oriented bilayers can be used to probe 
the alignment of the helices with respect to the bilayer normal [2]. A brief summary of all these solid-state NMR ap- 
proaches are provided in this minireview. 
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1. Introduction 

Membrane proteins make up approximately one-third of 
the total number of known proteins [27]. They play 
several significant roles in biological systems that in- 
cludes transporting ions, acting as receptors, partici- 
pating in membrane fusion and destabilization, and many 
others. Despite the abundance and clear importance of 
membrane-associated proteins, limited information about 
these systems exists. Structural studies of these membr- 
ane proteins are key to understand their biological func- 
tions. X-ray crystallography has been used to elucidate 
structural information of biologically significant protein 
systems [28-35]. However, the hydrophobic surfaces 
associated with membrane-bound protein systems make 
the crystallization process very challenging. Although in- 
vestigators are making progress with X-ray techniques, 
still only a limited list of membrane protein structures 
have been obtain via X-ray crystallography [36]. Alter- 
natively, solid-state NMR spectroscopy is a powerful 
technique that can be used to provide structural, orient- 
ational, and dynamic information about membrane 
protein systems in model membrane systems [2,37,38]. 

2. Solid-State NMR Approaches 

2.1. 2H Solid-State NMR Spectroscopy of Lipids 
with 2H-Lableled Acyl Chains 

Multilamellar vesicles (MLVs) can be prepared from phos- 
pholipids such as 1-palmitoyl-2-oleoyl-sn-glycero-phos- 
phocholine (POPC) and the details of sample preparation 
and type of lipid was reported previously [3-7]. Appro- 
ximately 10% of deuterated POPC (sn-1 chain, POPC-d31, 
see Figure 1) or any other deuterated lipid of interest can 
be added to each sample. Other lipids can be used such 
as the negatively charged lipids such as 
1-palmitoyl(d31)-2-oleoyl-sn-glycero-3-[phospho-L-serine] 
phospholipids (POPS-d31) used in Sap C studies (see 
Figure 2) and Distearoyl-d70-phosphatidylglycerol (DSPG- 
d70) (see Figure 3). 

The effect of embedded proteins on the order and dy- 
namics of the acyl chains of POPC-d31 bilayers can be 
investigated utilizing 2H solid-state NMR spectroscopy 
in the absence as well as in the presence of (X) mol% of 
the protein with respect to the lipids at different tem- 
peratures [40]. For example, in Figure 4(a), the central 
resonance doublet corresponds to the terminal CD3 
groups (Carbon # 1 in Figure 1) and the remaining over- 
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lapped doublets result from the different CD2 segments of 
the acyl chain of POPC-d31. The addition of (X) mol% of 
specific protein with respect to the lipids to POPC MLVs 
could alter (depending on the protein of interest) the 
lineshape and the spectral resolution of the 2H NMR 
spectra (Figure 4(b)) when compared to the control (Fig- 
ure 4(a)) sample. 

In Figure 4(b), the loss in spectral resolution is mani- 
fested by the disappearance of sharp edges of the 2H 
NMR peaks. The changes in spectral resolution of the 2H 
NMR spectra indicate that the protein interacts with the 
POPC-d31-containing MLVs when compared to the con- 
trol. If the spectral resolution and the line shapes did not 
change when compared to the control, this indicates that 
the protein does not interact significantly with the POPC 
MLVs as indicated in a previous study from the Lorigan 
Lab using the transmembrane domain segment of WT- 
PLB [12]. 

All the powder-type 2H NMR spectra of multilamellar 
dispersions of POPC-d31 can be numerically deconvo- 
luted (dePaked) using the algorithm of McCabe and 
Wassal [41,42]. These spectra can be dePaked such that 
the bilayer normal was perpendicular with respect to the 
direction of the static magnetic field. Then, the quadru- 
polar splittings can be directly measured from the de- 
Paked spectra and converted into order parameters as 
described before [11,12]. The quadrupolar splittings of 
the CD3 methyl groups (see Figure 1) at the end of the 
acyl chains are the smallest and close to 0 kHz because 
 

(a) (b) 

 

Figure 1. POPC-d31 structure [39]. The 2H-labeled acyl 
chain and phospholipids head groups are labeled with 
dashed red circles. The numbering of the 2H-labeled carbon 
skeleton of the acyl chain is shown is red. 
 

 

Figure 2. POPS-d31 structure [39]. Only one acyl chain is 
2H-labeled. 
 

 

Figure 3. Distearoyl-d70-phosphatidylglycerol (DSPG-d70) 

they rotate at t

structure [39]. 

he fastest frequency. The second smallest 

 be directly measured 
fr

splitting was assigned to the 2H attached to C-14 and so 
forth along the acyl chain. The quadrupolar splittings for 
the deuterons in the plateau region were estimated by 
integration of the last broad peak. 

The quadrupolar splittings can
om the dePaked spectra and converted into the SCD or- 

der parameter using the following expression; i
Qν  = 

3/4(e2qQ/h) i
CDS  [43-45]. Where i

Qν  is the q ru- 
polar splittin r a deuteron attach o the ith carbon, 
e2qQ/h is the quadrupolar splitting constant (168 kHz for 
deuterons in C-2H bonds), and i

CDS  is the chain order 
parameter for a deuteron attached he ith carbon of the 
acyl chain of POPC-d31. The order parameters calculated 
for the CD3 quadrupolar splitting should be multiplied by 
three according to procedures in the literature [46,47]. 

Figure 5 displays the smoothed segmental C-D bo

uad
g fo ed t

to t 

nd 
order parameters (SCD) of the POPC-d31 acyl chains cal- 
culated by dePakeing the corresponding 2H NMR powder 
spectra shown in Figure 4. Figure 5 reveals a charac- 
teristic profile of decreasing order (SCD) with increasing 
distance from the glycerol backbone of POPC-d31 MLVs. 
Any decrease (if any) in the order parameter profile of 
POPC-d31-containing bilayers in the presence of (X) 
mol% of specific protein indicates more disorder and 
motion in the acyl chain region of the lipids when com- 
pared to the control sample (without protein). If the order 
parameter profile of POPC-d31-containing bilayers in the 
presence of (X) mol% protein is similar to the control 
sample, this indicates that this particular protein is not 
altering the order and motion in the acyl chain region of 
the lipids. 
 

 
(a) 

 

(b) 

Figure 4. 2H NMR powde ttern spectra of POPC-d31 

protein with respect to the lipids. 

r-pa
bilayers in the absence (a) and in the presence of (X) mol% 
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Figure 5. The smoothed acyl chains orientational o
parameter (S ) profiles calculated from the dePaked 2H 

 Spectroscopy of 

The rn spectra are cha- 

 Solid-State NMR Spectroscopy of 
13

The sotopi- 
cally lab  peptides or proteins inserted into lipid bi- 

rder 
 CD

NMR spectra of POPC-d31 (Figure 4). The closed squares 
and circles represent POPC bilayers with 0 mol% and (X) 
mol% protein, respectively. 

2.2. 31P Solid-State NMR
Phospholipid Head Groups 

motionally averaged powder patte
racteristic of MLVs in the liquid crystalline phase (L) 
and are expected for phospholipids bilayers at a tem- 
perature well above the chain melting point transition 
temperature (Tm) [48]. Figure 6(a) shows the structure of 
the neutral phospholipid POPC (Tm = –2˚C) [39]. In add- 
ition, other phospholipids that includes 1-palmitoyl-2- 
oleoyl-sn-glycero-3-[phospho-L-serine] (POPS, Tm = 14 ˚C, 
Figure 6(b)), dioleoylphosphatidyl-glycerol (DOPG, Tm = 
–18˚C, Figure 6(c)) and dioleoylphosphatidylserine 
(DOPS, Tm = –11˚C, Figure 6(d)) structures are shown 
[39]. The static 31P NMR spectrum of each phospholipid 
head group shown in Figures 6(a)-(d) have a specific 31P 
chemical shift anisotropy (CSA; is equal 33-11) width 
and lineshape. In several cases, the lineshapes of the 
static 31P NMR spectra and its corresponding CSA values 
have been successfully used to study the perturbation 
effect induced by drugs and proteins on phospholipids 
[11,14,49,50]. The addition of (X) mol% of specific pro-
tein to specific MLVs could alter the 31P CSA and line 
shape (Figure 7(b)) when compared to the control (Fig-
ure 7(a)) sample. This indicates that the protein of inter-
est is interacting with the head group region of the 
MLVs. 

2.3. 13C
Site-Specific C-Labeled Peptides in 
MLVs 

secondary structure of 13C=O site-specific i
eled

layers can be probed utilizing 13C CPMAS solid-state 
NMR spectroscopy [15-18,50]. The local conformations 
of peptides and proteins can be characterized by examin- 
ing the 13C=O chemical shifts of the 13C-labeled car- 
bonyl of Ala, Leu, and Val. In general, the -helical stru- 
cture chemical shifts may vary within the data range (174 - 
177 ppm) for different conformational-dependent cha- 
nges (see Figure 8(a)) [17]. Also, a single 13C NMR 
peak at approximately 172.4 ppm can be attributed to 
either a -sheet or an unstructured structural conforma- 
tion of the peptide (see Figure 8(b)); whereas a single 
peak at approximately 176 ppm can be attributed to one 
-helical structure conformation (see Figure 8(c)) [15]. 
 

(B) 

(C) 

(D) 

(b) 

(c) 

(d) 

(a)

 

Figure 6. The structure of (a) POPC, (b) POPS, (c) DOPG
and (d) DOPS phospholipids [39]. 

 

 

 
(a) 

 
(b) 

Figure 7. Static 31P solid-state R spectra of phospholipid 
MLVs in the absence (a) and e presence (b) of X mol% 

 NM
 in th

protein. 
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Figure 8. 13C=O chemical shifts of 13C-labeled carbonyl of
Ala located at (A) α-helix with tw tructural conforma-

2 MLVs 

As m  

tate NMR Spectroscopy of Site 
Specific N-Labeled Peptides in MLVs 

 to 
ascer cture 

 
 o s

tions, (B) Unstructured or β-sheet structural conformation 
and (C) α-helical with one structure conformation. 

2.4. 2H Solid-State NMR Spectroscopy of 
Site-Specific H-Labeled Peptides in 

entioned previously, probing of how both segments
of phosphorylated and unphosphorylated membrane pro- 
teins are moving within the phospholipid bilayers is 
crucial to describe the physiological functions. 2H solid- 
state NMR spectroscopy is a powerful well developed 
technique to study the structural and side-chain dynamic 
properties of membrane proteins in phospholipid bilayers 
[8,51-53]. The corresponding quadrupolar splitting and 
lineshapes of the 2H solid-state NMR spectra can be used 
to probe the molecular dynamics of the sidechain of 
selectively labeled residues in site-specific 2H-labeled 
integral membrane proteins [19-24]. 

In previous studies, methyl group motions have been 
well-characterized utilizing 2H NMR studies of CD3-lab- 
eled sites of alanines, valines and leucines [19,24,25, 
54-57]. For the isotopically labeled alanines (short ali-
phatic side-chains), the deuterated methyl group (CD3) 
rotates along the C-C bond and allows the deuterons to 
make jumps between three-sites described by a tertrahe- 
dral geometry (see Figure 9(a)) [58,59]. However, for 
Leu, the long aliphatic side-chain can be isotopically 
labeled at the δ- and/or ε-CD3 sites (see Figure 9 (b)) and 
the deuterium NMR powder pattern lineshapes will be 
strongly influenced by the motions about the C-C bond 
axis as well as by additional librational motion about the 
C-C and C-C bond axes at various temperatures 
[24,60]. 

It has been reported that if the CD3-methyl probe of a 
protein undergoes no motion other than those associated 
with the axial rotation about the C-CD3 bond in a ran- 
domly dispersed sample, the resultant 2H NMR spectra 
will consist of a Pake pattern with a 40 kHz quadrupolar 

splitting (see Figure 10(a)) [61]. However, residues lo- 
cated outside the membrane are expected to be more mo- 
tionally averaged and yield an isotropic peak (see Fig- 
ure 10(b)) [62]. 

2.5. 15N Solid-S
15

15N solid-state NMR spectroscopic studies are utilized
tain pertinent information on the backbone stru

and dynamics of membrane proteins in phospholipid bi- 
layers [25,26]. It provides important physiological and 
mechanistic information regarding the regulatory role of 
membrane proteins and it phosphorylated form in bio- 
logical systems [64-66]. Generally, the immobile (with- 
out large amplitude motions) amide sites of specific 
15N-labeled proteins yield a broad static 15N powder pat- 
tern (see Figure 11(a)); whereas, motionally averaged 
amide sites reveal isotropic peaks (see Figure 11(b)) 
[26]. 
 

H2N CH C

CH3

OH

O

H2N CH C

CH2

OH

O

CH CH3

CH3

(A) Ala (B) Leu(a) (b) 

 

Figure 9. The structure of (a) alanine and (b) leucin esi-
dues. 

e r

 
(A) Pake pattern

 
(a) 

 
(b) 

Figure 10. 2H NMR simulations of CD3-Ala using Multiple 
Axis Quadrupolar Echo Tailing (MXQET) program [63]. 

tropic peak spectra.
The model simulations show (a) Pake pattern and (b) iso- 

 

Copyright © 2012 SciRes.                                                                             OJBIPHY 



S. ABU-BAKER, G. A. LORIGAN 113

(A) 

 
(a) 

250 200 150 100 50 0
15 N Chemical shift (ppm)

(B)

 
(b) 

Figure 11. Simulations of the 15N NMR spectra using the 
Dominique Massiot’s Fit (D IT) software rogram [67]. 
The model simulations show ( wder pattern and (b) 

c 15N-Labeled Peptides in 

Dete e pro- 
teins critical to un- 

15

MF
a

p
) a po

an isotropic peak. 

2.6. 15N Solid-State NMR Spectroscopy of 
Site-Specifi
Mechanically Oriented Bilayers 

rmining the structural topology of membran
 and its interaction with the lipids is 

derstand its physiological regulatory function. N solid- 
state NMR spectroscopy is a powerful tool to ascertain 
direct information regarding the structural topology of 
membrane proteins in oriented phospholipid bilayers [2]. 

In this approach, specific 15N labeled amide sites can 
be used to probe the alignment of the helix with respect 
to the bilayer normal. For example, this technique was 
used to probe the orientation of both the transmembrane 
and cytoplasmic domains of WT-PLB embedded inside 
mechanically oriented phospholipids [68]. Site-specific 
15N-labeled WT-PLB were chosen at Ala11 (in the cyto- 
plasmic domain) and Leu 42 and Leu 51 (both in the 
transmembrane helix) (see Figure 12). 
 

 

Figure 12. Side-view of a proposed structural model of 
site-specific 15N-labeled WT-PLB at Ala11 (in the cytoplas- 
mic domain) and Leu 42 and Leu 51 (both in the ansmem- 

Solid-state NMR spectroscopy is routinely used to de- 
ural and dynamic properties of both 

 

 tr
brane helix) in oriented bilayers. 

A resonance peak at approximately 70 ppm (close to 
the  component of the chemical shift tensor of the cor- 
responding powder spectrum, see Figure 13), indicates 
that this residue is oriented approximately perpendicular 
to the bilayer normal (transmembrane helix as shown in 
Figure 12) [2]. Also, a 15N resonance peak at approxi- 
mately 210 ppm (close to the  component of the chem- 
ical shift tensor of the corresponding powder spectra, see 
Figure 13) indicates that the amide backbone vector of 
this residue is nearly parallel to the bilayer normal (the 
helix lies on the surface of the phospholipids bilayers as 
shown for cytoplasmic domain of the proposed struc- 
tural model of WT-PLB presented in Figure 12 [2]. 

3. Conclusion 

termine the struct
membrane proteins and peptides in phospholipid bilayers. 
Together, 2H, 31P, 13C and 15N solid-state NMR spectros- 
copy can be used to probe the effect of embedded prote- 
ins on the order and dynamics of the acyl chains, phosph- 
olipid head group as well as the secondary structure of 
site-specific isotopically labeled amino acid and helix 
orientation with respect to the membrane. A summary of 
all these solid-state NMR approaches are provided in this 
mini-review. 
 

 

 

 
(a) 

 
(b) 

250 200 150 100 50 0
15 N Chemical shift (ppm)

)

 
(c) 

Figure 13. Simulations of the 15N NMR s  using the 
DMFIT software program  
show (a) powder pattern an ) 15N resonance peak at ap-

pectra
 [67]. The model simulations
d (b

proximately 70 ppm (close to the σ component of the 
chemical shift tensor of the corresponding powder spectrum) 
and (c) 15N resonance peak at approximately 210 ppm (close 
to the σ component). 
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