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ABSTRACT 

This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters 
large-scale decoy protein structures in protein structure prediction based on principal component analysis (PCA), is an 
ultra-fast and low-memory-requiring clustering method. It can be two orders of magnitude faster than the commonly- 
used pairwise rmsd-clustering (pRMSD) when enormous of decoys are involved. Instead of  1 2N N   least-square 

fitting of rmsd calculations and N2 memory units to store the pairwise rmsd values in pRMSD, PCAC only requires N 
rmsd calculations and N × P memory storage, where N is the number of structures to be clustered and P is the number 
of preserved eigenvectors. Furthermore, PCAC based on the covariance Cartesian matrix generates essentially the iden- 
tical result as that from the reference rmsd-clustering (rRMSD). From a test of 41 protein decoy sets, when the eigen- 
vectors that contribute a total of 90% eigenvalues are preserved, PCAC method reproduces the results of near-native 
selections from rRMSD. 
 
Keywords: Protein Structure Predicition; Protein Structure Cluster; Principal Component Analysis; 

Low-Momery-Requiring Clustering; Ultra-Fast Clustering 

1. Introduction 

In ab initio protein-structure prediction, usually a large 
amount of protein conformations (decoys) are generated. 
Clustering of similar predicted protein structures is a 
commonly adopted procedure [1-4]. The clustering pro-
cedure simplifies data analysis by reducing the enormous 
number of decoys generated from the large-scale con-
formational search and provides information of the dis-
tribution of the structures in conformational space. In 
order to compare clustering results from diversed pro-
teins, an adaptive cluster cutoff method is recommended 
[5] instead of K-means algorithm. The main drawback of 
K-means clustering [6,7] is that a pre-determined number 
of clusters is required, which is not suitable for decoy 
clustering. 

Structural clustering (e.g., leader algorithm [8]) is usu-
ally based on the pairwise root-mean-squared distance 
(pRMSD), which is a more accurate similarity measure 
than other measures, e.g., distance of internal coordinates 
[9,10]. The pRMSD requires  1 2N N   least-square 
fitting of rmsd calculations for N structures. It is time- 
consuming when a large amount of decoys are involved. 
Li et al. have developed a fast decoy clustering method 

(SCUD) that is based on reference root-mean-squared 
distance (rRMSD), which only requires N rMSD calcula-
tions to a reference conformation [11]. A randomly se-
lected reference conformation is used to remove overall 
translational and rotational motion for all the decoys and 
rmsd between any two conformations is determined 
without further reorientation. From a test of 53 decoy 
sets of or proteins, the near-native selections of rRMSD 
is similar to that of pRMSD. SCUD is 8 times faster 
without significant change in the accuracy of near-native 
selections. However, both pRMSD and rRMSD methods 
require N2 memory units to store the rmsd values of each 
pair of structures in order to speed up calculation, which 
may exceed the computer’s available memory limit when 
the number of decoys ranges from 104 to 106 [12]. 

Principal Component Analysis (PCA) is one of the 
most valuable results from linear algebra. It can be used 
to reduce the number of variables from a linear Gaussian 
data set or to classify them [13]. PCA was first intro-
duced to biosystem analysis by Gower in 1966 [14,15]. It 
has been successfully implemented to describe molecu- 
les’ energy landscape [16-18], nonlinear motions in pro-
teins [19-21], as well as many other bioinformatics fields 
[22-28]. From a sample data set with p variables and N *Corresponding author. 
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individuals, there are two ways to build the PCA matrix. 
One method constructs a p × p matrix to measure the 
discrepancy of the individuals along principal axes in the 
p-dimensional space. The other method, i.e., principal 
coordinate analysis, builds a N × N matrix to analyze the 
similarity of the individuals [14,29]. Normally, a covari-
ance matrix [19] is constructed, since its eigenvalue is 
the variance of the N individuals along the corresponding 
eigenvector. The matrix can also be constructed as a dis-
tance matrix [29], in which the eigenvalue is not directly 
related to the variance of the individuals any more. The 
elements of the matrix can be calculated either from the 
Cartesian coordinates, internal coordinates (e.g., pair dis- 
tances between two atoms [30], bond angles or dihedral 
angles [31]), their derivations [32], or any other reason-
able measures [23]. 

In this study, we describe that a clustering method 
based on PCA, which is called PCAC (Protein principal 
Component Analysis Clustering), is also a powerful tool 
for clustering the predicted protein structures. PCAC 
clustering based on Cartesian coordinates is identical to 
rRMSD clustering when all the eigenvectors are pre-
served. From a test of 41 proteins 5 with 2000 folding 
decoys each, PCAC results in similar near-native selec-
tions as rRMSD method when the eigenvectors (about 17) 
that contribute a total of 90% eigenvalues are preserved. 
The method needs only N least-square fitting of rMSD 
calculations instead of  1 2N N   in pRMSD. Fur-
thermore, other than N2 memory units needed in pRMSD 
and rRMSD clustering, PCAC requires only N × P mem-
ory units to store the preserved eigenvectors, where P is 
the number of preserved eigenvectors that is usually a 
fixed number less than 100 and independent to the num-
ber of decoys N. Consequently, it can be hundreds of 
times faster than pRMSD method when a large number 
of decoys are studied and the computer cannot store the 
N2 pairwise rmsd values in memory. PCAC may be im-
plemented to cluster other large-scale database as well, 
e.g., compound library for virtual screening. 

2. Methods 

2.1. Constructing Covariance Matrix in 
Cartesian Coordinates 

The covariance matrix [13] of C atoms in Cartesian co-
ordinates is used in the PCA calculation. The element σij 
(covariance of two coordinates) in the 3p × 3p matrix (p 
number of C atoms in protein that have a total of 3p Car-
tesian coordinates) is defined as 

 
1

1

1
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i j li i lj j
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where N is the number of decoys for a specific protein, l 

en 
th

2.2. PCAC: Clustering in PCA Space 

coys in PCA 

        (1) 

is the decoy index, i and j are the coordinate indices of a 
total of 3p Cartesian coordinates, and xi and xj are the 
average of the conformations along ith and jth coordi-
nates, respectively. Before the covariance matrix is con-
structed, the decoys are translated and rotated to match a 
reference conformation: thus the rMSD in between the 
decoy and the reference is minimized. A total of N rMSD 
calculations is required to remove the overall rotation. 

The eigenvalues are sorted in descending order wh
e covariance matrix is diagonalized. Only the eigen-

vectors that have significant eigenvalues are preserved 
for further analysis. We either preserve eigenvectors with 
the highest eigenvalues, or set an eigenvalue-percent- 
age-cutoff value (the fraction of the preserved eigenval-
ues over the total eigenvalues) to select the number of 
preserved eigenvectors. 

PCAC is based on pairwise distance of de
space. The PCA distance, dmn, between structures m and 
n is defined as 

 2

1

P

mn k k
k

d m n


              (2) 

where P is the number of preserved important eigenvec-

alized to a scaled Carte-
si

tors (P ≤ 3p), and mk and nk are the coordinates of the 
two decoys projected on the kth eigenvector. During 
clustering, the projected coordinates of each decoy is 
stored in N × P memory units. 

The PCA-distance dmn is norm
an PCA-distance in order to compare it with the 

rRMSD method 

1s
mn mnd d

p
                   (3) 

where p is the number of C atoms to build the Cartesian 

o the diversity of protein decoy sets, an adaptive 
cl

3. Discussion 

est PCAC method is obtained from the 
energy-minimization of 41 helical proteins [5]. The num- 

covariance matrix. All the decoys close to each other 
within a cluster cutoff in PCA space are clustered to one 
family. 

Due t
uster cutoff value is strongly recommended. The cluster 

cutoff value is calculated when the number of decoys in 
the top 3 largest clusters includes 5% of the total decoys 
(T35 value [11]). The top 5 largest clusters are selected 
as the best prediction for a specific protein and the value 
of the structure selection listed in tables is the one that 
has minimum rMSD from native among the 5 selected 
structures. 

The decoy set to t
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ber of residues in the proteins ranges from 40 to 124 and 
the number of helices is from 2 to 6. For each protein, at 
least 2000 initial structures are produced. The initial 
structures are constructed with random dihedral angles 
for the residues in nonhelical regions and native dihedral 
angles for the residues in helical regions [33,34]. The 
DFIRE energy function [35], together with improper 
torsion energy and a simple repulsive potential, are em-
ployed to minimize the initial structures in dihedral space 
to fold the protein. As proved by Equation (5), PCAC 
generates the exactly same results as rRMSD when all 
the eigenvalues are preserved, no further decoy sets are 
needed on test of the new methodology. 

3.1. PCA-Distance and rRMSD 

The rRMSD value used in SCUD, 
rectly calculated rMSD of two decoy

rMSDr
mn

s indexed as
, is the di-

 m and 
ize theirn when both of conformations minim  rMSD val-

ues to the reference conformation [11], 

 
3

21
rMSD

p
r
mn k km n  

1kp 

          (4) 

where p is the total number of C atoms i
culation, and mk′ and nk′ are the k′th laboratory Cartesian 

oordinates on the PCA 
ei

nvolved in cal-

coordinates (after least-square fitting to the reference 
conformation) of the two decoys. 

Since the decoy’s coordinates measured in PCA space 
are the projections of laboratory c

genvectors, the Cartesian distance of any two C atoms 
remains constant in both laboratory coordinates and PCA 
coordinates. Thus, from Equations (2)-(4), we have, 

  1
rMSD when 3r s

mn mnd P p
p

   (5) 

Apparently, from the above equation, we
the rRMSD value is identical to the scaled PCA-distance 
w

luster Cutoff 

ined cutoff value is selected to 
However, it is difficult to set one 

 produced and the 
nu

         

 can see that 

hen all the eigenvectors resulted from PCA are consid-
ered. 

3.2. C

Normally a pre-determ
cluster the structures. 
cutoff value for the diverse proteins because this will 
lead to too few clusters for some proteins and too many 
clusters for the others [5,36]. 

Figure 1 depicts the effect of cluster cutoff on the 
fraction of the number of clusters

mber of decoys included in the top 3 largest clusters. 
We can see that the fraction of the number of clusters 
strongly depends on the number of decoys, whereas the 
fraction of the number of decoys included in the top 3 
largest clusters is independent. A well-defined cluster 
cutoff value should be constant as the number of ana- 

 

Figure 1. The fraction of decoys in the top 3 largest clusters 
(two lines end at right-top corner) and number of cluster

toff 
s T35 value, i.e. the number of decoys in the top 3 larg-

Be Preserved 

envalues contrib-
ure similarity in 

 steadily as the eigenvalue-percentage-cutoff in- 
cr

s 
(two lines start at left-top corner) over the total number of 
decoys as a function of PCA cluster cutoff value from 
1GAB10-51 decoy set (scaled by Equation (3)). The eigen-
value-percentage-cutoff is 70%. The solid lines are from 
2000 decoys, whereas the dashed lines are from 9000 decoys. 
The circle at the left-bottom corner of the figure illustrates 
the selected cluster cutoff T35 value (see text for detail). 
 
lyzed decoys varies. Hence, we select the cluster cu
a
est clusters accounts for 5% of the total decoys. T35 val-
ue is selected as cluster cutoff based on the fact that a 
statistically significant amount of decoys are included in 
the top largest cluster (over 40 for a 2000 decoy set), 
meanwhile, most of the diverse decoys (about 50%) are 
conserved. Li et al. have tested the effect of using dif-
ferent cutoffs as 1%, 3%, 5%, 10%, 15% and 20% of all 
decoy structures contained in top three clusters [11]. It 
shows that a cutoff between 3% to 5% produces the best 
near-native selections. 

3.3. Eigenvectors to 

Only the eigenvectors with highest eig
ute significantly to determining struct
PCA. The eigenvalue distribution of protein 1GAB10-51 is 
illustrated in Figure 2. The top 5 and 10 eigenvectors 
from 1GAB10-51 contain 70% and 85% of the eigenvalues, 
respectively. We can also see that the curves from 2000 
and 9000 decoys are almost identical, implying the ei-
genvalue distribution is independent to the number of 
decoys. 

As listed in Table 1, the near-native selection result 
improves

eases, up to 95%. The 90% eigenvalue-percentage-cut- 
off value can be sufficient to generate near-native pre- 
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diction similar to rRMSD, which preserves only 17 ei-
genvectors on average. Table 2 compares the best struc-
ture selection of 41 proteins from rRMSD and PCAC at 
90% eigenvalue-percentage-cutoff. The average near- 
native selection of top 5 clusters from PCAC is 6.0 Å, 
which is very close to the 5.9 Å value from rRMSD me-
thod. At 99% eigenvalue-percentage-cutoff (on average 
51 eigenvetors are preserved), the average near-native 
selections from the two methods are identical. 

 

 

Figure 2. The eigenvalue distribution of protein 1GAB10-51

The solid line and dashed line represent the distributio

41 proteins using 
ifferent numbers of principal axes. 

. 
n 

from 2000 and 9000 decoys, respectively. 
 
Table 1. Average structure selections of 
d

Cutoffa Axesb Top 5Cc 

1 1 7.9 

2 2 7.4 

70% 7.

80% 10.

rRMSDd -

3 3 6.7 

4 4 6.5 

5 5 6.5 

4 6.6 

3 6.4 

85% 12.7 6.0 

90% 16.6 6.0 

95% 24.8 5.8 

99% 50.9 5.9 

 5.9 

aThe numbe ipal axes prese ber) or the ei lue-per- 
centage- ntage); bThe aver umber of principa  selected; 
c

r of princ rved (num genva
cutoff (perce age n l axes

The minimum rmsd value from native of the top five structures ranked by 
cluster size after clustering (in Å); dThe result from rRMSD method using 
the same reference conformation. 

Table 2. Structure selections of 41 proteins from rRMSD 
method and PCA-clustering. 

PDB Nres
a rRMSDb PCAc 

1G6U 48 0.8(1) 0.7(2) 

2ERL 40 2.9(4) 3.8(1) 

1LP1 55 2.9(1) 2.9(1) 

1EZ3 124 5.1(1) 5.6(1) 

1LVFA 106 3.2(1) 3.1(1) 

1BW6 56 3.6(1) 3.7(1) 

1DV0 45 3.6(4) 3.8(2) 

1EDK 56 8.5(1) 2.8(4) 

1EF4 55 5.1(4) 5.9(4) 

1IDY 54 5.9(1) 5.9(1) 

1BDD 60 6.6(4) 6.6(4) 

1MBE 53 8.5(4) 7.2(3) 

1  44 

1  

1  60 

1A  56 

1  

1A 96 88 

1  68 

1B 740 90 

1  86 

PRB10−53 2.6(2) 2.6(3) 

1PRU 56 5.7(3) 6.4(5) 

2SPZ 58 1.9(5) 2.8(3) 

2HOA 68 12.2(4) 12.4(3) 

1CKT 71 10.4(1) 11.1(4) 

1DV5 80 7.4(3) 7.4(1) 

GAB10-51 42 2.7(1) 2.4(2) 

LBU17-76 7.8(3) 7.7(5) 

1LEA6-52 47 4.1(5) 4.7(1) 

1LRE 81 5.3(2) 5.4(1) 

2OCC 79 7.7(2) 8.4(3) 

4Helix 106 7.1(1) 6.3(4) 

04A158-213 2.5(2) 2.5(4) 

1A6S 87 7.7(1) 8.1(3) 

1C5A 65 8.0(3) 8.2(4) 

FFH2-88 87 3.1(2) 3.1(3) 

1NKL 78 4.2(4) 4.2(1) 

2ABD 86 8.1(1) 8.1(1) 

ISB1109-11 5.1(2) 7.7(5) 

B0NA1-68 5.4(3) 5.4(4) 

1B0XA916-977 62 3.1(1) 5.2(3) 

1UNKA 7 10.5(1) 9.5(2) 

1CTJ 89 8.6(4) 9.6(1) 

1KDXA 81 7.1(1) 6.3(5) 

MTA651- 5.1(3) 3.2(3) 

QC7235-320 4.9(1) 8.8(3) 

1BXM 98 8.8(3) 8.8(1) 

1NGR 85 9.8(4) 9.9(5) 

1RZL 91 7.9(5) 7.8(3) 

Ave. 71.4 5.9(2.4) 6.0(2.7) 

aThe num esidues; bT inimum  from na  
rank) of t five structu d by e from r r-

n Å)  minimum m lue from nd the ra  top 

ber of r he m rmsd value tive (and the
he top 
; cThe

res ranke
sd va

 cluster siz
 native (a

RMSD cluste
nk) of theing (i  r

five structures ranked by cluster size from PCA clustering (in Å). 
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PCAC method is a sufficient method to cluster struc-
tures as rRMSD is further displayed in Figure 3. The 
fig

on 

n be af- 

ure shows the relationship of the scaled PCA-distance 
and the least-square fitting rMSD value of protein 
1GAB10-51 at different eigenvalue-percentage-cutoffs. The 
correlation coefficient increases from 0.88 to 0.99 at 47% 
and 99% eigenvalue-percentage-cutoffs. As the scaled 
PCA-distances at 99% eigenvalue-percentage-cutoff are 
almost identical to the rmsd values within the cluster 
cutoff region, the clustering results from the two methods 
are expected to be almost identical as well. 

3.4. Choose the Reference Conformati

Results from principal component analysis ca
 

 

Figure 3. Backbone rmsd from the structure in largest 
cluster of 2000 1GAB10-51 decoys vs the scaled backb e 

As discussed above, PCAC from covariance matrix in 
essentially the same re-

on
PCA-distance to that structure at different eigenvalue-per- 
centage-cutoff values. The PCA reference conformation is 
the random-selected energy-minimized structure. The ei-
genvalue-overall-cutoff values are of 47% (2 most impor-
tant principal axes are calculated from a total of 126 axes), 
72% (5 axes) and 99% (37 axes) for the three plots, respec-
tively. 

fected by the selection of the reference structures [37]. 
As shown in Table 3, the near-native selection result 
from using native as reference is artificially enhanced. 
We must avoid selecting the native as a reference con-
formation in PCAC. However, it is shown that the aver-
age near-native selection result is not sensitive to a ran-
domly selected structure, even if the unfolded initial 
structure is picked as reference [5]. As listed in Table 3, 
we tested using 3 randomly selected energy-minimized 
structures (on average 10 Å rMSD from native) and 2 
initial unfolded structures (16 Å from native) as refer-
ence states. The resulting near-native selections are simi-
lar. Therefore, in terms of near-native structure selections, 
using any structure that is not close (within the cluster 
cutoff) to the native (and/or close to any of the top 5 
clusters) can produce similar and unbiased results. 

3.5. An Ultra-Fast Method 

Cartesian coordinates produces 
sult as the rRMSD method. Moreover, PCAC can be 
hundreds of times faster when thousands or more decoys 
are calculated. The pairwise rmsd clustering requires 

 1 2N N   calculations of pairwise least-square fitting 
rmsd values. We also need N2 memory units to store the 
res lting rmsd values, which can easily surpass computer 
memory when tens of thousands of decoys are included. 
For example, upto 1,000,000 loop decoys were generated 
by Jacobson et al. [12]. On the other hand, PCAC only 
needs N least-square fitting rmsd calculations and N × P 
memory units to store the preserved P eigenvectors. 

The overhead of PCAC method is the PCA calculation, 
which includes constructing the covariance matrix (needs 
on

u

e round calculation of N least-square fittings to the 
reference conformation), diagonalizing the matrix, and 
 
Table 3. Average structure selections of 41 proteins using 
different reference conformations. 

90 % Cutoffa 99 % Cutoffa 
Referenceb 

Top 5Cc Axesd Top 5Cc Axesd 

final(1)  e .4 9 6.0 16 5.9 50.

final(2) 5.8 16.5 5.4 50.7 

final(3) 5.9 16.5 6.1 50.6 

initial(1) 5.9 16.6 5.5 50.9 

initial(2) 5.8 16.6 5.8 51.1 

native 5.3 16.4 5.1 50.6 

aEige entage-c ; bRefer onform  three -s 
elected -minimize l) stru s, two ra m-selecte l 
(initia res, and na cThe mi  rmsd v rom na he 

nvalue-perc utoff ence c ation: random
 energy

l) structu
d (fina
tive; 

cture
nimum

ndo
alue f

d initia
tive of t

top five structures ranked by cluster size from PCA clustering (in Å); dThe 
number of principal axes preserved; eThis random-selected energy-mini- 
mized structure is the one used in other tables. 
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projecting the structures on the preserved eigenvectors. 
In the test of clustering on 9000 1GAB10-51 decoys, 

324 Mb memory storage is needed for the pairwise
e

as

accordingly. Because the eigenvalue dist
tio

onstrates that PCAC is an extremely fast
requiring algorithm to cluster l

. PCAC method ca

g. HL ap-
his deep discussion o

[1] O. M. Becker, “Geometric versus Topological Clustering: 
An Insight int ,” Proteins: Struc-
ture, Function l. 27, No. 2, 1997,

 
 rMSD values (each rMSD value occupies 4 bytes storag

 a real number). If the required memory storage can not 
be satisfied, each pair of rMSD values must be recalcu-
lated when needed. The computing time for traditional 
pRMSD method to cluster the 9000 decoy set is 53,500 
seconds (including a total of 10 rounds of clustering to 
search the cluster cutoff T35 value). For PCAC, less than 
1 Mb memory storage is required for the clustering of 
9000 decoys at 90% eigenvalue-percentage-cutoff. It 
takes a total of 274 seconds, which includes 102 seconds 
for PCA calculation and 172 seconds for clustering. 
PCAC method is almost 200 times faster than pRMSD 
method when the computer memory can not hold N2 real 
numbers. 

The more decoys analyzed, the faster PCAC method 
becomes, since the fraction of the overhead PCA calcula-
tion drops ribu-

 

n is almost independent to the number of decoys 
(shown in Figure 2), another way to speed up PCA cal-
culation is analyzing only a small number of decoys (e.g.,
2000) to calculate the PCA matrix and implementing the 
obtained eigenvectors to a large number of decoys. Con-
sequently, the overhead of PCA calculation can be fur-
ther reduced. 

4. Conclusion 

This work dem  
and low-memory-
scale predicted protein structures

arge- 
n be 

over 100 times faster than pairwise-rMSD clustering 
method. The computer memory requirement also drops 
from O(N2) to O(N), where N is the size of the dataset. 
PCAC algorithm may be implemented to cluster other 
large-scale bioinformatics dataset as well when the data-
set can be effectively described in PCA space. 
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