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Abstract 
In this paper, some stability results were reviewed. A suitable and complete 
Lyapunov function for the hard spring model was constructed using the 
Cartwright method. This approach was compared with the existing results 
which confirmed a superior global stability result. Our contribution relies on 
its application to high damping door constructions. (2010 Mathematics Sub-
ject Classification: 34B15, 34C15, 34C25, 34K13.) 
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1. Introduction 

In real life, most problems that occur are non-linear in nature and may not have 
analytic solutions except by approximations or simulations and so trying to find 
an explicit solution may in general be complicated and sometimes impossible. 
Duffing’s equation is a second order non-linear differential equation used to 
model such problems of non-linear nature [1]. In particular, it is used to model 
damped and driven oscillators, for example, modelling of the brain [2], in pre-
diction of earthquake occurrences [3], signal processing [4] and crash analysis 
[5]. In [6], differential equation which describes a non-linear oscillation was first 
introduced by Duffing’s with cubic stiffness constant. The general form of Duff-
ing’s equation is: 

( ) ( )  ,x cx g t x p t+ + =                         (1.1) 

where ( )p t  is continuous and 2π-periodic in t∈ . 
The study of periodic solution of Duffing’s equation is like that of the study of 

classical Hamiltonian equation of motion which is characterized by multiplicity 
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of periodic solution. Various techniques for investigating the stability of periodic 
solutions of Duffing’s equation have been reported, (see [7] [8] [9] [10] [11]). 
Our approach to study stability of periodic solutions is by the use of the Lyapu-
nov direct method. Many researchers have obtained useful and valid results us-
ing the Lyapunov second method (direct method) for stability analysis and con-
struction of appropriate Lyapunov functions for other Duffing equation but the 
use and construction of Lyapunov function using Cartwright method are rare in 
literature, for instance [12] [13] [14] [15] [16]. The application of this method is 
in constructing a scalar function and its derivatives with peculiar characteriza-
tions. When these characterizations are satisfied, the stability behaviour of the 
system is solved. The difficulties in the construction of suitable Lyapunov func-
tions in nonlinear systems have attracted the attention of many researchers and 
have been summarized in [17] [18] [19] that discussed the general approach to 
the stability study of periodic solution which is related to the classical Lyapunov 
theorem based on linear approximations. This reduces the stability study of pe-
riodic solutions to the stability of the system linearized at the periodic motion. 
Since linearized systems contain periodic coefficients, the theory of parametric 
resonance can be applied. Such approach with the analysis of Floquet multipler 
is used in [9] [20] [21]. The other traditional approach to the study of stability of 
periodic solutions is the approximate average and multiple scales method, which 
reduces original time dependent dyamical systems to autonomous system. In 
this case stability study is the analysis of fixed point, (see [22]). 

Our construction of suitable Lyapunov function rests squarely on the ap-
proach of [23]. Others who used this approach are [16] [24]. Very few nonlinear 
systems can be solved explicitly and so we must rely on numerical schemes to 
approximate the solutions, (see [25] [26] [27] [28]). This paper is motivated by 
studying [11] [29] where stability analysis of the unforced and damped cu-
bic-quintic Duffing oscillator of the form  

3 5 0u u u u uδ α β µ+ + + + =                    (1.2) 

was carried out. Using Equation (1.2) the existence of a three term valid solution 
was obtained using derivative expansion method. The derivative expansion me-
thod is one of the perturbative methods which require the existence of a small 
parameter and is therefore not valid in principle for the Duffing equation in 
which the nonlinearity is large. Its stability analysis of the equilibrium point was 
carried out using the eigenvalue approach. Secondly, our motivation was aug-
mented by reading the works of [10] where new criteria for existence and 
asymptotic stability of periodic solutions of a Duffing equation of the form 

( ), 0x cx g t x+ + =                         (1.3) 

were derived. This approach exposed by [10] is useful when the non-linearity 
does not admit the decomposition of ( ) ( ) ( ),g t x g x h t= + . In line with the 
above review and ongoing research in this direction, the objective of this paper is 
to investigate the stability analysis of periodic solutions of the Duffing type 
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( )2 32cx ax x h tx bx+ + + + =                     (1.4) 

with boundary conditions as: 

( ) ( )0 2πx x=                         (1.5) 

( ) ( )0 2πx x=   

where , ,a b c  are real constants and [ ]: 0, 2πh → N  is continuous. In Equa-
tion (1.4), a is the stiffness constant, c is the coefficient of viscous damping and 

2 32bx x+  represents the nonlinearity in the restoring force acting like a hard 
spring. Equation (1.4) has received wide interest in neurology, modelling of 
mechanical systems such as shock absorbers in most vehicles. It can be used to 
model plant stems to better understand the effect of nonlinear stiffness or reso-
nant behavior of plants. It is a model arising in many branches of Physics and 
Engineering such as oscillation of rigid pendulum using moderately large am-
plitude motion [29], Vibration of buckled beam [30] etc. This equation together 
with Van der Pol’s has been reported in textbooks as examples of nonlinear os-
cillation. See [31] [32] [33]. 

2. Preliminaries 

Definition 2.1. (Properties of Lyapunov Function) 
The Lyapunov function has the following properties: 
a) Continuity: ( ),V t X  is continuous and single valued under the condition 

t T≥  and ix H<  and ( ),0 0V t ≡ . 
b) ( ),V t X  is positive definite; and 

c) 1 2
1 2

n
n

V V V VV x x x
x x x t
∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂






  , representing the total derivative 

with respect to t is negative definite. 
Definition 2.2. (Complete Lyapunov function) 
A Lyapunov function V defined as : nV I × →   is said to be COMPLETE 

if for nX ∈ , 
1) ( ), 0V t X ≥ ； 

2) ( ), 0V t X =  if and only if 0X =  and 
3) ( ),V t X c X≤ −  where c is any positive constant and X  given by 

( )
1
22

1
 

n

i
i

X x
=

 
= → ∞ 
 
∑  

It is INCOMPLETE if 3) is not satisfied. 
Theorem 2.3. Consider a system of differential equations 

( )X f x=                         (1.6) 

2:f D →  . Let 0X =  be an equilibrium point of Equation (1.6). 
Let :V D →   be a continuously differentiable function; such that: 
1) ( )0 0V = ； 
2) ( ) 0V x >  in { }0D − ； 
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3) ( ) 0V x ≤  in { }0 .D −  
Then 0X =  is stable. 
Theorem 2.4. Let :V D →   be a continuously differentiable function such 

that: 
1) ( )0 0;V =  
2) ( ) 0V x >  in { }0 ;D −  
3) ( ) 0V x <  in { }0 .D −  
Then 0X =  is “asymptotically stable”. 
Theorem 2.5. Let :V D →   be a continuously differentiable function such 

that: 
1) ( )0 0;V =  
2) ( ) 0V x >  in { }0 ;D −  
3) ( )V x  is “radially bounded”; 
4) ( ) 0V x <  in { }0 .D −  
Then 0X =  is “globally asymptotically stable”. 
Theorem 2.6. Suppose all conditions for asymptotic stability are satisfied. In 

addition to it, suppose there exists constants 1 2 3, , ,K K K P  
1) ( )1 2 ;P PK X V X K X≤ ≤  
2) ( ) 3  .PV X K X≤ −  
Then the origin 0X =  is “exponentially stable”. 
Moreover, if this conditions hold globally, then the origin 0X =  is globally 

exponentially stable. 

3. Results 
3.1. Construction of Lyapunov Function for the Duffing Equation 

Using Cartwright Method 

We adapt the method of construction of Lyapunov function used in [23] and 
extend it to the second order non-linear differential equation of the Duffing type 
of the form (3.1). In the sequel, [34] asserted that Lyapunov functions are vital in 
determining stability, instability, boundedness and periodicity of ordinary diffe-
rential. Considering the Duffing equation of the form 

( )2 32x cx ax bx x p t+ + + + =                    (1.7) 

The equivalent systems of Equation (1.7) is 

( )
1 2

2 2 1 1

x x
x cx ax h x
=

= − − −





                     (1.8) 

where ( ) 2 3
1 1 12h x bx x= +  and ( ) 0p t = . 

Writing the equivalent systems of Equation (1.7) in compact form, we have 

X AX=                            (1.9) 

where 
( )

0 1
A

a h x c
 

=  − − − 
, 1

2

.
x

X
x
 

=  
 

 

The method discussed here is based on the fact that the matrix A has all its ei-
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genvalues as negative real parts. Then from the general theory which corres-
ponds to any positive quadratic form ( )U x , there exists another positive defi-
nite quadratic form ( )V x  such that 

V U= −                          (1.10) 

Choosing the most general quadratic form of order two and picking the coef-
ficient in the quadratic form to satisfy Equation (1.10) along the solution paths 
of Equation (1.10) we assume V to be defined by  

2 22 2V Ax By Kxy= + +                   (1.11) 

( )
( )( ) ( )( )

( ) ( )

2

2 2 2

V Axx Byy K xy yx

Axy B cy ax h x Ky Kx cy ax h x

Axy Bcy Byax Byh x Ky Kcxy Kax Kxh x

= + + +

= + − − − + + − − −

= − − − + − − −



   

 

Simplifying the coefficients we have 

( ) ( ) ( ) ( ) ( )2 2V A Ba Kc xy K Bc y Ka x Kx By h x= − − + − − − +    (1.12) 

To make V  negative definite, we equate the coefficient of mixed variable to 
zero and the coefficients of 2x  and 2y  to any positive constant (say δ ) as 
outlined in Table 1 

0A Ba Kc− − =                            (1) 

K Bc δ− =                             (2) 

Ka δ− =                              (3) 

( ) 0Kx By− + =                            (4) 

From Equation (3) above 
Ka δ− =  

K
a
δ

= −                          (1.13) 

Then substituting the value of K into Equation (2) we obtain 

Bc
a
δ δ− − =  

Bc
a
δδ− = +  

( )1a
B

ca
δ +

= −                       (1.14) 

Substituting for K and B in (1) we have 

( )1a cA Ba Kc
c a

δ δ+
= + = − −                (1.15) 

which by further simplification gives that 

( ) 21A a a c
ca
δ  = − + +                  (1.16) 

Substituting for the values of the constant A, B, K in Equation (1.11) gives 

( ) [ ]2 2 22 1 1 2V a a c x a y xy
ca ca a
δ δ δ = − + + − + − 
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Table 1. A table showing terms and coefficients of Equation (1.12). 

Terms Coefficient 

xy  A Ba Kc− −  

2y  K Bc−  

2x  Ka−  

( )h x  ( )Kx By− +  

 

( )( ) ( )2 2 21 1 2
2

V a a c x a y cxy
ca
δ  = − + + + + +          (1.17) 

By choosing 1
ca
δ

= −  

( ) ( )( ) ( )2 2 21 1 1 2 0
2

V x a a c x a y cxy = + + + + + >         (1.18) 

Using Equation (1.19) and the fact that 0V < , the equilibrium point is 
asymptotically stable. 

3.2. Stability Analysis of Periodic Solution of Duffing Equation  
Using the Eigenvalue Approach 

Considering the Duffing equation of the form (1.7), the first equivalent systems 
of (1.7) is given by 

( )2 32

x y
y cy ax bx x h t
=

= − − − − +





                (1.19) 

For the unforced case, Equation (1.19) is reduced to 

2 32

x y
y cy ax bx x
=

= − − − −





                  (1.20) 

At fixed points, 0.x y= =  
So that 0y =  and ( )2 3 22 2 0.y ax bx x x ax bx x= − − − = − − − =  

Giving us 
2

1
80,

4
b b ax x − + −

= =  and 
2

2
8

4
b b ax − − −

=  which corres-

pond to ( )0,0 , ( )1,0x  and ( )2 ,0x  at fixed point. Analysis of the stability of 

the fixed points can be done by linearizing Equation (1.20) which gives 

( )22 6

x y

y cy a bx x x

=

= − − + +

 

  

                 (1.21) 

The matrix equation for (1.21) can be written as 

( )2

0 1

2 6
x x

a bx x cy y

    
=     − + + −     

 

 

              (1.22) 

Examining the stability at the point (0,0) gives 
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( )2

0 1

2 6a bx x c

λ

λ λ

− 
 
− + + − − −  

 

2 22 6 0c a bx xλ λ λ+ + + + + =  

( )2 1 0c gλ λ+ + + =                     (1.23) 

( ) ( )21 1 4
2

c c g
λ

− + ± + −
=                 (1.24) 

where ( ) ( )( )2
1

1 1 1 4
2

c c gλ = − + + + −  and ( ) ( )( )2
2

1 1 1 4
2

c c gλ = − + − + −  

are the roots of Equation (1.23). 1λ  and 2λ  can be written as 

( )2
1

1 4
2

gλ δ δ= − + −  and ( )2
2

1 4
2

gλ δ δ= − − −  where 1 cδ = +  and 

22 6g a bx x= + +  

The coefficient of β  shows that the Duffing equation is highly damped 
representing a hard spring. This hard spring is represented in Equation (1.21) 
where the coefficient of 2x  is 6. 

At the origin, ( ) ( )0,0 21 4 .
2

gλ δ δ± = − ± −  

With 0δ = , ( )1,2
1 4 .
2

gλ = ± −  

For this, we consider the following cases: 
1) When 0g = , 1,2 0λ =  and this implies that , ,b x a  are all zero; 
2) When 0g > , 1,2 i gλ = ±  which corresponds to critical points that are 

centres for which stability is ensured; 
3) When 0g < , 1,2 gλ = ±  which corresponds to saddles giving rise to in-

stability [11]. 

With 0δ > , ( )2
1,2

1 4 .
2

gλ δ δ= − ± −  

For this, we consider the following cases: 
1) When 0g = , 1,2 0, ;λ δ= −  

2) When 0g > , ( )2
1,2

1 4 .
2

gλ δ δ= − ± −  

For the discriminate, we have the following cases: 

When 2 4gδ < , ( )2
1,2

1 4
2

i gλ δ δ= − ± −  shows that the roots are imagi-

nary which to lead to spiral and asymptotic stability. 

When 2 4gδ > , ( )2
1,2

1 4
2

gλ δ δ= − ± −  shows that the roots are real 

which leads to saddles and instability. 
When 2 4gδ = , 1,2 gλ = ±  shows that the roots are real corresponding to 

saddles and instability. 

When 0g < , ( )2
1,2

1 4 .
2

gλ δ δ= ± +  
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For the discriminate, we consider the following cases: 

1) When 2 4 0gδ + < , ( )2
1,2

1 4
2

i gλ δ δ= ± +  which corresponds to spirals 

and asymptotic stability. 

2) When 2 4 0gδ + > , ( )2
1,2

1 4
2

i gλ δ δ= ± +  which leads to instability. 

3) When 2 4 0gδ + = , ( )1,2 i gλ = ±  which leads to centres and instability. 
Interestingly, for special case when 0c =  with no forcing term equation 

(1.20) becomes 
x y=                             (1.25) 

2 32y ax bx x= − − −                        (1.26) 

The above can be integrated by quadrature, differentiating (1.25) and plugging 
in (1.26) gives 

2 32x y ax bx x= = − − −                      (1.27) 

Multiplying both sides by x  gives 

2 32 0xx axx bxx xx− − − =                         (1.28) 

Equation (1.28) can be written as 

2 2 3 4d 1 1 1 1 0
d 2 2 3 2

x ax bx x
t
 − − − =  
                (1.29) 

So we have a variant of motion 

2 2 3 41 1 1 1
2 2 3 2

h x ax bx x= − − −                   (1.30) 

solving for 2x  gives 
2

2 2 3 4d 22
d 3
xx h ax bx x
t

 = = + + + 
 

  

2 3 4d 22
d 3
x h ax bx x
t
= + + +  

2 3 4

dd
22
3

tt t
h ax bx x

= =
+ + +

∫ ∫          ([35], p. 29) 

Note that the invariant of motion h satisfies h hx
x y
∂ ∂

= =
∂ ∂





 where 

2 3  2h ax bx x y
x
∂

= + + =
∂

                      (1.31) 

So the equation of Duffing oscillator are given by the Hamiltonian system  

hx
y
∂

=
∂

  and hy
x
∂

= −
∂

              ([35], p. 31) 

We consider the stability analysis of Duffing’s equation for different values of 
a, b, c, as illustrated in Table 2. 
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Table 2. The stability analysis and numerical solutions of duffing’s equation at different 
values a, b, c. 

0.1
0.2
0.1

a
b
c

=
=
=

 
12

21

0.2 0.76
4

0.2 0.76
4

x

x

− ± −
=

− ± −
=

 

−0.05 
−0.05 
0.168 
−1.07 

Spiral 
Spiral 
Saddle 
Spiral 

Asymptotically stable 
Asymptotically stable 

Unstable 
Stable 

0.6
0.3
0.5

a
b
c

=
=
=

 
12

21

0.2 4.71
4

0.2 4.71
4

x

x

− ± −
=

− ±
=

 

−0.0075 
−0.0075 

0.468 
−0.618 

Spiral 
Spiral 
Saddle 
Spiral 

Asymptotically stable 
Asymptotically stable 

Unstable 
Stable 

0.01
0.02
0.03

a
b
c

=
=
=

 
12

21

0.2 0.0796
4

0.2 0.0796
4

x

x

− ± −
=

− ±
=

 

−0.02 
−0.02 
0.066 

−0.076 

Spiral 
Spiral 
Saddle 
Spiral 

Asymptotically stable 
Asymptotically stable 

Unstable 
Stable 

0.2
0.2
0.03

a
b
c

=
=
=

 
12

21

0.2 1.56
4

0.2 1.56
4

x

x

− ± −
=

− ±
=

 

−0.2 
−0.2 
0.262 

−0.362 

Spiral 
Spiral 
Saddle 
Spiral 

Asymptotically stable 
Asymptotically stable 

Unstable 
Stable 

Field work 2017. 

3.3. Numerical Solution of Duffing’s Equation Using Mathcad 

: 0.1 : 0.2 : 0.1a b c= = =  

0 1: 0 : 150t t= =  Solution interval endpoints; 
0

:
1

ic  
=  
 

 Initial condition vector; 

: 1500N =  Number of solution values on [ ]0 1, .t t  

( )
( ) ( )

1
2 3

0 0 0 1

, :
2

X
D t X

a X b X X c X

 
=  

− ⋅ − ⋅ − ⋅ − ⋅  
 Derivative function. 

( )0 1: , , , , .S rkfixed ic t t N D=  
0:T S=  Independent variable values. 

1
1 :X S=  Solution function values. 

2
2 :X S=  Derivative function values. 

3.4. Stability Analysis of Duffing Equation under Oyesanya and 
Nwamba (2013) 

The unforced and damped cubic-quintic Duffing oscillator is given by 
3 5 0u u u u uδ α β µ+ + + + =                   (1.32) 

From Equation (1.32) we obtain the autonomous dynamical system 

3 5

y u
y u u u uδ α β µ

= 


= − − − − 



 

                (1.33) 

From the condition 0u =  we obtain 0y =  which gives us 
3 5 0u u uα β µ+ + =                     (1.34) 
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Equation (1.34) can be written as 
2 4 0u u uα β µ + + =                     (1.35) 

We obtain the roots of (1.35) as 

2
0 1,2,3,4

10, 4
2

u u β β µα
µ
 = = ± − ± −  

 

Then the equation satisfied by the eigenvalues of our systems stability matrix 
is 

2 2 43 5u uλ δλ α β µ+ = − − −                  (1.36) 

where u  denotes 1 2 3u u u  and 4u  or the u-coordinate of an equilibrium point. 
Whether our eigenvalues will be complex, real or imaginary will be determined 

by the values of δ  and 4 25 3g u uµ β α= + +  with = 0, ( )1,2
1 4
2

gλ  = ± −  . 

For this we consider the following cases: 
1) 0g = : for this case 1,2 0.λ =  
This contradicts our assumption that det 0J ≠  and it also implies that 
, ,α β µ  are all zero. 
2) 0g > : for this case 1,2 .i gλ = ±  
This corresponds to critical points that are centers for which stability is en-

sured. 
3) 0g < : for this case 1,2 gλ = ±  which corresponds to saddles giving rise 

to instability in (1.35) with 0δ > , 

2
1,2

1 4
2

gλ δ δ = − ± −  
 

Then considering the case below we have: 
1) 0g = : giving the values 1,2 0,λ δ= −  which goes contrary to our aassump-

tion that det 0j ≠ . It also implies that , ,α β µ  are all zero. 
2) 0g > : for this case 

2
1,2

1 4
2

gλ δ δ = − ± −  
 

Considering the discriminant fot this case, we have three cases. 

a) 2 4gδ < , 2
1,2

1 4
2

gλ δ δ = − ± −  
 which corresponds to spirals and 

asymptotic stability. 

b) The case 2 4gδ >  gives the values of the form 1,2
1 , 0
2

p pλ δ = − ± >   

which corresponds to nodes resulting in asymptotic stability if pδ >  and to 

saddles and consequently instability if pδ < . 

c) 2 4gδ =  gives 1,2 gλ = ± . For this case we have saddles and hence insta-
bility. 

3) 0g <  leads us to have 2
1,2

1 4 .
2

gλ δ δ = ± −  
 

Considering the discriminate we consider the three cases as follows: 
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a) 2 4 0gδ + < : this case gives 2
1,2

1 4
2

i gλ δ δ = ± −  
 and we have spirals 

and consequently asymptotic stability. 

b) 2 4 0gδ + >  gives 1,2
1   , 0
2

i Q Qλ δ = ± >   and this leads us to the exis-

tence of node and instability if Qδ >  or saddles and instability if .Qδ <  

c) 2 4 0gδ + = , 1,2 i gλ  = ±    which yield centers and stability. 
We now consider the stability analysis of the dynamics for a few choices of 
, ,α β µ  and δ  by using employing Equations (1.35) and (1.36). These are il-

lustrated in Table 3. 

3.5. Stability Analysis of Torres (2004) 

We consider the Duffing’s equation of the form 

( ), 0x cx g t x+ + =                         (1.37) 

with 0c >  and [ ]: 0, 2πg R R× →  is a 1L -caratheodory function such that 
the partial derivative xg  exists and it is: 

1L -caratheodory. For a given 1 p≤ ≤ +∞ , let us define the set 

( ) ( )
2

*
, 0, 2π : 0, 1 2

4
p

p c p

ca L a a k p
   Ω = ∈ > < +  
   

 

with * ,p k  defined. Let ϕ  be a 2π periodic solution of Equation (1.37), we  
 

Table 3. Stability analysis of the dynamics of the oscillator for few choices of parameter α, 
β and μ. 

1α β µ= = =  
1,2

3,4

1 3
2

1 3
2

iU

iU

− +
= ±

− −
= ±

 

−1 
−1 
1 

−1 

Spirals 
Spirals 
Spirals 

Asymptotically stable 
Unstable 
Unstable 

1, 1α β µ= = = −  
1,2

3,4

1 5
2

1 5
2

iU

iU

− −
= ±

− +
= ±

 

−1 
−1 
1 

−1 

Saddles 
Saddles 
Saddles 
Saddles 

Unstable 
Unstable 
Unstable 
Unstable 

1, 1, 0.01α β µ= = − =  
1,2

3,4

1 0.96
0.02

1 0.96
0.02

U

U

− +
= ±

−
= ±

 

−1 
−1 
1 

−1 

Spirals 
Spirals 
Saddle 

Asymptotically stable 
Unstable 
Unstable 
Unstable 
Unstable 

1, 1α β µ= − = =  
1,2

3,4

1 5
2

1 5
2

U

U

− +
= ±

− −
= ±

 

−1 
−1 
1 

−1 

Spirals 
Spirals 
Spirals 
Spirals 

Asymptotically stable 
Unstable 

Asymptotically stable 
Unstable 

1, 1, 0.02α β µ= − = = −  
1,2

1 0.92
0.04

U −
= ±  

−1 
−1 
1 

−1 

Spirals 
Saddles 
Saddles 
Saddles 

Asymptotically stable 
Unstable 
Unstable 
Unstable 
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assume that ,p ca∈Ω  exists such that 

( )( ) ( ),xg t x a tϕ <  for a.e [ ]0,2πt∈               (1.38) 

For such an a, the operator L as defined in maximum principle is inversely 
positive. By defining the operator. 

[ ] ( )1: 0, 2π 0,2πF C L→ , ( )1: 0, 2πH L W→  
( ) ( )xG a x g x= →  1 .H L F−=  

The solution ϕ  can be seen as a fixed point of the operator H. Next, we re-
call that an isolated 2π-periodic solution has a well-defined index ( )γ ϕ  and 
( ) 1γ ϕ ≤ . 

4. Discussion 
Figure 1 is the MATCAD showing the behavior of the Duffing’s equation when 

0.1, 0.2a b= =  and 0.1c =  is periodic. We observe asymptotically stable at 

both saddle and spiral point i.e. 0.2 0.76 ,0
4

 − ± −
  
 

 which are three equilibrium 

points observed. This situation is seen in Duffing’s equation. 
Figure 2 shows the dynamics of Duffing’s equation when  

0.6, 0.3, 0.5a b c= = = . We observed asymptotically stable at spiral point i.e.
0.3 4.71 ,0

4
 − ± −
  
 

. This shows that the phase is revolving round it. At (0.468) 

the point was saddle showing that it is unstable. 
Figure 3: the MATCAD shows the dynamics of the Duffing’s equation when 

0.01, 0.02, 0.03a b c= = = . Three equilibrium points was observed. Saddles were 
obtained at ( )0.02,0.066−  showing that the phases are toward the origin. 

Figure 4: the MATCAD were obtained for the values of  
0.2, 0.2, 0.03a b c= − = = . In this case it is important to note that the phase line 

tend to converge toward the equilibrium points. 
Figure 5: The trajectory profile of Duffing’s equation were obtained for the 

values 0.2, 0.2, 0.03a b c= − = = . In this case, there is an increase in oscillation 
which is as a result of decrease in the damping coefficient. That is decrease in 
damping leads to increase in oscillation. 

Figure 6: The phase portrait of Duffing’s equation was obtained. We observed 
that the phase line was depicting a center of non-stable node. 

Figure 7: The trajectory profile of Duffing’s equation were obtained for the 
values 0.6, 0.3, 0.5a b c= = = . In this case, there is a decrease in the maximum 
displacement from the origin which leads to decrease in oscillation. The decrease 
in oscillation is as a result of increase in the damping coefficient. That is increase 
in damping leads to decrease in oscillation. 

Figure 8: In this case, the phase portrait was depicting the center as an unsta-
ble node. 

5. Conclusion 

The study of the stability analysis of periodic solution using Lyapunov direct  
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Figure 1. Trajectory profile of Duffing equation for values 0.1, 0.2, 0.1a b c= = = . 

 

 
Figure 2. Phase portrait of Duffing’s equation showing asymptotic 
stability of solution as a spiral sink. 

 

 
Figure 3. Trajectory profile of Duffing equation for values  

0.6, 0.3, 0.5a b c= = = . 
 

 
Figure 4. Phase portrait of Duffing’s equation depicting asymptot-
ic stability of solution as a spiral sink. 
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Figure 5. Oscillatory profile of Duffing equation for parameters  

0.2, 0.2, 0.03a b c= − = = . 
 

 
Figure 6. Phase portrait of Duffing’s equation depicting a centre 
of a non-stable node. 

 

 
Figure 7. Oscillatory profile of Duffing equation for values  

0.6, 0.3, 0.5a b c= = = . 

 

 
Figure 8. Phase portrait depicting the centre as an unstable node (parameters). 
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method and Matcad has yielded successful results. We discovered that global 
stability of periodic solution was achieved through the construction of a suitable 
and complete Lyapunov function for the hard spring system using Cartwright 
method. From the above tables discussed and outlined, we could see that the 
stability behaviours of the solutions are similar despite the different methods. 
Our technique showed superiority above others because stability is a property of 
the equilibrium point and of the system. 
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