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Abstract 
The pure spinel phase of Ni0.45Co0.2Zn0.35F2O4 [NCZF] was prepared by copre-
cipitation method. The nanocomposite [(NCZF)1−x(Na(ac.ac))x] (x = 0%, 20%, 
40%, 60%, 80%, 100%) was prepared by mixing two phases: ferrite phase and 
ferroelectric phase. The magnetic characters of composites performed using 
vibrating sample magnitude (VSM) at room temperature with maximum ap-
plied field up to 2 kG. For smaller particle size < 30.89 nm, the coercivity in-
creases rapidly with increasing particle size and reaching maximum value of 
99.9 G at 30.89 nm and then decrease with particle size for lager particles >30.89 
nm. The saturation magnetization Ms decreases linearly with increasing par-
ticle size. The effect of temperature on the electrical resistivity of the different 
composites samples was studied. It is noted that, the resistivity decreases with 
rising temperature to have a minimum value at ferroelectric transition tem-
perature, above this value the resistivity increases. The dielectric constant in-
creases with increasing temperature for all composites. The dielectric loss tan 
(δ) as a function of temperature sharply with temperature reached to maximum 
value at ferroelectric phase transition then decrease again. 
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1. Introduction 

Nowadays technology and science are focusing on three global problems [1]: 
energy, environment and health. Magnetic materials can contribute in all of 
these cases; cubic spinel ferrite is a group of technologically important magnetic 
materials having applications from microwave to radio frequencies. Structural, 
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electrical, and magnetic properties of these materials effectively depend upon 
their stoichiometry methods of synthesis, and cationic distributions [2]. The abili-
ty to control magnetism with an electric field has drawn wide research interest 
due to the potential it holds in lowering the power consumption of magnetic de-
vices [3]. The coupling between electric and magnetic fields in matter was in-
itially discovered by Rontgen in 1888 [4] when he found that a moving dielectric 
placed in an electric field has become magnetized, and then was theoretically 
described by Curie in 1894 [5] on the base of crystal symmetry considerations. 
The discovery of the phenomenon of ferroelectricity was made by Valasek in 1920 
[6]. Fox and Scott [7] have also shown that ferroelectricity can produce magnetic 
field and vice versa. This has provoked interest in study and understanding of 
“multiferroics” and “magnetoelectric” materials. Magnetoelectric materials are 
the materials, which are simultaneously ferrimagnetic and ferroelectric. Such ma-
terials can be used for all the potential applications. In addition, these materials 
also show the magnetoelectric effect [8]. The magnetoelectric effect (ME) de-
fined by the electric field (E) induced under application of a magnetic field (H) or 
vice versa. Electronic and magnetic materials can be found everywhere in modern 
technology and industry. These ME materials could potentially be used for fa-
bricating new types of sensors, actuators and data storage devices. Magnetoelec-
tric materials are an important class of materials for such applications, and can of-
fer potential revolutionary device. Table 1 shows some composite multiferroic ma-
terials. 

The aim of our study is to fabricate new magnetoelectric nanocomposite, which 
has a high sensitivity to any charge in electric field. 

2. Experimental 
Sample Preparation 

Ni0.45Co0.2Zn0.35Fe2O4 ferrite particles was prepared by chemical precipitation of 
[NiCL2, CoCL2, ZnCL2] and [FeCL3] (1:2 molar ratio) by addition 25% ammonia 

 
Table 1. Composite multiferroic materials [31] [32]. 

Material Characteristic Examples 
α 

(mV cm-1Oe-1) 

Particulate 
Ceramic 

Composite 

A variety of ferroelectric/ferrite  
compositions have been fabricated 
consisting of the ferroelectric  
phases, such as BaTiO3(BTO),  
PbZr(1−x)TixO3(PZT), (PVDF), 
PbTiO3(PT) and ferromagnetic 
phases such as CoFe2O4(CFO), 
Terfenol-D(Tb1−xDyxFe2), 
NiFe2O4(NFO), CuFe2O4(CuFO), 
LaMnO3(LMO), 

BTO/CFO 130 

CuFO/BTO 425 

CFO/BTO 200 

PZT/CFO -- 

Pb0.95Sr0.05Ni0.06 
Zr0.49Ti0.40O3/CFO 

-- 

Terfenol-D/PVDF  70 

BTO/Ni0.94Co0.01Cu0.05Fe2O4 1430 

Sr0.5Ba0.5Nb2O6/CFO 0.64 
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solution [9]. The volume of reaction mixture have been mixed using magnetic 
stirring during continuous slow addition of 25 ml ammonia solution and the 
heating continued for thirty minutes. The powder precipitate decanted in and 
washed with 500 ml distilled water [10]. Sodium acetylacetonate prepared by 
dissolving 40 g. (1 mole) of sodium hydroxide in 50 ml. of water and adding to 
this 200 ml. of methanol. This solution is added, slowly with hand stirring, to 
100 g. (1 mole) of acetyl acetone contained in a 500-ml. flask. The creamy-white 
crystalline salt separates from solution immediately. The flask is stoppered and 
cooled in ice (or in a refrigerator) for 2 hours or overnight. The sodium salt is 
collected on a Büchner funnel and washed with two small portions of cold me-
thanol. After the salt is air dried, it dried further either by allowing it to stand in 
a vacuum desiccator at room temperature or by heating it in a vacuum oven at 
100˚ for 3 hours. The anhydrous product, which is stable, can be stored indefi-
nitely in a stoppered jar [11]. Ni0.45Co0.2Zn0.35Fe3O4 [NCZF] and Sodium Acety-
lacetonate [Na(ac.ac)]were mixed with the percentage according to formula 
[(NCZF)1−x(Na(ac.ac))x], (x = 0%, 20%, 40%, 60%, 80%, 100%). The composites 
mixed and ground very well for 12 hours using agent mortar. Finally, all samples 
were ground and pressed at room temperature into tablets under of 10 Ton/cm2 
of diameters 1 cm and 0.4 cm thickness. 

3. Results and Discussion 
3.1. Vibrating Sample Magnetometer (VSM) 

Figure 1 shows the magnetic hysteresis loop of nanocomposite samples at room 
temperature with maximum applied up to 2 kG. The magnetic properties such as 
saturation magnetization (Ms) and coercivity (Hc) calculated from the hysteresis 
loop. The insets of the figure show the expanded region around the origin with 
different field ranged 0:±600 G or in order to make the coercivity more visible. 
For the pure ferrite sample, the coercivity at room temperature as derived from 
M-H loops was 89 G while for x = 40%, [(NCZF)1−x + (Na(ac.ac))x] composite 
was 99 G. The saturation magnetization Ms is at room temperature 25.5 emu/gm 
for the pure ferrite. The relatively large coercivity of this pure ferrite sample are 
constant with the pronounced growth of magnetic anisotropy caused the inhi-
biting the alignment of the magnetic moment along the applied field direction 
24.26 G [12]. 

The coercivity of nanoparticle also studied as a function of particle size at room 
temperature as shown in the Figure 2 which shows that the coercivity increases 
with increase the particle size reaching maximum value of 99.9 G at 30.89 nm 
and then decreases for large particle size. 

Figure 2 shows also the saturation magnetization Ms decrease linearly with 
increase in particle size. This is due to the following: 

It is well established that the permeability of polycrystalline ferrite consists of 
two different mechanisms. The magnetic domain rotational component and the 
domain wall motion are sensitive to both the ferrite grain size and the post  
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Figure 1. The vibrating sample magnitude (VSM) at room temperature with maximum 
applied up to 2 kG, for composite samples [NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 40%, 
60%, 80%, 100%. 

 

 
Figure 2. The coercivity of nanoparticle (Hc) and the saturation magneti-
zation (Ms) studied as a function of particle size at room temperature. 

 
sintering density. The grain size is more important parameter affecting the mag-
netic properties of ferrites.  

Globus [13] [14] assumed that the permeability due to the wall motion is like-
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ly to be linearly dependent on the grain size. But in the present work, the de-
crease of Ms with increasing particle size can be explained by taking into consider-
ation the cation distribution and domain wall motion. The presence of Na(ac.ac) 
contents retard the domain wall motion in the composite under the magnetic 
field, which decreased the interaction of A-B in ferrites and hence the decrease 
of Ms of the composites. 

3.2. The Electrical and Thermoelectrically Studies 
3.2.1. Ferro-Electric Hysteresis Loops of Composite Samples 
The ferroelectric hysteresis loops were display using Sawyer-Tower modified 
circuit, illustrated in Figure 3. It is observed that the inclination of hysteresis loop 
increases with increasing Na.ac.ac content in the composite. 

Figure 4 illustrates the effect of Na(ac.ac) contents content on the polariza-
tion. The increase of the inclination (polarization) with increasing x% content is 
due to the following: In previous work the ferroelectric hysteresis loop of Na(ac.ac) 
is displayed [15]. 

 

 
Figure 3. The ferroelectric hysteresis loops where display on the cathode 
ray oscilloscope for composite samples [NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 
20%, 40%, 60%, 80%, 100%. 

https://doi.org/10.4236/ojapps.2017.710040


O. M. Hemeda et al. 
 

 

DOI: 10.4236/ojapps.2017.710040 564 Open Journal of Applied Sciences 
 

 
Figure 4. The effect of Na(ac.ac) contents on the polarization of the composite 
samples. 

 
Therefore the increase x% content in the composite increases number of 180˚ 

and 90˚ domains in the direction of the applied ac field. This domain is corre-
lated with the induced polarization on the sample surface giving rise to polariza-
tion. It is obvious that role of ferrite in the composite is antiferroelectric material 
and this confirmed the polarization of the composite is due to the piezoelectric 
Na(ac.ac). 

3.2.2. The Pyroelectric phenomena of Composite Samples 
Figure 5 shows that The variation of pyroelectric charge of composite sample 
[(NCZF)1−x + (Na(ac.ac))x], x = 0%, 20%, 40%, 60%, 80%, 100%. The pyroelectric 
charge increases by increasing temperature up to maximum value at nearly tran-
sition temperature Tc of Na(ac.ac) phase. The reason of increase in pyroelectric 
charge by heat treatment might be due to the displacement of ion by thermal 
agitation, leading to the increase of ionic distance (metal-oxygen bound). The 
change in distance increases the dipole moment resulting; the increase of polari-
zation to attain maximum at Tc. Above Tc the decrease in pyroelectric charge is 
nearly reached to zero at 120˚C. This decrease may be due to phase transition 
from ferroelectric to paraelectric state. The pure ferrite sample is not pyroelectric 
samples due to the absence of ferroelectric phase. The presence of ferrite phase 
in composite shifts the transition temperature to higher value of about 90˚C [16] 
whereas for pure Na(ac.ac) the transition temperature of about 60˚C. Figure 6 
shows that the value of pyroelectric charge increases to maximum value by in-
creasing Na(ac.ac) content. These phenomena may be due to the increase of di-
pole moment by increasing ferroelectric phase content. The peak value of pyroe-
lectric charges is attributed to change of crystal structure from orthorhombic to 
triclinic phase. 
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Figure 5. The variation of pyroelectric charge as a function of temperature of composite [NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 
40%, 60%, 80%, 100%. 
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Figure 6. The pyroelectric charge (maximum value) as a function of x% for com-
posites [NCZF(1−x) + Na(ac.ac)(x)], x = 20%, 40%, 60%, 80%, 100%. 

3.2.3. Effect of Temperature on the Electrical Resistivity of the  
Composites 

Figure 7 illustrates the effect of temperature on the electrical resistivity of the dif-
ferent composites [NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 40%, 60%, 80%, 100% 
Na(ac.ac). It is noted that the resistivity decreases with rising temperature to have 
a minimum value at transition temperature of the composite, above the transi-
tion temperature the resistivity increases, This can be explain as follows, in gen-
eral, spinel ferrites behave with temperature as semiconductor but their conduc-
tivity is better being described by localized electron model rather than collective 
band model. The conductivity is commonly attributed to presence of Fe2+ ions 
[17], and sometimes-in Ni containing ferrites to the presence of Ni2+ also. The con-
ductivity arise due to the mobility of the extra electron which comes from Fe2+ 
(or sometimes extra hole in positive charge containing ferrites), through the crys-
tal lattice. The conductivity by hopping mechanism taking place between diva-
lent and trivalent ions of the same element present on equivalent crystallograph-
ic site (B-sites) is expressed as follows [18] [19]: 

Fe2+Fe3+ + e−, or Ni3+Ni2+ + e+ 

Some evidence of existence of divalent metal ions on the octahedral sites is 
found in the IR spectra of the ferrites used to prepare the present composites 
[20]. 

In pure ferrite (x = 0%) there are two transition temperature which is charac-
teristic behavior of the present ferrite. The high is always attributed to the mag-
netic phase transition of ferrite from ferrimagnetic state to paramagnetic state 
[21]. The low transition temperature is attributed to the spin reorientation phase 
transition below Curie temperature [22]. This leads to the change in the conduc-
tion mechanism [23]. The minimum value of resistivity at the transition tem-
perature as indicated in Table 2 is due to transition of the crystal structure of 
Na(ac.ac) in the composite from orthorhombic to triclinic phase [22]. 
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Figure 7. The relation of DC resistivity on reciprocal temperature for composite samples 
[NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 40%, 60%, 80%, 100%. 

 
Table 2. The activation energy for each transition temperature for composite samples 
[NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 40%, 60%, 80%, 100%. 

X% Na(ac.ac) Ferroelectric TC (k) Activation energy (ev) 

Pure ferrite 
314 0.35 

373 0.37 

20% Na(ac.ac) 370 0.38 

40% Na(ac.ac) 363 0.43 

60% Na(ac.ac) 357 0.54 

80% Na(ac.ac) 363 0.62 

100% Na(ac.ac) 353 0.76 

 
The increase of electrical resistivity above the transition temperature is due to 

conduction of charge carrier is correlated with the band conduction mechanism. 
The activation energy is listed in previous table for each composite before the 
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transition temperature with indicate the increase of Na(ac.ac) content increases 
the activation energy leading to increase the electrical resistivity of the composites. 

3.2.4. Effect of Temperature on the Dielectric Constant of the  
Composites 

The effect of temperature on the dielectric constant on the present composites is 
shown in Figure 8. It’s obvious that the dielectric constant increases with in-
creasing temperature for all composites. This can be explained on the basis that 
as the temperature increases the hopping between Fe2+ and Fe3+ ions on the oc-
tahedral-site it thermally activated, this electron hopping causes local displacement 
in the direction of the electrical field and as a result the dielectric polarization 
increase therefore dielectric constant increase [24] [25]. 
The dielectric constant of the composite increase than that of ferrite only as the 
temperature increases. It is known that Na+ cation are weakly bounded with acety-
lacetonate (CH3-C-CH2-C-CH3) anions. This facilitate to those ions to jump from 
 

 
Figure 8. The dielectric constant ( ε ′ ) as a function of temperature for composite sam-
ples [NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 40%, 60%, 80%, 100%. 
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site to the existed vacancies in the crystal. This gave rise to dielectric polarization 
in the present composite beside the hopping conduction of ferrite. The peak value 
of the present composite with temperature due to the transition of Na(ac.ac) 
crystalline from orthorhombic to triclinic phase above the transition tempera-
ture [26] for each composite (20% - 100% Na(ac.ac)) as shown in Figure 8. How-
ever beyond transition temperature the ions and electron are less oriented to-
wards the field direction in the triclinic phase of paraelectric state of the compo-
site and hence the dielectric constant decrease. 

3.2.5. Effect of Temperature on the Dielectric Loss of the Composites 
The dielectric loss as a function of temperature is noticed in Figure 9. It is ob-
vious that the dielectric loss tan (δ) increases sharply with temperature up to 
40% Na(ac.ac). This peak value decreases again for x > 40%. The increase in tan 
(δ) with temperature can be explained on the basis that as the temperature in-
creases the hopping electrons between Fe2+ and Fe3+ ions on the octahedral sites  
 

 
Figure 9. The dielectric loss as a function of temperature for the composite [(NCZF)1−x + 
(Na(ac.ac))x]. 
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Figure 10. The dependence of ME coefficient on the applied magnetic field of various 
Na(ac.ac) contents for composite samples [NCZF(1−x) + Na(ac.ac)(x)], x = 0%, 20%, 40%, 
60%, 80%, 100%. 

 
is thermally activated. These electrons caused a local displacement in the direc-
tion of the external applied field. The loss peak occurs when the applied field is 
in phase with the dielectric and verifying the condition Wτ = 1 is stats field 
where Wτ = 2πf, f is the frequency of the applied field and τ the relaxation time. 
This is related to jump probability per unit time ρ, by an equation τ = ρ/2. At the 
temperature 370 K the composite is transferred from ferroelectric to paraelectric 
states of Na(ac.ac). The jump probability increases at low temperature and the 
decreases of higher temperature. This explain the increase the value of tan(δ) at 
the high temperature of composite, The decrease of tan(δ) with increasing Na(ac.ac) 
above 40% may be due to decrease of the jumping probability of Na ions. 

3.3. The Effect of Magnetization 
Magnetoelectric Effect (ME) of the Composites 
ME is property of composite and is absent in their constituent phases. The de-
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formation of ferrite phase causes the polarization of piezoelectric phase whereas 
electrical polarization material causes change in the magnetization of ferrite 
phase due to mechanical coupling of piezomagnetic and piezoelecterical phase. 
Figure 10 indicates the dependence of ME coefficient on the applied magnetic 
field of various Na(ac.ac) contents. It is observed the ME coefficient decreases by 
increase of magnetic field. This may be due to low resistivity of ferrite phase than 
that the ferroelectric Na(ac.ac) phase because of Na(ac.ac) is a piezo and ferroe-
lectric material [27] [28]. Hence the charges developed in piezoelectric phase leak 
out through low resistance path. It is observed also ME coefficient decreased as 
Na(ac.ac) increased. The behavior of the present result is in agreement to those 
in previous work. These composites can be used as sensor in detecting electro-
magnetic waves [29] [30]. 

4. Conclusion 
The addition (Na(ac.ac)) has considerable effect on electric and magnetic prop-
erties of both ferrite and (Na(ac.ac)). The presence of Na(ac.ac) content decreases 
the A-B exchange interaction; which leads to the decrease of saturation magne-
tization Ms. The presence of Na(ac.ac) as a piezoelectric material has an impor-
tant role in increasing polarization and dielectric constant, while the presence of 
ferrite phase prevents the reorientation of dipole moment in the same direction 
and freezes the rotation of dipole moment in the easy direction. The increase of 
Na(ac.ac) content increases the activation energy leading to increasing electrical 
resistivity of the composites. ME coefficient has a considerable value compared 
with present composite but decreased as Na(ac.ac) increased. These composites 
can be used as sensor in detecting electromagnetic waves. 
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